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Broken one-particle symmetry in few-electron coupled quantum dots
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Few-electron systems confined in vertically coupled quantum dots are studied by exact methods and through
the local spin density approximation (LSDA). Special attention is paid to the recovering of the one-particle
symmetry properties in the LSDA. It is shown that—in spite of accurate energy estimates—the LSDA does not
reproduce the one-particle parity and the relative probability of finding a definite number of electrons in the
different quantum dots. This symmetry breaking appears for certain electron configurations and intermediate
thickness of the interdot barrier and is a direct result of electron-electron correlation. We discuss the effect of
correlation on the symmetry properties of the few-electron wave function and determine the limits of the

applicability of the LSDA for coupled quantum dots.
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I. INTRODUCTION

Quantum states of few-electron systems confined in
coupled quantum dots (QDs)'~? are usually studied by mean-
field methods, e.g., Hartree-Fock (HF)!'°-'?> method and local
spin density approximation (LSDA),'*"!7 which are based on
the one-electron approximation. In the simplest version of
these methods, electron-electron correlation is either ne-
glected (in the restricted HF approach!!:1>18) or treated in an
oversimplified manner (in the LSDA!3-7). Electron-electron
correlation is much better taken into account in the unre-
stricted version of the HF method!!"!'>!8 and in the configu-
ration interaction (CI) method,'”2° which leads to an im-
provement of the energy estimates. In the present paper, the
influence of electron-electron correlation on the accuracy of
the LSDA solution is studied. When testing the accuracy of
the LSDA method, we should determine not only the energy
of the system, but also the symmetry properties of the many-
electron wave function. In particular, due to the one-electron
character of the LSDA, it is important to check if the one-
electron LSDA wave functions reproduce the symmetry of
the exact many-electron solutions.

The broken-symmetry LSDA solutions were analyzed by
Harju et al.'? for a four-electron rectangular QD. Pi et al.'*
studied the addition spectra of vertically coupled QDs and
found that introducing asymmetry between the QDs into the
LSDA leads to a better agreement with experiment. A sys-
tematic study of the occupancy of bonding and antibonding
orbitals in two vertically coupled QDs with three up to six
electrons in the presence of a magnetic field was made by
Partoens and Peeters.”?! Rontani et al.'® applied the CI
method to study the magnetic-field influence on the occu-
pancy of electronic bonds for vertically coupled QDs with
N=2,...,7 electrons. In a recent paper, Austing et al?? re-
ported different electron phases at integer filling factor in
vertically coupled QDs and analyzed the experimental results
within the LSDA.

The properties of electrons confined in coupled QDs de-
pend on the parameters of the potential barrier layer separat-
ing the QDs.?! In particular, the coupling between the QDs
can be tuned by changing the height and thickness of the
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barrier layer. If the barrier layer is sufficiently thin to enable
tunneling of electrons between the QDs, then the nanostruc-
ture exhibits properties similar to that of a single QD. If
however the barrier layer is thick enough to prevent tunnel-
ing, the electrons become localized in the different QDs.
Then, we deal with two isolated electrostatically coupled
QDs.?

When using the LSDA we reduce the many-electron prob-
lem to the one-electron problem, in which the electron-
electron interactions are described by an effective potential
obtained through a self-consistent procedure. In the LSDA
we can employ one-electron wave functions, on which we
impose the same symmetry as that of the confining potential.
In analogy to the restricted HF method, this version of the
LSDA will be called the restricted LSDA (r-LSDA) through-
out the present paper. However, the symmetry requirement of
the r-LSDA is too restrictive, since only the total many-
electron wave function should possess the symmetry of the
external confinement potential. The one-electron wave func-
tions do not have to possess this symmetry and therefore the
effective potential can exhibit a different symmetry from that
of the confinement potential. The ~-LSDA method provides
fairly accurate energy estimates for few-electron systems.
However, for certain electron configurations the r-LSDA
leads to unreliable results and the predicted electron ground-
state configuration turned out to be incorrect.'®

The above-mentioned shortcomings of the restricted
LSDA are removed in the unrestricted version of the LSDA
(u-LSDA), in which the one-electron wave functions can
possess a lower symmetry'7->326 than the confinement poten-
tial. In the u-LSDA, we are dealing with the breaking of the
one-particle symmetry, which leads to more accurate results
for the energy.'”

The purpose of the present paper is to study the symmetry
properties of the few-electron system confined in vertically
coupled QDs (artificial molecules) and to test the applicabil-
ity of the r-LSDA and u-LSDA. Detailed tests have been
performed for the two-, three-, and four-electron systems, for
which we were able to obtain exact results and compare them
with those of the LSDA. For the two-electron coupled QDs,
we obtain exact results by separating the center-of-mass mo-
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tion and solving the relative-motion problem by accurate
finite-difference numerical method.?* For the three- and four-
electron coupled QDs, the exact results are obtained with the
help of the CI method. Particular attention is paid to the
conditions, under which the LSDA one-electron wave func-
tions reproduce the proper symmetry of the system. Although
the LSDA wave functions do not always exhibit the correct
symmetry, they usually lead to accurate energy estimates.
Therefore, we have compared the electron addition energies
as obtained from the r-LSDA and u-LSDA for the N-electron
artificial molecule with 2<N=<13.

