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Calorimetric properties of mesoscopic superconducting disks, rings, and cylinders
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The thermal signatures of superconductivity in mesoscopic disks, rings and cylinders are calculated within
the Ginzburg-Landau theory. In an applied perpendicular magnetic field H the heat capacity of mesoscopic
samples shows a strong dependence on the realized vortex state; discontinuities are found at the critical field
for different vorticities, as well as at the superconducting-to-normal state transition. The same applies to the
intermediate state of type-1 superconductors. Even the subtle changes in the fluxoid distribution inside the
sample leave clear signatures on heat capacity, which is particularly useful for fully three-dimensional samples
whose interior is often inaccessible by magnetometry. The heat-capacity jump AC(H) at the critical tempera-
ture exhibits quasiperiodic modulations as a function of magnetic field. In mesoscopic superconducting rings,
these oscillations provide calorimetric verification of the Little-Parks effect.
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I. INTRODUCTION

Submicron superconducting devices are envisaged as a
base for futuristic electronics, due to their low resistance and
enhanced critical parameters compared to bulk materials.'?
Mesoscopic superconducting devices already found a num-
ber of exotic applications, such as in astronomy as the mi-
crobolometer of time-resolved terahertz spectroscopy? or as
dark matter detectors.* In latter systems, the intrinsic thermo-
dynamic properties are of crucial importance, related to the
energy needed for the heating of the system or to the heat
released when the system changes its state. Yet, the theoret-
ical understanding of such calorimetric properties of mesos-
copic superconducting samples is in its infancy as compared
to the extensively studied electromagnetic and transport
properties of such samples.

In bulk superconducting materials, the specific heat shows
sizeable jumps at the critical field for the superconducting/
normal (S/N) state transition, which was one of the most
important proofs for the existence of superconducting
condensation.” In type-II superconducting materials, the ex-
perimental and analytical analysis of the specific heat were
done in Refs. 6 and 7 as a function of applied magnetic field
H. They found that the amplitude of the jump in the heat
capacity at the S/N transition decreases as the applied mag-
netic field is increased (simultaneously, the critical tempera-
ture decreases). Another important aspect of this work is that,
when the specimens are heated in a constant magnetic field,
the heat capacity exhibits a very large peak at low tempera-
ture followed by a discontinuous drop in heat capacity at a
higher temperature. The latter is connected with the second-
order S/N transition at H=H,. Similar phenomenon was
also found in disordered superfluid *He,? as the specific heat
of superfluid *He, disordered by a silica aerogel, is found to
have a sharp discontinuity marking the thermodynamic tran-
sition to superfluidity (with lower amplitude and at a reduced
temperature from that of bulk *He). The formerly described
peak however is associated with the entrance of the magnetic
flux into the specimen.®’

Calorimetric investigation of mesoscopic systems brings
an innovative and complementary point of view to
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condensed-matter studies.!®'? Recently, it has become pos-
sible to study the heat capacity of submicron-sized supercon-
ducting samples due to the large progress in attoJoule
calorimetry.!"!3 The first heat-capacity measurements of the
phase transitions between vortex states in mesoscopic singly
connected superconductors were recently performed by
Bourgeois et al.'' and Ong et al.'* The experiments were
carried out on large arrays of mesoscopic two-dimensional
disks and rings, to maximize the output signal. Heat-capacity
curves versus temperature or field were found to clearly in-
dicate the number of vortices threading the sample, where
each entrance or exit of a vortex caused a jump from one
heat-capacity level to another. As for superconducting rings,
oscillations in the size of the discontinuity of the heat capac-
ity at the S/N transition were found and the measured oscil-
lations of AC),, with field showed a more pronounced ampli-
tude than anticipated. The corresponding theoretical
calculation and understanding is still lacking, and this is the
primary objective of this work.

General theoretical description of the specific-heat behav-
ior of the mixed state in superconductors was first discussed
by de Gennes!’ and Fetter.' At low and intermediate fields,
the difference of the specific heat between vortex states and
the fully superconducting state 1is proportional to
—-BT(PH,,/dT?)/4m, and also to a free-energy functional
F[H], which is complicated and must be calculated numeri-
cally (especially for a mesoscopic sample containing a dense
distribution of vortices). In his analysis, de Gennes also de-
scribed the specific-heat change between two different vortex
states, which is proportional to the obtained difference in
(dB;/ 3H)," leading to the prediction of specific-heat jumps
at magnetic fields for which a vortex enters or leaves the
sample. Other attempts to describe calorimetric properties of
superconductors have used the BCS theory or the Eilenberg
equations.!” However, the applicability of latter approaches
is limited to infinite periodic samples, due to the computa-
tional difficulties related to the mesoscopic boundary and the
current-field coupling effects. Therefore, it is more conve-
nient to study the thermal properties of these systems in the
framework of a mean-field Ginzburg-Landau (GL) theory.
For example, Bray'® simulated the behavior of the specific
heat in bulk and thin-film superconducting samples in a uni-
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form magnetic field, by the use of the “free fluctuation
theory” and screening theory. Fink!'® and Tinkham? described
the heat-capacity behavior in the case of a hollow supercon-
ducting cylinder and its relation to fluxoid quantization.
Zhang?° extended these approaches to mesoscopic supercon-
ducting rings for susceptibility calculations and Deo et al.'?
considered the heat capacity of superconducting disks, but
restricted their analysis to the linearized Ginzburg-Landau
theory.

