|
Record |
Links |
|
Author |
Zhao, C.X.; Xu, W.; Peeters, F.M. |
|
|
Title |
Cerenkov emission of terahertz acoustic-phonons from graphene |
Type |
A1 Journal article |
|
Year |
2013 |
Publication |
Applied physics letters |
Abbreviated Journal |
Appl Phys Lett |
|
|
Volume |
102 |
Issue |
22 |
Pages |
222101-222104 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
We present a theoretical study of the electrical generation of acoustic-phonon emission from graphene at room temperature. The drift velocity (v(x)) and temperature of electrons driven by dc electric field (F-x) are determined by solving self-consistently the momentum-and energy-balance equations derived from the Boltzmann equation. We find that in the presence of impurity, acoustic-and optic-phonon scattering, v(x) can be much larger than the longitudinal (v(l)) and transverse (v(t)) sound velocities in graphene even within the linear response regime. As a result, although the acoustic Cerenkov effect cannot be obviously seen in the analytical formulas, the enhanced acoustic-phonon emission can be observed with increasing F-x when v(x) > v(l) and v > v(t). The frequency of acoustic-phonon emission from graphene can be above 10 THz, which is much higher than that generated from conventional semiconductor systems. This study is pertinent to the application of graphene as hypersonic devices such as terahertz sound sources. (C) 2013 AIP Publishing LLC. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Institute of Physics |
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000320621600034 |
Publication Date |
2013-06-03 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0003-6951; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.411 |
Times cited |
25 |
Open Access |
|
|
|
Notes |
; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; |
Approved |
Most recent IF: 3.411; 2013 IF: 3.515 |
|
|
Call Number |
UA @ lucian @ c:irua:109607 |
Serial |
305 |
|
Permanent link to this record |