The paper is organized as follows: the theoretical methods
applied are described in Sec. II, the results are presented in
Sec. III, and conclusions and summary are presented in Sec.
IV. In the Appendix we provide formulas for the effective
electron-electron interaction potentials as derived for differ-
ent quantum states.

II. THEORY

We study the systems of N=2, 3, and 4 electrons confined
in a vertical double coupled QD nanostructure.’? The con-
finement potential V|(z) in the vertical direction is taken as
two identical potential wells with thickness Z=12 nm and
depth V;=200 meV, separated by a barrier with varying
thickness b. In the lateral directions, we assume parabolic
confinement

2
2032 432, (1)

VL(x’y) =

with the confinement energy fiwy=10 meV. For our model
nanostructure we employ the parameters of GaAs, i.e., elec-
tron effective mass m,=0.067m,,, where m, is the free elec-
tron mass, and dielectric constant e=12.4.

A. Center-of-mass separation for two-electron system

For two electrons confined in the lateral parabolic poten-
tial we can separate’*?7 the center-of-mass (CM) motion and
relative motion, which leads to the center-of-mass Hamil-
tonian

2
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where Qcy=3(x;+x2,1+¥2), 012=(x;—x2,¥1—¥2), Ve and
V., are the nabla operators, which contain the derivatives
with respect to the components of vectors @y and 0, re-

; _ 2 2 21172
spectively, ri=[(x;—x)*+(y;=y2)*+(z1-2)*]"*, and «
=1/(4mey). The solutions of the eigenproblem for the
Hamiltonian Hcy; are the wave functions of the two-
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dimensional harmonic oscillator associated with eigenvalues
Eyeymey=2Nem+ Moy | + 1) fiwg, where Ny and My are
the radial and z-component angular momentum quantum
numbers, respectively. The eigenproblem of the relative-
motion Hamiltonian H, cannot be solved analytically, there-
fore, we must rely on a numerical solution. For this purpose,
we transform the relative-motion eigenequation to cylindri-
cal coordinates, separate out the angular dependence, and
ascribe a definite z angular-momentum component to each
eigenstate, which reduces the number of independent coordi-
nates to three. For this reduced eigenproblem we apply the
imaginary-time step method”® on a three-dimensional mesh.
This method enables us to obtain numerical solutions with
any required accuracy. Throughout the present paper we will
treat these numerical solutions as exact.

B. Configuration interaction method for three- and four-
electron systems

For three and four electrons the center-of-mass separation
leads to a relative-motion problem with too many indepen-
dent variables, which does not allow for an efficient numeri-
cal solution. Therefore, in order to obtain the exact solutions
for the three- and four-electron artificial molecules, we apply
the CI method. We employ the CI basis of Slater determi-
nants constructed from different configurations of the one-
electron wave functions, which take into account the corre-
lation effects in the vertical direction.

Below we briefly describe the CI approach used in the
present paper. The N-electron Hamiltonian has the form

H= 2h+22 (4)

i=1 j>i 8|r j

where the one-electron Hamiltonian

l’li = hH + l’ll (5)
is a sum of the vertical-motion Hamiltonian
2P
hy=——"—+YV, 6
1= o, 022 1(2) (6)

and the lateral-motion Hamiltonian
e )
h, =
2m ax* &y

D024y, (@)

The eigenfunctions of the one-electron Hamiltonian (5) can
be expressed as

u(x,3,2) = f(2)g,(x,y), (8)

where f,(z) and g,(x,y) describe the vertical and lateral mo-
tion, respectively. Wave functions f,(z) are obtained from a
numerical diagonalization of the finite-difference version
of Hamiltonian (6) on a one-dimensional mesh. In the
present approach, we included the four lowest-energy states
fu(2). Due to the simple rectangular shape of the vertical
confinement potential, taking into account a larger number
of states f,(z) does not change the results. In this way, we
can fully describe the electron-electron correlation in the ver-
tical direction.
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For the wave functions g,(x,y) we take the eigenfunctions
of the two-dimensional harmonic oscillator with frequency w
(not necessarily equal to w,), corresponding to the angular
momenta 0 and +A. Their explicit forms are

2
foe) =\ 22 expl- B0+ )] ©)
and
2
gui(ry) = \,—éu siyexpl- B2 +y)]. (10)

where S=m,w/2. We checked that including the larger num-
ber of wave functions g,(x,y) leads to a slight lowering of
the energy, which however does not change the parity of the
lowest-energy states.

Wave functions f,(z) and g,(x,y) together with two
eigenstates of the z spin component form the basis consisting
of 24 one-electron orthogonal spin orbitals, from which we
can construct Ng=24!/[(24-N!)N!] Slater determinants.
The N-electron states are also the eigenstates of the follow-
ing operators: z component of the total orbital momentum

(f,z), square of the total spin ($2), z component of the total

spin (S’z), and total parity (II). Among the N Slater deter-
minants, we choose only those which possess the required

parity and are eigenfunctions of S’Z. The actual maximum
number of basis elements used in our calculations was 1343
for N=4. We identify the states with the different eigenval-

ues of $? by determining the degree of their degeneracy with

respect to eigenvalues of 3‘1. In the present paper, w is treated
as a variational parameter; so, in general, w # w,. When per-
forming a minimization over the variational parameter w, we
obtain w<w,, which lowers the energy of interaction be-
tween the electrons confined in the same QD. The optimum
values of fiw increase with barrier thickness b increasing
from O to 10 nm and vary from 6.5 meV to 7.5 meV for the
four-electron ground state and from 7.5 meV to 8.5 meV for
the three-electron ground state. In the Appendix we provide
the interelectron interaction matrix elements calculated with
the use of our basis functions g,(x,y).