There is therefore still a need for an approach that in-
cludes the influence of the quantized fluxoid states on the
specific heat of mesoscopic samples, including the demagne-
tization effects, for mesoscopic samples of arbitrary geom-
etry and size, plus for an arbitrary direction of applied mag-
netic field. This is an exact purpose of this paper; we present
our state-of-the-art theoretical calculation, based on the full,
nonlinear GL theory. This theory has been extensively used
in the past to describe the electromagnetic properties of two-
dimensional superconductors,>! where now we carefully in-
corporate and study the thermal relationships of different fac-
tors, the kinetic energy of the condensate and the magnetic
response of the sample. The present numerical approach al-
lows us to describe not only two-dimensional (2D) mesos-
copic superconducting systems but also mesoscopic three-
dimensional 3D samples, where the configuration of vortices
is even more intricate due to the complex influence of the
shape of the boundary and also the direction of the applied
magnetic field. As we will show, in such cases, the heat
capacity can be a useful tool to discriminate the delicate
changes in vortex configurations.

We start from the specific-heat calculations for two-
dimensional mesoscopic superconducting disks and rings,
where the relevant parameters are mostly taken from the ex-
periments of Bourgeois and co-workers.'%!* The studied
samples and theoretical formulation of the problem are pre-
sented in Sec. II. The calorimetric calculations for the disk
geometry are presented in Sec. III. The corresponding ther-
mal signatures of superconducting rings are shown in Sec.
IV. Section V is devoted to 3D calorimetric response of su-
perconducting cylinders, and our results are summarized in
Sec. VL.

II. THEORETICAL APPROACH

We consider mesoscopic superconducting disks and rings
made of type-I material (Al), which are immersed in an in-
sulator media and exposed to a perpendicular uniform mag-
netic field H. To be able to calculate the specific heat, we
explicitly include the temperature dependence in the GL for-
malism for the description of the superconducting system.
The superconducting-normal-state Gibbs free-energy differ-
ence in the GL approach can be expressed as

g= gSH - gNH
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where the Gy and Gyy correspond to the free energy of the
sample in the superconducting and the normal state, respec-
tively, at applied magnetic field H (h denotes the resulting,
total local field in and around the superconductor).’ The GL
parameter k equals AN/&, where N\ is the penetration depth.
Minimization of Eq. (1) leads to two coupled GL equations,
the first being

2
G-X) U+ PP - (1-1)P =0. )
The derivation of the GL equations assumes the London
gauge div A=0 for the vector potential A. All variables in Eq.
(2) are dimensionless: the distance is measured in units of
the coherence length &T=0), the vector potential A in
chi/2¢£0)  [magnetic field in  H,(0)=chi/2e&0)?
=k\2H_(0)], and the order parameter W is scaled to its value
in the absence of the magnetic field.

However, the first GL equation is only sufficient for the
description of extreme type-II samples or for an extremely
thin superconducting film where screening effects can be ne-
glected. Otherwise the demagnetization effects must be taken
into account, and the second GL equation is needed,

I T . .
~ A= (VT UV - [V, 3)
1

The right side of Eq. (3) is the density of the superconduct-
ing current j induced by the sample in response to the ap-
plied field. Note that for the quasi-2D system, i.e. small but
non-negligible thickness d of the sample, the variations of
the magnetic field and order parameter in z direction can be
neglected, and Eq. (3) may be averaged over the sample
thickness d. In that case, term x> in Eq. (3) becomes the
effective GL parameter k,=k>&/d.

Here we solve the GL equations self-consistently in a
finite-difference scheme.?>?* We use the Neumann boundary

conditions (—iV—A)¥| boundary=0 for the order parameter on
all sample surfaces, including the inner boundaries (if any).
The convergent solution of Egs. (2) and (3) determines the
superconducting state corresponding to the local energy
minimum. In search for all stable states for given conditions
(thus the lowest energy ground state, and the higher energy
metastable states), we repeat the calculation using different
initial conditions. For a realistic comparison with a field-
cooled experiment, we initiate the calculation from randomly
generated and very weak superconducting order parameter,
while in a zero-field-cooled situation, we start from |W|~ 1
in the whole sample. Once a solution is found, we are able to
calculate the specific heat of the superconducting state based
on the relation

#G

Fro (4)

C,(H,T)=C(H,T)-C\(H,T)=-T
where C denotes the total heat capacity of the sample, and
Cy is the heat capacity of the sample in the normal state [all
in units of C0=Hf(O)V/ (87T,)]. In the calculations, we start
from the equilibrium states and oscillate the temperature of
the system with amplitude 107#T,, (T, at H=0), and then
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FIG. 1. (Color online) Heat capacity of a superconducting alu-
minum disk as a function of temperature in the absence and in
presence of the magnetic field H. The calculation is done in the
zero-field-cooled regime. Inset depicts the sample.

perform the second derivation numerically to obtain the spe-
cific heat for given parameters.