C. Local spin density approximation

The LSDA is based on the Kohn-Sham equation

ﬁ2
<_ 2—%V2+ VCX[+ gf(f{-) l//a(r:8a(r¢a(rv (11)
which describes the electron in the orbital state « with z spin
component o. In Eq. (11), V,, is the external (confinement)
potential and V¢ is the effective potential, which takes into
account the interactions between the electrons. We assume
that the spin of each electron is well defined and the spin-
dependent part of the wave function can be separated out
from the orbital part. Moreover, due to the cylindrical sym-
metry of V., and VS, the one-electron solutions of Eq. (11)
have a well-defined z component of angular momentum.
They can be written down in cylindrical coordinates as fol-
lows:
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llfnm(r(rvz’ ¢) = ()Dﬂl/l’l(r’Z)e”nqS g (12)

where m=0,+1,... is the quantum number of the z compo-
nent of orbital momentum and n=1,2,... numbers the sub-
sequent solutions with definite m and o. The eigenvalues of
the z components of the total angular momentum and total
spin are equal to (in units %): M_==Y m; and S,=3V o,
respectively. Throughout the present paper only the states
with M, =0 and S,=0 are considered, since the external
magnetic field is absent and the spin-orbit interaction has
been neglected.

We solve the Kohn-Sham equation (11) using the
imaginary-time step method”® on two-dimensional mesh
(r;,z;). The simultaneous application of the Schmidt orthogo-
nalization enables us to obtain the excited one-electron
states. We denote the N-electron states, as calculated by the
LSDA, by specifying all the occupied one-electron orbitals
(nm). The states with |m|=0,1,2,... are labelled by s, p,
d,..., respectively. For example, the two-electron singlet
state with M,=0 is denoted by 1s°.

The effective potential in Eq. (11) is the sum of the Har-
tree and exchange-correlation potentials, i.e.,

Vet (r) = Vi (r) + ViZ (). (13)

We calculate both the components of the effective potential
taking into account the self-interaction corrections according
to the method of Perdew and Zunger.?® The exchange-
correlation potential is a difference of two functionals one of
which depends on electron densities@! and @' while the sec-
ond depends on @%® only. The electron density @, which
corresponds to the well-defined spin o=T, |, is calculated as
the sum Q7(r)=2 4| g,(r)|* over all occupied states with
spin 0. The electron density in the considered state is given
by 0%°(F)=|h,,(F)|>. The exchange-correlation potential
V..([e',e'1,7) is taken on in the parametrization of Ceperley
and Alder.’® In a similar way, we calculate the Hartree po-
tential for each state separately by extracting from the total
electron density the electron density of the state under con-
sideration. Accordingly, the Hartree potential is determined
as follows:

2 =
Ve = < f a2 (14)
€ r

where o(7)=0'(F)+0'(7)— 02?(7). The exchange-correlation
potential is calculated on the same mesh, on which we solve
Eq. (11). In the framework of the LSDA method, we employ
the electron densities determined on the same grid points. In
order to calculate the Hartree potential using Eq. (14), for
each grid point one must perform the summation over all the
grid points. This means that the computational complexity is
a quadratic function of the number of grid points, i.e., for the
large mesh the computation is very time consuming. In order
to accelerate the computations, we use Eq. (14) to calculate
the Hartree potential only on the cylindrical surface, which
encompasses the computational region. This leads to the
boundary condition on the Hartree potential, which is calcu-
lated inside the cylinder by the Poisson equation.
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In the present paper, we have applied the following two
versions of the LSDA: restricted LSDA (r-LSDA) and unre-
stricted LSDA (#-LSDA). In the r-LSDA, the one-electron
wave functions reproduce the symmetry of the external con-
finement potential, while in the u-LSDA this symmetry can
be broken if the broken-symmetry solution results in the
lower energy.

D. One-electron parity and relative probability

The external confinement potential is symmetric against
inversion, i.e., the transformation (x,y,z) — (-x,—y,—z) and
therefore the parity operator commutes with the Hamiltonian
of the N-electron system. This implies that the total
N-electron wave function must possess a well-defined parity.
However, it is not necessary that the symmetry of the many-
electron wave function is mapped onto the symmetry of the
one-electron wave functions used in the LSDA. As a conse-
quence, it is possible that the effective electron-electron in-
teraction potential, used in the one-electron Kohn-Sham
equation [Eq. (11)], does not exhibit parity symmetry and
consequently the eigenfunctions of Eq. (11) do not necessar-
ily possess a well-defined parity.

The breaking of the symmetry of the one-electron wave
functions is a consequence of the inclusion of electron-
electron correlation and can lead to a lowering of the total
ground-state energy when calculated within the LSDA."3 In
the LSDA, the approximate many-electron wave function is
constructed from the one-electron wave functions, which de-
termine its symmetry. In the present paper, we focus on the
correlation and symmetry properties of the few-electron sys-
tem in the vertical (z) direction. Therefore, in order to dimin-
ish the correlation effects in the lateral directions, we assume
a strong lateral confinement potential with confinement en-
ergy fiwy=10 meV. Owing to the strong lateral confinement,
the Coulomb interaction only slightly modifies the lateral
shape of the one-electron wave functions.

In order to determine quantitatively the effect of correla-
tion on the one-electron states, we introduce two auxiliary
quantities, namely, the one-electron z parity with operator 7
and relative probability P(N;|N,) of finding N, electrons in
one QD and N, electrons in the other. The estimates of both
these quantities obtained with the LSDA methods will be
compared with the exact results. Such comparison enables us
to check, to which extent the LSDA wave functions repro-
duce the properties of the exact wave function.

The operator 7 of the one-electron z parity is defined as
follows: when operating with 7r on the total wave function
Wa(X1, 1,201,001, ..., XN YN 2y, Oy) Of N indistinguishable
electrons the sign of the z coordinate of one electron is
changed. Explicitly,

W\PN(xl’thlao-l’ s ’xN’yN’ZNao-N)

=\PN(X1,)’1,—Z1,0'1, ---,XN,)’N,ZN,(TN), (15)

where o are the spin variables. Equation (15) allows us to
calculate the expectation value of the one-electron z parity if
we know the exact N-electron wave function. In general, the
expectation value of 7 can take on arbitrary values within
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the interval [-1,1]. If the N-electron wave function is ap-
proximated by the Slater determinant W, then the expecta-
tion value of the one-electron z parity is equal to the arith-
metic mean of the expectation values of the parities of N
one-electron wave functions, i.e.,

() = (V|7 W)

1

N 400 400 400
= ]T]E J f f dXddelp;(xvy’Z)l/fi(x’y’_Z)’
=1 —o0 —0o0 —o0

(16)

where :(x,y,z) are the one-electron wave functions. If the
electrons confined in the QDs occupy the even-parity states
exclusively, the expectation value of the one-electron parity
equals 1. If however the electrons occupy both the even- and
odd-parity states, the expectation value of the one-electron
parity can be expressed as () =(Neyen—Noaa) /N, where Nyen
(Nogq) 18 the number of electrons occupying the even (odd)
parity states. We note that the one-electron z parity 7 is
closely related with the z component of the isospin.' The
z-component isospin quantum number /, takes on the value
Iz:(]veven_lvodd)/z'l9

In the two vertically coupled QDs, there are only two
regions, in which the electrons can be localized with a large
probability. These regions are the lower QD, for which z
<0, and the upper QD, for which z>0. For the two elec-
trons the probability to find exactly one electron in each QD
is given by

P(l|1)=f d%f &' |7, 7))
z<0 7'>0

+ f d3rJ d3r’|\lf(7,17')
>0 7/ <0

where V¥ is the two-electron wave function. For the two-
electron system the probability of finding both electrons in
the single QD is given by

2

; (17)

P(O|2)=f d3rJ &r [P
z<0 7'<0

+f d3rf &r [P ()P (18)
z>0 7'>0

Formulas (17) and (18) can be easily generalized to a system
of N>2 electrons. Therefore, we obtain the relative prob-
ability P(N,|N,) of finding N, electrons in the upper QD and
N, electrons in the lower QD, where N;+N,=N. We note
that—for each N—the sum of all probabilities P(N,|N,) is
equal to 1.

III. RESULTS
A. Two electrons

The two-electron system confined in the coupled QDs is
the simplest system, in which correlation plays an important
role. The calculations for this system have been performed
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FIG. 1. (Color online) Lowest-energy levels of two electrons in
coupled QDs calculated by the (a) r-LSDA and (b) u-LSDA as a
function of interdot barrier thickness b. Exact results for states
(M,,S,)=(0,0),(0,1), and (1,1) are plotted by solid, dashed, and
dotted curves, respectively, the LSDA results for the corresponding
states 152, 1s'2s!, and 1s'1 pl are shown by full dots, open dots, and
crosses.

using the imaginary-time step method with the center-of-
mass separation (called the “exact” method) and the two ver-
sions of the LSDA. Figures 1(a) and 1(b) show the barrier-
width dependence of the three lowest-energy levels obtained
by these three methods. The ground state of the two-electron
artificial molecule is the spin singlet with M.=0 [cf. solid
curves in Figs. 1(a) and 1(b)]. For wide barriers, i.e., for
b=6 nm, the two-electron molecule in the triplet state with
M =0 has the same energy as in the s singlet state, i.e., the
ground state becomes fourfold degenerate. For narrow barri-
ers the -LSDA results are almost the same as the exact ones
[Fig. 1(a)]. However, the errors of the r-LSDA energy esti-
mates increase with increasing thickness of the barrier, which
leads to qualitatively erroneous results, namely, the transition
of the s-type ground-state configuration from a singlet to
triplet state at b=4.2 nm. Figure 1(b) shows that the u-LSDA
method correctly reproduces the energy-level sequence for
all barrier thicknesses. For wide barriers the errors of the
u-LSDA are several times smaller than the corresponding
errors of the r-LSDA (Fig. 2). This means that—in contrast
to the -LSDA—the u-LSDA takes into account a major part
of the electron-electron correlation. We note that—for the
two lowest-energy levels—the u-LSDA energy errors pos-
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FIG. 2. Energy differences AE between the r-LSDA (upper
panel) and u-LSDA (lower panel) and exact results for the lowest-
energy levels of two electrons in coupled QDs as a function of
interdot barrier thickness b. Solid, dashed, and dotted curves show
the energy differences for states (0,0), (0,1), and (1,1), respectively.

sess a maximum at intermediate barrier thicknesses. It is in-
teresting that the energy estimates obtained by the restricted
and unrestricted Hartree-Fock methods, in the framework of
the quasi-one-dimensional model of the two-electron
coupled QDs,!® exhibit a similar qualitative behavior.