It should be mentioned here that solving Eq. (3) directly
results in a finite magnetization of the sample. Instead of the
thermodynamic expression for magnetization M =dG/JH, we
define in accordance with experimental reality, i.e., as the
quantity of expelled magnetic field from the sample in ap-
plied field H,

M= : (5)
where i1=rotA is the local magnetic field in the sample, and
() denotes averaging over the area of interest (e.g., a surface
area of a magnetic detector at a given location with respect to
the sample).

III. HEAT CAPACITY OF MESOSCOPIC
SUPERCONDUCTING DISKS

In what follows, the sample is an aluminum disk of radius
R=6£(0) and thickness d=£&(0) (see inset of Fig. 1). This
corresponds to the experimental sample of Ong et al.,'*
where &(0) was roughly estimated to 182 nm and A(0) to 70
nm. This results in the GL parameter «=0.385, which is
firmly in the type-I regime. Often in experiments Al samples
are thinner than_\(0),*** which makes them effectively
type-1I (x,>1/+2), and conventional mesoscopic behavior
of the superconducting state and vortex matter is found. In
earlier works,?12027 the vortex entry and distinction between
giant and multivortex states was thoroughly discussed. Sur-
prisingly, Ong et al.'* also discussed their findings from the
standpoint of a type-II sample. While modeling the latter
experiment, we correct this somewhat, as explained further.

Conventionally, the behavior of the superconducting state
in mesoscopic type-II superconductors as a function of ap-
plied magnetic field is discussed with respect to the upper
critical field H,. In the present case, we scale the field to the
thermodynamic critical field H,., which in our sample equals
H_.(0)=®,/2\27£0)N(0) =~ 18.34 mT, with H.(T)
=H.0)(1-T/T,). Since penetration depth A(0) is compa-
rable to the thickness d and increases with temperature, a
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homogenous distribution of magnetic field across the sample
thickness can be assumed. Nevertheless, we use the three-
dimensional treatment of the two coupled Ginzburg-Landau
equations, taking thus fully into account the 3D demagneti-
zation effects. We are interested in two calorimetric sets of
data—one for the heat capacity versus magnetic field under
fixed temperature, and the other for the case of fixed mag-
netic field, and the variation of the heat capacity versus tem-
perature.

In Fig. 1 the C,[=C,,,,;—Cy] curve for the forementioned
superconducting disk is presented as a function of tempera-
ture (scaled to T,,). When present, the field was always ap-
plied after the sample had been cooled down to zero tem-
perature, i.e., we work in the zero-field-cooled regime. We
subsequently increase the temperature gradually. We monitor
the heat capacity of the Meissner state, although at higher
temperatures vortices may enter the system in the ground
state. However, due to the finite Bean-Livingston barrier and
the absence of fluctuations,?® fluxoids are generally unable to
enter the sample during the temperature sweep. In absence of
applied field, the L=0 state shows a discontinuity at 7,
analogously to the behavior of bulk superconductors (see
Fig. 1). The critical temperature is often determined by the
temperature at half-height of the C, jump, and the size
AC(H) of the heat-capacity discontinuity can be extracted at
the S/N transition.

In their attoJoule measurements, Ong et al.'* showed the
possibility of modulating the heat capacity of mesoscopic
disks by a magnetic field and investigated the response of the
different vortex states. Namely, the heat capacity is directly
linked to the flux distribution inside the sample and the re-
sulting vorticity. Since the corresponding theoretical calcula-
tions are missing up to date, we perform here the numerical
“experiment:” we fix the temperature in the absence of ap-
plied field (to 0.57/T,), and then sweep up the magnetic
field continuously toward the destruction of superconductiv-
ity, while recording all found vortex states along the way.
Subsequently, we decrease the magnetic field down to zero,
again in search for stable vortex states. For each recorded
equilibrium state, we then vary the temperature with AT
=107*T,, from the original one, in order to calculate the
variation of the free energy and the heat capacity according
to Eq. (4). The temperature step is kept small to ensure the
precision of the calculation, but also to avoid any change in
the original vortex state.

At this point, we should clarify that found vortex states in
the experiment are not the signature of type-II superconduc-
tivity. To show this in comparison with experimental data,
we scale the applied magnetic field value to H.(T) and spe-
cific heat to Cy; Cy equals H*(0)V/(87T,y) (V is the sample
volume), which amounts to 4.5X 107 pJ/K for a single
disk, but equals 18.9 pJ/K for large arrays of the samples
(number of disks N=4.2 X 10°) as was the case in the experi-
ment.

The obtained heat capacity C,(H,T) versus magnetic field
for fixed temperature is shown in Fig. 2(a). Starting from
zero field, the disks remain in the Meissner state (L=0) up to
H=~0.30H,(T) where C, abruptly jumps to a lower value.
This is the calorimetric signature of the first-order phase
transition L=0— L=1, where one vortex penetrates the disk.
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FIG. 2. (Color online) (a) Heat capacity C,(H,T) is plotted as a
function of the applied magnetic field at temperature 7=0.5T, for
increasing and decreasing magnetic field. The data shows pro-
nounced hysteretic behavior. H}” shows the penetration field of the
L—th vortex in the system and HZ is the vortex expulsion field (the
transition to a L—1 state). (b) The free-energy curves versus the
magnetic field for the magnetic field swept up and down. The unit
of the free energy G is HE(O)/S’ZT.