The correlation should also affect the symmetry of the
wave function. In order to determine this effect we calculated
the expectation value of the one-electron parity (16) [Fig.
3(a)] and the relative probabilities (17) and (18) [Fig. 3(b)]
by the exact and u-LSDA methods for the three lowest-
energy states. For the state with (M,,S,)=(0,0), i.e., s-type
singlet, the expectation value of the one-electron parity [Fig.
3(a)] is a monotonically decreasing function of the barrier
thickness. It equals 1 for »=0 and tends to zero for wide
barriers. The one-electron parity of state (1,1), i.e., p-type
triplet, exhibits similar properties, but it has larger values and
more slowly tends to zero with increasing barrier width.

For state (0, 1), i.e., s-type triplet, the one-electron parity
is always zero [cf. open dots in Fig. 3(a)]. We note that in
this state the total isospin®! quantum number /=0 and is a
good quantum number. In the s triplet state, the z component
of the isospin /, also must be zero. Our results show that—in
this two-electron state—both /=0 and /,=0 do not change
with varying barrier thickness.

Figure 3(b) shows that the relative probability P(1]1) is
always larger than P(0|2), which means that electrons avoid
each other and become localized in different QDs. For large
barrier thickness this effect is stronger. For a sufficiently
wide barrier P(1|1)=1 and P(0|2)=0, which implies that
tunnel coupling vanishes and the two electrons become lo-
calized in separate dots. The properties of the relative prob-
abilities of the s-type singlet and p-type triplet states are
similar to each other; in particular, they are close to 1/2 for
b=0. In the s-type triplet state, the two-electron system
exhibits a tendency towards electron separation already for
b=0 [Fig. 3(b)].

The results obtained with the u-LSDA are considerably
different from the exact results (Fig. 3). In the s-type singlet

075422-5



CHWIE] et al.

T T T T
a) 14 $ep+t+++ -
N=2
0.8 J
206 b ]
@ L+
o N+
04r S ok 4
(M2.S;) exact u-LSDA
L| (0,0) [ ] I
0.2 1) e i
(1,1) e +
0 & 7 iy t )
0 2 4 6 8 10
b [nm]
b I I I I
) |
> 0.75 PP(1]1)
%
S 059 4
&
025 PPOR2)

Q
0 ‘SQW’D-O‘}@A o2 %
0 2 4 6 8 10
b [nm]

FIG. 3. (Color online) (a) Expectation value of the one-electron
parity and (b) the relative probability of finding one electron in each
QD, P(1]|1), and both electrons in one QD, P(0]2), for the two-
electron system calculated by the exact method (solid, dashed, and
dotted curves) and by the u-LSDA (dots and crosses) for the three-
lowest energy states, defined in the panel in part (a), as a function of
interdot barrier thickness b. In part (a) the dotted curve for the state
(0,1) is not visible, since it coincides with the abscissa.

and p-type triplet states the expectation value of the one-
electron parity and the relative probability, calculated with
the u-LSDA wave functions, stay constant for narrow barri-
ers. These quantities begin to change for »>2 nm in the
s-type singlet state and for »>6 nm in the p-type triplet
state. Only for the s-type triplet states the u-LSDA approach
correctly reproduces the exact results. If P(1]1)=P(0]2)
=1/2, the two-electron system can be treated as weakly cor-
related. Figure 3(b) shows that in the u-LSDA the two-
electron artificial molecule becomes weakly correlated for
narrow barriers, since in this case P(1|1)=P(0|2)=1/2. In
the weakly correlated state, the one-electron wave functions
possess definite parity [cf. Fig. 3(a)]. Deviation between the
exact and u-LSDA results [Fig. 3(a)] indicates that the cor-
relation breaks the one-electron parity already for intermedi-
ate interdot barrier thickness.

We conclude that the u-LSDA leads to much better esti-
mates for the lowest-energy levels than the -LSDA. How-
ever, the symmetry properties of the wave functions are not
always correctly reproduced by the u-LSDA, in particular,
for narrow interdot barriers.

B. Three electrons

In the three-electron system, the two lowest energy levels
are associated with the configurations M, =0,S,=1/2 and
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FIG. 4. (Color online) (a) Lowest-energy levels of three elec-
trons in coupled QDs and (b) relative probabilities of finding one
electron in one QD and two electrons in the second QD [P(1]2)]
and all three electrons in one QD [P(0]3)], for the lowest-energy
states (0,1/2) and (1,1/2) calculated by the CI method (solid and
dashed curves) and u-LSDA (dots) as a function of interdot barrier
thickness b. Solid curve (open dots) corresponds to the state (0,1/2)
and dashed curve (full dots) corresponds to the state (1,1/2). Inset in
(a), expectation value of the one-electron parity calculated by the CI
method (curves) and u-LSDA (dots) as a function of barrier thick-
ness b.

M.=1,S.=1/2. Figure 4(a) displays these energy levels as a
function of the barrier thickness calculated by the u-LSDA
and CI methods. We see that independently of the barrier
thickness the u-LSDA method accurately reproduces the en-
ergy levels and correctly predicts the ground-state transfor-
mation (0,1/2)—(1,1/2) at the same barrier thickness (b
=1.5 nm) as the CI method.

For the three-electron system we have also calculated the
expectation value of the one-electron parity [inset in Fig.
4(a)] and the relative probability [Fig. 4(b)]. For state
(0,1/2), the one-electron parity is close to 1 for narrow in-
terdot barriers and decreases with increasing barrier thick-
ness b. For increasing b the probability P(0|3) of finding all
three electrons in a single QD decreases, while the probabil-
ity P(1]2) of finding one electron in one QD and two elec-
trons in the second QD increases. We obtain the same quali-
tative behavior of the relative probability for the state
(1,1/2). In this state the one-electron parity equals 1/3 and

075422-6



BROKEN ONE-PARTICLE SYMMETRY IN FEW-...

a) -600 ———
N=4 . ) _OJ-CJ_O_Q_Oj_OJ
_620 = D_x.x~x-x‘*‘X-Xﬁ(»x-xa‘.x.x,x_"
s
[}
E -640 |
T A
-660 01) —— ——- o 1s?1p?
(1,1) coeemenns x 1s?1p'2s’
-680 ———————
0 2 4 6 8 10

b [nm]
b) ——

0 2 4 6 8 10
b [nm]

FIG. 5. (Color online) (a) Lowest-energy levels of four electrons
in coupled QDs and (b) expectation value of one-electron parity as
a function of the interdot barrier thickness b. Solid, dashed, and
dotted curves display the CI results for (0,0), (0,1), and (1,1) states.
Squares, full dots, open dots, and crosses show the u-LSDA results
for configurations 1s22s2,1s*1p? (singlet), 1s21p? (triplet), and
1s21p'ast.

does not change as a function of b [cf. inset of Fig. 4(a)]. The
one-electron parity calculated by the u-LSDA method differs
from the exact result only in a narrow interval of intermedi-
ate barrier thickness. However, the relative probability is not
well reproduced by the u-LSDA in the wider interval of bar-
rier thickness [cf. Fig. 4(b)]. This means that the relative
probability is more sensitive to the electron-electron correla-
tion than the one-electron parity. Nevertheless, the u-LSDA
method very well reproduces the one-electron parity and the
relative probability in state (0,1/2). Therefore, similarly as
for the two-electron system, the u-LSDA method can repro-
duce the properties of the exact wave function in the entire
range of interdot distance for the lowest-energy electronic
configurations. For the higher-energy states, these properties
are reproduced only for wide interdot barriers.

C. Four electrons

For the four electrons confined in the double coupled QD
we consider the three following configurations: (M_,S,)
=(0,0),(0,1), and (1,1), which correspond to the lowest en-
ergy levels. The dependence of the energy levels on the bar-
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FIG. 6. (Color online) Relative probabilities of finding one elec-
tron in one QD and three electrons in the second QD [P(1]3)] and
the two electrons in each QD [P(2|2)] calculated by the CI method
(solid curves) and u-LSDA (dashed and dotted curves) as a function
of the barrier thickness b for four electrons with the quantum num-
bers (a) M,=0 and S,=0, (b) M,=1 and S,=1, and (c) M,=0 and
S.=1.

rier thickness is plotted in Fig. 5(a). We observe that the
u-LSDA method well reproduces the energy levels of states
(0,0) and (1,1). Nevertheless, in the wide-barrier region, the
u-LSDA energy estimate for the state (0, 1) is higher than the
exact value. We also see that the lowest-energy spectrum is
more complex than those for the two and three electrons. For
example, in the u-LSDA calculations for the first singlet state
with M_=0, we must consider the two configurations: 15%1p?
for b<1.7 nm and 1522s? for wider barriers, which results
from the fact that in the u-LSDA method the electron con-
figuration of the given N-electron state is fixed. On the con-
trary, within the CI method the electronic configuration is
adjusted automatically by changing the coefficients in the
linear combination of Slater determinants.

The results of the present calculations for the one-electron
parity and relative probability are depicted in Figs. 5(b) and
6(a)-6(c). These figures show that the u-LSDA method re-
produces the exact results for the ground state (0,0) in the
limit »— 0 and for »=2 nm. The corresponding configura-
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FIG. 7. Energy difference AE between the energy of two elec-
trostatically coupled two-electron QDs [P(2|2)=1] and the energy
of four electrons in coupled QDs in a state with M, =0 and S.=1 as
a function of barrier thickness b.

tions are 1s?1p? in the former case and 15°2s® in the latter.
Therefore, we can argue that—in the state (0,0)—the domi-
nating electron configuration is 1s>1p? for very narrow bar-
riers and 15?25 for wide barriers. The u-LSDA method does
not reproduce the one-electron parity and relative probability
in state (0,0) for 1 nm<b<2 nm. In this interval, both
quantities change rapidly, but in a continuous manner, which
is in contrast to the u-LSDA results that exhibit jumps.