As the field is increased further, we observe a cascade of
successive  phase transitions L—L+1, until the
superconducting/normal second-order transition is reached.
Although this scenario perfectly resembles the type-II
samples, the found vortex states actually represent the inter-
mediate state of a type-I superconductor. The ratio between
the thickness and the diameter of the sample is 1/12, and
using the calculation of the demagnetizing field of a largest
inscribed ellipsoid from Ref. 29, we found that at applied
field of H=0.30H.(T) the field at the sample edges equals
H (T) and flux penetrates our type-I sample (see also Fig. 7
in Ref. 29). Also in accordance with the conventional theory
of type-I superconductivity, the superconducting state is fi-
nally destroyed at H=H,..

Note that due to the mesoscopic size of our type-I sample,
all found flux states are giant-vortex states. After the first
penetration field, the stability field region for the following
vortex state is approximately 0.09H.(T). Latter value pro-
vides for added flux of A® = 1.3®, through the system, and
corresponds well to the experimental data (Fig. 4 in Ref. 14).
As indicated in Fig. 2, the added flux decreases with further
increasing vorticity to 1.0P,, showing that the flux quantiza-
tion applies to the entire sample at high fields (at lower fields
the flux is quantized inside the zero-current path, located
between the giant vortex and the encircling Meissner cur-
rents). The total flux at the penetration field for the L=1
vortex state is much higher than for the successive vortex
states, because of the superheating of the Meissner phase,
and is readily observed even in type-II samples.?! Note the
different definition of the heat capacity in our calculation
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compared to the experiment; in experiment, the supercon-
ducting part of the specific heat is shown after subtraction of
the whole background from the measured signal, while in
our calculation C,,,,/(T,H)—Cxn(T,H) is used. As a result, we
have a different starting value of the heat capacity of the
Meissner phase in the absence of magnetic field, and a dif-
ferent background curvature while changing the magnetic
field.

The behavior of the heat capacity of the superconducting
disk in increasing magnetic field can be explained by consid-
ering the temperature dependence of the different terms in
the free energy in the Ginzburg-Landau theory. For
H<Hj}" (the penetration field of the L—th vortex in the sys-
tem, where the L—1— L transition takes place), we observe
an increase in the specific heat with increasing H. In the
microscopic scheme of the BCS theory, the increase of tem-
perature excites more quasiparticles in the system, and the
well-known temperature dependence of the energy gap A can
be derived %(% ~1.74(1- Tl)” 2, for temperatures close to T,.
In the Ginzburg-Landau théory, the temperature dependence
of the order parameter resembles the one of the energy gap
A; i.e., the density of Cooper pairs ceases with temperature
and decreases the heat capacity of the superconducting
sample. This contribution enters the free energy through the
term containing |#|*. However, in mesoscopic samples, we
find that the temperature dependence of the field-dependent
term in the Ginzburg-Landau free energy is of crucial impor-
tance [in reduced form of the free energy, this term can be
written as (A—A,)- ], where A, is the vector potential of the
applied field, and j is the supercurrent, see Ref. 21].

Lets consider the above two different contributions of the
free energy to the total heat capacity, specifically the |¢f*
term (Cy, related to the depletion of the condensate) and the
other from the superconducting current contribution (C, re-
lated to the kinetic energy of the condensate), which we
show in Fig. 3. The total heat capacity shows a cascade of
discontinuities for different vortices, but the major contribu-
tion of these jumps is different for low and high vorticity. For
example, Cy contributes mostly to the plateau of the vortex
states of L=1 and L=2, but the steep background of C, is
due to C;. Looking at C,, the difference between the vortex
states at their critical fields are present even for higher vor-
ticity states, but those jumps are small compared to the os-
cillations of Cy. In these calculations, while keeping
£0)=182 nm, we took the Ginzburg-Landau parameter
k,=1.18, thus clearly type II.

The two contributions C; and C, to the specific heat can
be investigated for different materials, i.e., with different
Ginzburg-Landau parameter .3*> To compare with Fig. 3, we
now show the total heat capacity and its two components C;
and C, for different vortex states when «,=0.64 (Fig. 4),
thus just under the type-I/II transition. In both figures, one
can find that the difference of Cy between adjacent vortex
states is small for lower vorticity, while the amplitude of the
oscillation is much higher for higher vorticity, especially
those close to the S/N transition point. It is these high vor-
ticity oscillations that contribute most to the behavior of the
total heat capacity at high magnetic field. C; shows a larger
oscillation amplitude for smaller «, i.e., more than a factor of
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FIG. 3. (Color online) The heat capacity (filled squares) is plot-
ted for a disk sample with Ginzburg-Landau parameter «,=1.18.
The two components of the heat capacity Cy (open triangles) and
C; (open dots) are shown. The calculations are done for sweeping
up and down the magnetic field.

2 larger for k,=0.64 as compared to «,=1.18 because of the
strong Meissner currents in the type-I sample. Also interest-
ing are the vortex states (and values of the magnetic field)
where the contribution C; drops from positive to negative. In
Fig. 3, such switching happens several times, along the
curves of the vortex states L=1-3, while in the case of «,
=0.64, it happens only for vorticity L=1, and remains nega-
tive afterwards. Therefore, type-I samples are more suscep-
tible to heating at high fields than the type-II ones.

In general, we can conclude that the major contribution to
the lower vorticity oscillations is due to the superconducting
current, and at high vorticity due to the depletion of the
condensate. The heat capacity decreases with increasing ap-
plied magnetic field, and the size of the decline is controlled
by the Ginzburg-Landau parameter «.

To obtain a more detailed understanding of C; for lower
vorticity states, we plot the calculated distribution of the su-
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FIG. 4. The same as Fig. 3 but now for «,=0.64.
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FIG. 5. (Color online) (a) The distribution of the azimuthal su-
perconducting current in the radial direction inside the supercon-
ducting disk, for the same parameter as used in Fig. 2, for
H=0.27,0.28, and 0.30H (7). Insets (1-2) show the vector plots of
the current for vorticity 0 and 1, with magnitude indicated by color
coding changing from red (minimum) to blue (maximum). (b) The
variation of current shown in (a) with temperature (Jj/d7T), for ap-
plied field H=0.27H(T) (system in the Meissner state, point A in
Fig. 2), field H=0.28H.(T) (close to HY’, point B in Fig. 2), and
field H=0.30H,(T) (point C in Fig. 2, L=1 state).

percurrent in Fig. 5. As shown in the insets, the current has
only an azimuthal component, and is cylindrically symmetric
for the shown states. Three characteristic magnetic fields are
chosen: (i) the field for which the system is in the Meissner
state, where the superconducting current preserves a high
density of superconducting order parameter; (ii) the field
prior to the L=0— 1 transition, and (iii) at the L=0— 1 tran-
sition. When the magnetic field is increased for the system in
the L=0 state, the density of the superconducting current
increases in order to expel the applied magnetic field. The
maximum of the current density is reached prior to the pen-
etration field, upon which the current becomes bipolar—
anticlockwise inside the vortex core, and clockwise other-
wise [see insets of Fig. 5(a)]. Figure 5(b) shows the variation
of the superconducting current with temperature, calculated
for a temperature increase by AT=0.0057 . The variation of
the current achieved for L=1 is much larger than that of the
L=0 state, which reflects the observed difference in the
heat capacity. Namely, latter feature shows that the
contribution of temperature to the kinetic energy of the
Cooper pairs is larger for the L=1 state, therefore less
energy is needed to heat up the system. Notice from
Fig. 2 that C,[H=028H.(T)]<C,[H=027H/(T)] since
AJ[H=0.30H.(T)]>AJ[H=0.27H(T)].
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FIG. 6. (Color online) The magnetic susceptibility (JB;/ dH)y as
a function of the applied magnetic field at temperature 7=0.5T ., for
different vortex states. The L— L+1 transitions are shown in the
figure, and the corresponding values of the jump of the magnetic
susceptibility between two subsequent phases are given.

The jumps in the heat capacity between the different vor-
tex states can be expressed more precisely using thermody-
namic arguments. The theory of the specific heat in the
mixed state is already well established, for the case of ex-
treme type-II superconductors where screening is negligible
(see Ref. 15). The discontinuity in the specific heat at the
given phase transition can then be calculated as

w0\ 2
c,»—c,-=—T(dH ) {(ﬁ) —(@‘) ] ©)
4\ dT oH); \0H)/r

where B stands for magnetic induction. Here we apply the
above expression to the transition between the different
vortex states, where i represents the vortex state of
vorticity L just below the field H}%,, and j represents the
L+1 vortex state at the field just above Hj%,. Clearly,
(0B;/ 0H)r=1+47(0M;/ 0H)y. Therefore, we conclude that
we will be able to predict the size of the jump of the specific
heat taken that we know H*(T)=H{", and the magnetization
of each vortex state, and vice versa. From the calorimetry
calculation of the specific heat we can derive the magnetic
susceptibility (dB;/dH)z.3* In Fig. 6 we show the magnetic
susceptibility for each vortex state as a function of the ap-
plied magnetic field, corresponding to the diagrams of Fig. 2.
We calculated (dB;/dH); using Eq. (5) and compared the
jump in susceptibility with the result from Eq. (6). We found
discrepancy of just 10%, although the sample is mesoscopic
and type I, none of which is included in the original theory
from Ref. 15.

In the second part of our calculation, we focus on the
influence of a constant perpendicular magnetic field on the
heat capacity at the superconducting/normal transition (criti-
cal temperature, height, width of the transition, etc.). We fix
the applied magnetic field and then calculate the specific heat
while scanning temperature. For a better comparison with
existing experimental data, we apply two strategies. In one,
we sweep down the temperature starting from the normal
state under given magnetic field which corresponds to the
experimental field-cooled (FC) regime. In another, we start
from zero temperature and sweep it up under fixed magnetic
field [zero-field-cooled (ZFC) procedure]. The two cases are
physically very different, as shown in Fig. 7(a). In the FC
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FIG. 7. (Color online)(a) C,(T) plots under fixed field
H=0.014H.(0) in field-cooled and zero-field-cooled regimes, for
the sample with the same parameters as in Fig. 2. (b) AC(H) at the
S/N phase transition as a function of the applied magnetic field
(different vortex states are shown in different colors). Inset shows
the oscillation of the critical temperature as a function of applied
magnetic field, derived from the observed discontinuity of C 1,(T).

regime, when the system is cooled down from the normal
state, it remains in the first nucleated L state as T is swept
down (in the present case, L=0). Therefore, we observed no
features in the heat capacity, except at the S/N phase transi-
tion. In the ZFC regime, when increasing temperature, the
vorticity of the system may change. Namely, in the shown
case, we found the L=1 state at low temperatures, which
becomes unstable at temperature 7=0.68T, and a transition
to L=0 is observed through the jump in C,(T).