We observe that—in the four-electron state (0,0), which
corresponds to the state 15°2s” in the u-LSDA—the one-
electron parity is zero. The same property has been found for
the two-electron state (0,1) (cf. Sec. III A). This means that
I=1,=0 and both isospin and its z component are good quan-
tum numbers.

Figure 5(b) shows that—in the state (1,1)—the one-
electron parity obtained by the u-LSDA method considerably
deviates from the exact values for 3 nm<b<6 nm. For
other barrier thicknesses the deviations are small. Figure 6(b)
shows that—in this state—relative probabilities P(1|3) and
P(2|2) are well reproduced by the u-LSDA method if
b>8 nm and in the limit of zero barrier thickness. The larg-
est deviations of the relative probabilities appear for interme-
diate barrier thickness, i.e., for b=4 nm, at which the four-
electron artificial molecule undergoes a transformation from
the weakly correlated state (for small b) to the strongly cor-
related state (for large b).

Among the three configurations studied for the four-
electron system, the u-LSDA method cannot reproduce the
one-electron parity and relative probability for the triplet
state with M,=0. Figures 5(b) and 6(c) show that only for
b <1 nm the one-electron parity and relative probability cal-
culated by the u-LSDA approximate the exact results fairly
well. If the barrier thickness increases, the deviations be-
tween the u-LSDA and exact results increase. This behavior
is seen even for >3 nm, for which the parity symmetry of
the external potential is broken in the one-electron wave
functions. In the interval 2 nm < b <8 nm, the u-LSDA rela-
tive probabilities slightly increase and P(1|3) still remains
larger than P(2|2), contrary to the exact relative probabili-
ties, which increase rapidly and P(1]|3) is considerably
smaller than P(2|2). The relative probabilities calculated by
the u-LSDA are equal for b=8 nm and only for »=8 nm
P(2|2) becomes larger than P(1]|3). For larger b the devia-
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FIG. 8. (Color online) Addition energy Ay calculated by the
u-LSDA and r-LSDA for the N-electron coupled QDs separated by
a barrier of thickness (a) =3 nm and (b) »=8 nm. For N=1,2, and
3 we also show the exact results. The lines are guides to the eye.

tions between the u-LSDA and the exact relative probabili-
ties decrease, but still remain quite large.

We can explain this disagreement for the state (0,1) by
comparing the energy of this state calculated by the u-LSDA
with the energy of the four-electron system, calculated under
the requirement that the two electrons are localized in each
QD. In the latter case, each of the two electrons occupies
either the 1s or 1p state. The difference between the energies
of these two configurations is depicted in Fig. 7. This energy
difference decreases with increasing b and becomes less than
0.4 meV for wide barriers, i.e., for »>>8 nm, for which the
relative probability P(2]2)=1 [cf. Fig. 6(c)]. These results
suggest that the u-LSDA method overestimates the exchange
contribution, which causes the two electrons with the same
spin to exhibit a tendency to be localized in the same QD. As
a result, the u-LSDA approach cannot reproduce the one-
electron parity and the relative probabilities for the triplet
state with M,=0 even for wide interdot barriers.

D. Addition energy for artificial molecules
with N=1,...,13 electrons

In transport spectroscopy experiments!>?? one can deter-

mine the change of the ground-state energy of the few-
electron system, when adding or removing a single electron.
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The relevant quantity is the addition energy Ay, i.e., the en-
ergy needed to add an extra electron to the N-electron QD.
The addition energy is calculated as follows:

Ay=Ey, —2Ey+Ey_y, (19)

where Ey is the ground-state energy of the N-electron sys-
tem. The addition energy depends on the number of electrons
confined in the QD system and the confinement potential
profile.’? In the coupled QD nanostructure, the addition en-
ergy also depends on the thickness of the barrier separating
the QDs. The dependence of the addition energy on the num-
ber N of electrons confined in the QDs is characteristic for
the QD system considered.

We calculated the addition energy for a system of
N=1,...,13 electrons confined in two vertically coupled
QDs using both the #-LSDA and r-LSDA methods. The re-
sults are depicted in Fig. 8, which also shows the exact re-
sults for A;,A,, and A; calculated using the methods de-
scribed in the preceding sections. When studying the two-
electron coupled QDs, we found that for narrow barriers both
LSDA methods provide good approximations to the exact
results. Figure 8(a) supports this conclusion: for narrow in-
terdot barrier both the LSDA methods lead to identical addi-
tion energies, which only slightly differ from the exact re-
sults for N=1,2, and 3. For large interdot barrier [Fig. 8(b)]
there appear small differences between the addition energies
calculated by both the LSDA methods and the u-LSDA esti-
mates are closer to the exact values. However, the differ-
ences do not exceed 1 meV and do not change the qualitative
dependence of the addition energy on N.