We also considered the dependence of the jump in C,(T)
(AC) at the S/N transition on the applied magnetic field. In
bulk samples, AC shows a monotonous decrease with H}
while in mesoscopic superconducting systems this is not the
case. We calculated C,,(T) for a series of magnetic fields H,
ranging from O to 0.40 H,,, in increasing temperature, and
recorded the value of AC at each T=T,(H). As shown in Fig.
7(b), the found discontinuity is largest for the Meissner state,
and decreases in a steplike manner for the states with higher
vorticity. Simultaneously, we record the critical temperature
vs. applied field [shown in the inset of Fig. 7(b)]. This tem-
perature is defined as the temperature at which the disconti-
nuity of the heat capacity takes place.3> The critical tempera-
ture T.(H) exhibits a cusplike, but decreasing, behavior
(usually called Little-Parks oscillations, although those were
found in transport measurements®’), the AC(H) exhibits a
discontinuity at each cusp of T.(H), i.e., for each new vortex
state. The stability region for each L-state is approximately
0.1 H,, which is in good agreement with the experimental
results of Ref. 14, adding the magnetic flux through the disk
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of about ®. Note that corresponding theoretical work was
done in Ref. 12, where the modulated AC(H) was calculated
for disks but no discontinuities were found. This difference
most likely can be attributed to the different temperature de-
pendence taken in the Gibbs free energy, but may also result
from a full consideration of the nonlinear terms and the in-
clusion of the 3D demagnetization in our approach, instead
of the 2D linearized simulation without screening effects
taken in Ref. 12. We find that before each discontinuity in
increasing field, the value of AC, increases. This can be
understood from the fact that the difference of magnetic sus-
ceptibility between the normal state and the different vortex
states drops with increase of the vorticity, while for fixed
vortex state this difference increases with applied magnetic
field.

IV. HEAT CAPACITY OF MESOSCOPIC
SUPERCONDUCTING RINGS

In this section, we apply our numerical approach to study
the behavior of the heat capacity of superconducting rings,
both in the regimes of constant temperature and of constant
magnetic field. The geometric parameters of the studied rings
are: the outer and inner diameters are D=1100 nm and
Dy,=748 nm, respectively (thus of width w=176 nm), and
thickness d=30 nm. For the coherence length £(0) and pen-
etration depth \(0), we take 182 and 70 nm, respectively.'’
Being thin, these superconducting rings can be considered as
a two-dimensional system, as all relevant quantities are dis-
tributed homogeneously across the sample in the z-direction.
To accommodate this in the theoretical formalism, we use the
effective Ginzburg-Landau parameter «,=«>¢/d in Eq. (3).
The unit of the heat capacity in the calculations remains C,
and in the present case equals 1.92 pJ/K (for an array of
N=2.47X 10 rings, see Ref. 10).

First, we perform calculations for the heat capacity when
varying the magnetic field, in the range from 0 to 6 mT, at
fixed temperature 7=0.8T,,. The energy of the vortex state in
a ring decreases and then increases with magnetic field due
to the switching of the current from Meissner to vortex like
at the energy minimum. Here, the heat capacity C,(H) shows
corresponding oscillatory behavior, as shown in Fig. 8. In the
considered field range, the system was stabilized in states
L=0, L=1 and L=2, in increasing magnetic field. The found
period of oscillations is c.a. 3 mT, which is in conformity
with the oscillation period of AH=3.17 mT measured in the
experiment of Bourgeois et al.'® In our theoretical simula-
tions, the observed period of H corresponds to a flux of one
flux quantum @, through the circular area of diameter
D,;;=937 nm,**! thus larger than the inner diameter of the
rings. Note that in Fig. 8 the superconducting heat capacity is
minimal in the absence of magnetic field—it ascends for in-
creasing applied magnetic field, contrary to the experimental
observation. Latter discrepancy between our calculation and
the experiment comes from the theoretical definition of the
heat capacity C, which relates only to the superconducting
condensate while C,,,,; was used in the experiment.

The magnetic field dependence of the critical temperature
T. of the S/N transition is a known signature of the Little-
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FIG. 8. (Color online) The superconducting part of the heat
capacity C,(H) of the sample at temperature 7=0.807 as a func-
tion of the magnetic field H perpendicular to the plane of the rings.
For the magnetic field in the range 0 to 6 mT, we plot the heat
capacity for the L=0, 1, and 2 states.

Parks effect in mesoscopic superconducting rings,’ which are
usually studied in transport measurements. In Fig. 9 we show
that the jump AC(H) in the heat capacity at the S/N transi-
tion is yet another “fingerprint” of the same effect. The inset
of Fig. 9 shows the S/N phase boundary 7.(H) that we obtain
by performing scans similar to those shown in Fig. 7, for the
magnetic field in the range 0 to 12 mT (and corresponding
flux of 0 to 6®;). The obtained period of oscillations
matches roughly an added flux quantum through the ring,
and the decaying behavior of the critical temperature T.(H)
(shown in the inset of Fig. 9) agrees well with both the
experimental data from Ref. 14 and the theoretical work
from Ref. 20. Obtained AC(H) oscillations exhibit decreas-
ing amplitude with H, and their period is in agreement with
experiment.

Based on the understanding of the specific-heat behavior
of the superconducting disk in the previous section, we now
take rings of two different widths, to discuss the two differ-
ent contributions to the heat capacity. The outer diameters of
the rings are D=1100 nm, thickness d=30 nm, while the
inner diameters are Dy=600 nm and 400 nm respectively. In
Figs. 10 and 11, the heat capacity C, as well as its two
components Cy, and C; are plotted as function of the applied
magnetic field, (where H.,(0)=11.9 mT). One significant
difference of the heat capacity of the ring sample and the
disk ones is the different curvature of the Cy curve. From
Figs. 3 and 4, one can see those curves bending up with field,

1.96

1.92
0

H/mT

FIG. 9. The heat-capacity jump at the S/N boundary as a func-
tion of the applied magnetic field. The inset shows typical Little-
Parks oscillations of the critical temperature T.(H).
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FIG. 10. (Color online) The superconducting part of the heat
capacity C,(H), the contribution from the order parameter Cy(H)
(a) and from the superconducting current C;(H) (b), of the ring with
width w=250 nm, at temperature 7=0.307,, as a function of the
magnetic field H. We plot the heat capacity for the L=0,1,2 states.

especially for higher vorticity states, and only the low vor-
ticity states such as L=0 and L=1 are an exception where
Cy(H) is flat. Here, the Cy curves bend down in the case of
rings. The reason for this behavior is the penetration of the
magnetic field entirely through the sample. Namely, there is
no region inside the ring, where the Cooper-pair density is
kept unvaried during the increase of the applied magnetic
field and such region exists in the center of the disk when in
the Meissner state. However, once vortices enter inside the
sample, the distribution of the Cooper-pair density becomes
similar in the disk and ring samples, and the tendency of
bending down becomes weaker [see Fig. 10(a)], and can
even flatten (Fig. 11).
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FIG. 11. (Color online) The same as Fig. 10, but now for a ring
with width w=350 nm, and for the L=0,1 states. (a) The super-
conducting part of the heat capacity C,,(H) and the contribution
from the order-parameter variation Cyy(H). (b) The kinetic contri-
bution to heat capacity C;(H).
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The second difference between the heat capacity of disks
and loops is found for, e.g., the L=1 vortex state. Due to the
narrow width of the ring, the magnetic field must be screened
in order to prevent penetration into the sample from the inner
surface, which results in Meissner currents that are maximal
at the inner edge—opposite to the case of a disk, where the
maximum of screening currents is always found at the outer
edge. With increasing magnetic field, upon penetration of
field inside the superconducting material, the current changes
sign and the maximum of the current shifts to the outer edge
of the ring, as is the case in disks. Thus the amplitude of the
superconducting current exhibits two (displaced) maxima as
a function of magnetic field, instead of just one in the case of
the superconducting disk. Since heat capacity directly de-
pends on the current profile and its temperature dependence,
the specific heat as a function of magnetic field first de-
creases and then increases, instead of the monotonous in-
crease found for the disk geometry. Comparing Figs. 10 and
11, one can also find different portion of C; contributing to
the total heat capacity, 0.04C, of L=0 and L=1 for
w=250 nm sample and 0.1C, of L=1 for w=350 nm
sample. Smaller w also results in a smaller period of Cp(H)
oscillations due to easier fluxion quantization in a larger
hole. The behavior found for w=350 nm is already “disk-
like,” where the C; from the L=1 state is much higher than
that of the L=0 state.

V. HEAT CAPACITY OF A MESOSCOPIC
SUPERCONDUCTING CYLINDER

Based on the understanding of the heat capacity in two-
dimensional systems, we can conclude that the heat capacity
is strongly dependent on the vortex configuration, supercur-
rent distribution and even the geometry of the sample. There-
fore, we explore the potential application of calorimetry to
find out the “intrinsic” properties of the superconducting
sample. This becomes even more important in the case of
three-dimensional superconducting systems, where calorim-
etry measurements can give an direct insight into the vortex
distribution,3> without destroying the sample or the super-
conducting state itself, and for arbitrary direction of applied
magnetic field. To illustrate this, we apply our numerical
“experiment” to a 3D mesoscopic cylinder.

The sample is a cylinder with radius R=8&(0), height
h=16&(0), and the Ginzburg-Landau parameter xk=0.7. We
studied the behavior of the heat capacity in the cases where
the magnetic field is applied in three different directions: (1)
0=0°, along the axial direction; (2) #=45°, along the diago-
nal direction and (3) 6=90°, parallel to the basal surface.
Magnetization curves are calculated using an imaginary Hall
bar placed above the sample, at a distance 0.5&(0) and with
size 16 X 16£(0)%. In Fig. 12, the calculated heat capacity and
the magnetization curves are plotted for case (1), as a func-
tion of the applied magnetic field. The heat capacity shows
several jumps, which indicate different vortex states inside
the sample just as in the 2D case. The magnetization curves
show corresponding discontinuities, as expected.