For wide barriers we found that—according to the
r-LSDA and u-LSDA methods—subsequent orbitals become
occupied in a different manner. In the u-LSDA the electrons
occupy subsequent orbitals, i.e., in the following order:
1s,2s,1p,2p,1d, ... . This is different from the r-LSDA ap-
proach where the next orbital can be occupied before the
former is fully filled. For example, for N=2 we obtain the
lowest-energy configuration 1s2s, for which the z component
of the total spin is increasing (S,=1). Also for N=7 and N
=8, according to the r-LSDA, the electrons occupy the 2p
orbital, although the 1p orbital is only half-filled. In this way,
the z component of the total spin increases: S,=3/2 for N
=7 and S,=2 for N=8. In the r-LSDA the empty 1p states
become occupied for N=9 and N=10. We conclude that in
the r-LSDA the electrons exhibit a too large preference to
occupy states with the same spin, which leads to an enhance-
ment of the exchange interaction and a lowering of the
ground state energy. Figure 8(b) shows that—in coupled
QDs with wide interdot barrier—the addition energies calcu-
lated by the r-LSDA and u-LSDA methods are the same for
N=10, 11, and 12.

The general features of the addition energy as a function
of N are the same for the narrow- and wide-barrier QD nano-
structure. In particular, the addition energy is considerably
larger for the closed-shell systems, i.e., for N=2, 4, 8, and 12
and slightly larger for the half-filled shells, i.e., for N=6 and
10. This behaviour of the coupled QD system is similar to
that of the single QD and qualitatively agrees with the ex-
perimental data.’
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IV. CONCLUSIONS

In the present paper, we have studied few-electron sys-
tems confined in vertically coupled QDs using the exact and
LSDA methods. We have applied two versions of the LSDA:
the restricted LSDA, in which the one-electron wave func-
tions reproduce the symmetry of the confinement potential,
and the unrestricted LSDA, in which this symmetry is bro-
ken. A comparison with the exact results has allowed us to
test the r-LSDA and u#-LSDA methods. We have checked to
which extend the LSDA wave functions reproduce the one-
electron properties of the exact N-electron wave function for
the lowest-energy configurations of the coupled QD nano-
structures with N=2, 3, and 4 electrons. For this purpose we
have calculated the one-electron parity and the relative prob-
ability of finding N, electrons in one QD and N, electrons in
the other. It appears that the u-LSDA method very well re-
produces both these quantities for the two-electron configu-
ration with M,=0 and S,=1 and for the three-electron con-
figuration with M,=0 and §,=1/2 for arbitrary interdot-
barrier thickness, and for the four-electron configuration
M,=0 and S =1 when b>2 nm. Nevertheless, for the other
configurations the one-electron parity and the relative prob-
ability considerably deviates from the exact values in the
regime of small and intermediate barrier thicknesses, for
which tunnel coupling between the QDs is strong. The exact
results are reproduced by the u-LSDA at large barrier thick-
nesses, for which the QDs are only electrostatically coupled.

We have found that—for certain states of the two- and
four-electron coupled QDs—the one-electron parity is equal
to zero and does not change with the barrier thickness. We
can interpret this effect in terms of isospin, which is also zero
and which turns out to be a good quantum number in these
quantum states.

The energies of the two-, three-, and four-electron systems
in two coupled QDs calculated by the LSDA methods have
been compared with the exact values. This comparison
shows that the u-LSDA method quite well reproduces the
lowest-energy levels. In the regime of narrow barriers, in
which the one-electron wave functions possess a well-
defined parity symmetry, the u-LSDA and r-LSDA methods
are equivalent. For wide barriers the symmetry of the one-
electron wave functions is lowered, which is the reason why
the u#-LSDA method is much more accurate than the
r-LSDA. This implies that the u-LSDA method much better
takes into account correlation effects.

In summary, we have shown that—although the lowest-
energy levels of the few-electron systems confined in
coupled QDs are correctly reproduced by the unrestricted
LSDA method—the one-electron parity and the relative
probability calculated by the LSDA can considerably deviate
from the exact values for some states and for intermediate
values of the barrier thickness. The one-electron parity and
the relative probability, introduced in the present paper, al-
low us to determine to which extent the symmetry properties
of the exact many-electron solutions are recovered by the
mean-field one-electron LSDA method. We conclude that the
LSDA method should be used with some caution for coupled
QDs. In particular, the one-electron symmetry properties are
not always properly reproduced by the LSDA method.
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APPENDIX

In the CI calculations, we need the matrix elements of the
electron-electron Coulomb interaction

Cabcd=fdﬁrfa(m)g::(xhy1)fb(22)g:;(x2,)’2)

1
X—f(z1)gx.y)fu22)8a(x2.y2). (A1)

V)
These matrix elements can be evaluated with the help of the
effective interaction potential de(|Z1
rived using integration over the lateral degrees of freedom,*
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Copea= f dz1dzof (202 V(21 = 22D fulz) fulza).-

(A2)

The integration over z; and z, is performed numerically. The
explicit forms of the effective interaction potentials are (cf.
Ref. 33)

Vggoo(z) — \/77_3 erfCX(\“"@)’ (A3)
VIO = w314 — B12)erfex(VB) + Bef2, (Ad)
VIO (2) = mB(1/4 + B/2)erfex(VB) — Ba/2, (AS)

V(@) = mB(11/16 - B4 + B2 14)erfex(VB2)
+3B2/8 — B4, (A6)

Vi @) = 77,8(3/ 16 + 3 82%/4 + B*z*14)erfex(V BZZ)
- 5Bz/8 - ,82Z3/4. (A7)
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