In the case of tilted magnetic field (6=45°), the heat ca-
pacity shows a profoundly different behavior from what we
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FIG. 12. The superconducting contribution to the heat capacity
C,(H) of the sample at temperature 7=0.807 as a function of the
magnetic field H in the axial direction (6=0°) of the three-
dimensional cylinder (a). The corresponding magnetization of the
sample is shown as a function of H (b).

observed in the previous sections. Because of the coincident
direction of applied field with the diagonal of the cylinder, it
is energetically unfavorable for the states of odd vorticity to
form inside the sample. Therefore, in the process of sweep-
ing up the applied magnetic field, the states of L=1 (Fig. 13,
point A), L=3 (Fig. 13, point C) and L=5 have very short
stability regions. What is reflected on the heat capacity is that
the states of those particular vortices are of “low” thermal
stability, thus, the heat capacity of these states is much higher
than that of the energetically favorable states, with even
number of vortices distributed symmetrically parallel to the
diagonal of the cylinder (see Fig. 13). Note also the behavior
of the heat capacity of the L=2 state. Due to the weak sta-
bility of the L=1 state, the L=2 state appears at relatively
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FIG. 13. (Color online) The heat capacity as a function of the
applied field H, where the field is applied under an angle §=45°
with respect to the axis of the cylinder. Insets show the 3D isoplots
of the Cooper-pair density (|¢>=0.05), for different vortex states,
corresponding to the H values indicated by open circles.

PHYSICAL REVIEW B 81, 064501 (2010)

1.9— T T T T T T
E IN
R=8.0%(0) -
T=0.8T,, ‘
1.8  0=90° g B,’C /. 1
AR
< N 4 /
o 17l ' Aﬁ. om J
| 2l = R
| | |
o /./ '
I~ et
16] wea™=? Wl =

0.0 170 20 3.0 40 50 6.0
H/mT

FIG. 14. (Color online) The heat capacity is plotted as a function
of the applied field H from H=0 to 6.0 mT, where the field is
applied with an angle 6=90° (indicated by the arrow). Insets shows
the 3D isoplots of the Cooper-pair density of the surface with ||
=0.05, only for vortex states L=1, 2, 3, and 4, which are indicated
by blue empty dots.

low field, with two vortex branches located at both corners
away from the diagonal line of the sample, which results in a
large heat capacity. With increase of the field, both vortices
are pushed closer to the diagonal center line, where the sys-
tem reaches the lowest energy (point B in Fig. 13). As the
field keeps increasing, vortices keep coming closer to each
other, in which case, the repulsion between them becomes
stronger and the heat capacity increases again. A similar pro-
cess is observed also for the L=4 vortex state, which is in-
dicated as point D in Fig. 13.

Finally, we discuss the case of #=90°, where the field is
applied parallel to the upper surface of the sample. The 3D
isoplots of the Cooper-pair density in Fig. 14 show different
vortex states for L=1-4. First, one can notice the short sta-
bility range of the L=3 state, which is caused by the sym-
metry breaking between the sample and the vortex distribu-
tion. Second, during the increase of the magnetic field, the
heat-capacity curve of the L=2 state shows a short plateau.
The vortex configurations are shown before, at, and after this
plateau area, as points A—C, respectively in Fig. 14. One can
see that before the plateau, two vortices align in plane paral-
lel to the applied magnetic field and the upper surface. With
the increase of the magnetic field, these two vortices merge
together in the center (which is due to the strong interactions
with the boundary at this part), and afterwards the plane of
these two vortices becomes tilted at a small angle with re-
spect to the upper surface of the sample. The small plateau in
the specific-heat curve exactly records these changes of the
vortex distribution.

Note therefore that the heat-capacity measurement can
give a very informative description of the vortex distribution
inside the 3D sample, while at the same time, the magneti-
zation curve can be “blind” to all those processes, due to the
incompatibility of the direction of the stray magnetic field
and the placement of the Hall bar.

VI. CONCLUSIONS

We developed a numerical approach to calculate the heat
capacity within the Ginzburg-Landau formalism for an arbi-
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trary shape of a mesoscopic superconductor. In the present
work we focused on disks and rings motivated by recent
calorimetric experiments. We studied the heat-capacity de-
pendence on magnetic field and temperature, and we proved
that different flux (vortex) distribution inside the sample will
produce pronounced features in the measured specific heat,
different from what is known for bulk superconductors. The
heat capacity exhibits large discontinuities at each phase
transition, with phases being either different vortex states, or
the superconducting and normal phase, in type-I as well as
type-1I samples. We quantitatively matched the jumps in heat
capacity to changes in magnetic susceptibility, following the
conjecture of de Gennes. In summary, we show that the ther-
modynamic properties of a mesoscopic superconductor can
be manipulated by the geometry of the system, but also that
the S/N phase boundary and other phase transitions can be

PHYSICAL REVIEW B 81, 064501 (2010)

monitored by calorimetry. Our method is generally appli-
cable to samples of arbitrary 3D geometry, and for magnetic
field applied in any direction. We demonstrated this in the
case off a mesoscopic cylinder, and show how subtle 3D
changes of the vortex structure leave distinct signatures in
the heat capacity. Finally, we also show the use of calorim-
etry in cases when conventional magnetometry is “blind.”
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