toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Stosic, D.; Ludermir, T.B.; Milošević, M.V. url  doi
openurl 
  Title Pinning of magnetic skyrmions in a monolayer Co film on Pt(111) : Theoretical characterization and exemplified utilization Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 21 Pages 214403  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Magnetic skyrmions are nanoscale windings of the spin structure that can be observed in chiral magnets and hold promise for potential applications in storing or processing information. Pinning due to ever-present material imperfections crucially affects the mobility of skyrmions. Therefore, a proper understanding of how magnetic skyrmions pin to defects is necessary for the development and performance of spintronic devices. Here we present a fundamental analysis on the interactions of single skyrmions with atomic defects of distinctly different origins, in a Co monolayer on Pt, based on minimum-energy paths considerations and atomic-spin simulations. We first report the preferred pinning loci of the skyrmion as a function of its nominal size and the type of defect being considered, to further reveal the manipulation and \u0022breathing\u0022 of skyrmion core in the vicinity of a defect. We also show the behavior of skyrmions in the presence of an extended defect of particular geometry, that can lead to ratcheted skyrmion motion or a facilitated guidance on a defect \u0022trail.\u0022 We close the study with reflections on the expected thermal stability of the skyrmion against collapse on itself for a given nature of the defect, and discuss the applications where control of skyrmions by defects is of particular interest.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000416846900002 Publication Date 2017-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 52 Open Access  
  Notes ; This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:147684 Serial 4890  
Permanent link to this record
 

 
Author Dutta, S.; Zografos, O.; Gurunarayanan, S.; Radu, I.; Sorée, B.; Catthoor, F.; Naeemi, A. url  doi
openurl 
  Title Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 17866  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality – the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 mu m(2) for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.'));  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000418359600116 Publication Date 2017-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:148514 Serial 4891  
Permanent link to this record
 

 
Author Vanherck, J.; Schulenborg, J.; Saptsov, R.B.; Splettstoesser, J.; Wegewijs, M.R. pdf  url
doi  openurl
  Title Relaxation of quantum dots in a magnetic field at finite bias -Charge, spin, and heat currents Type A1 Journal article
  Year 2017 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 254 Issue 3 Pages Unsp 1600614  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We perform a detailed study of the effect of finite bias and magnetic field on the tunneling-induced decay of the state of a quantum dot by applying a recently discovered general duality [Phys. Rev. B 93, 81411 (2016)]. This duality provides deep physical insight into the decay dynamics of electronic open quantum systems with strong Coulomb interaction. It associates the amplitudes of decay eigenmodes of the actual system to the eigenmodes of a so-called dual system with attractive interaction. Thereby, it predicts many surprising features in the transient transport and its dependence on experimental control parameters: the attractive interaction of the dual model shows up as sharp features in the amplitudes of measurable time-dependent currents through the actual repulsive system. In particular, for interacting quantum dots, the time-dependent heat current exhibits a decay mode that dissipates the interaction energy and that is tied to the fermion parity of the system. We show that its decay amplitude has an unexpected gate-voltage dependence that is robust up to sizable bias voltages and then bifurcates, reflecting that the Coulomb blockade is lifted in the dual system. Furthermore, combining our duality relation with the known Iche-duality, we derive new symmetry properties of the decay rates as a function of magnetic field and gate voltage. Finally, we quantify charge- and spin-mode mixing due to the magnetic field using a single mixing parameter.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000395441500011 Publication Date 2017-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 4 Open Access  
  Notes ; We acknowledge the financial support of Erasmus Mundus (J. V.), DFG project SCHO 641/7-1 (R.B.S. and M.R.W), the Swedish VR (J.Sc., J.Sp.), and the Knut and Alice Wallenberg Foundation (J. Sp.). The authors thank F. Haupt and N. Dittmann for useful discussions on the topic. ; Approved Most recent IF: 1.674  
  Call Number UA @ lucian @ c:irua:142510 Serial 4894  
Permanent link to this record
 

 
Author Andrikopoulos, D.; Sorée, B. url  doi
openurl 
  Title Skyrmion electrical detection with the use of three-dimensional Topological Insulators/Ferromagnetic bilayers Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 17871  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The effect of the magnetic skyrmion texture on the electronic transport properties of the Tl surface state coupled to a thin-film FM is numerically investigated. It is shown that both Bloch (vortex) and Neel (hedgehog) skyrmion textures induce additional scattering on top of a homogeneous background FM texture which can modify the conductance of the system. The change in conductance depends on several factors including the skyrmion size, the dimensions of the FM and the exchange interaction strength. For the Neel skyrmion, the result of the interaction strongly depends on the skyrmion number N-sk and the skyrmion helicity h. For both skyrmion types, significant change of the resistance can be achieved, which is in the order of k Omega.'));  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000418359600121 Publication Date 2017-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:148513 Serial 4896  
Permanent link to this record
 

 
Author Schulenborg, J.; Di Marco, A.; Vanherck, J.; Wegewijs, M.R.; Splettstoesser, J. url  doi
openurl 
  Title Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry Type A1 Journal article
  Year 2017 Publication Entropy: an international and interdisciplinary journal of entropy and information studies Abbreviated Journal Entropy-Switz  
  Volume 19 Issue 12 Pages 668  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Thermoelectric transport is traditionally analyzed using relations imposed by time-reversal symmetry, ranging from Onsager\u0027s results to fluctuation relations in counting statistics. In this paper, we show that a recently discovered duality relation for fermionic systems-deriving from the fundamental fermion-parity superselection principle of quantum many-particle systems-provides new insights into thermoelectric transport. Using a master equation, we analyze the stationary charge and heat currents through a weakly coupled, but strongly interacting single-level quantum dot subject to electrical and thermal bias. In linear transport, the fermion-parity duality shows that features of thermoelectric response coefficients are actually dominated by the average and fluctuations of the charge in a dual quantum dot system, governed by attractive instead of repulsive electron-electron interaction. In the nonlinear regime, the duality furthermore relates most transport coefficients to much better understood equilibrium quantities. Finally, we naturally identify the fermion-parity as the part of the Coulomb interaction relevant for both the linear and nonlinear Fourier heat. Altogether, our findings hence reveal that next to time-reversal, the duality imposes equally important symmetry restrictions on thermoelectric transport. As such, it is also expected to simplify computations and clarify the physical understanding for more complex systems than the simplest relevant interacting nanostructure model studied here.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000419007900037 Publication Date 2017-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1099-4300 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.821 Times cited 3 Open Access  
  Notes ; We thank Rafael Sanchez for useful comments on the manuscript. We acknowledge funding from the Knut and Alice Wallenberg foundation through their Academy Fellows program (J.Sp. and A.D.M.), from the Swedish VR (J.Sp. and J.Sc.), from the Erasmus Mundus program (J.V.), and from the DFG project SCHO 641/7-1 (M.R.W.). ; Approved Most recent IF: 1.821  
  Call Number UA @ lucian @ c:irua:148548 Serial 4900  
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V. url  doi
openurl 
  Title Topological phase transitions in small mesoscopic chiral p-wave superconductors Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 22 Pages 224512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultrasmall limit, the cylindrically symmetric giant-vortex states form the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000418653500012 Publication Date 2017-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen) and the Special Research Funds of the University of Antwerp. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148504 Serial 4901  
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
  Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 12 Issue 11 Pages 1045-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414531800011 Publication Date 2017-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 65 Open Access  
  Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:147406 Serial 4902  
Permanent link to this record
 

 
Author Klimin, S.N.; Tempere, J.; Milošević, M.V. url  doi
openurl 
  Title Diversified vortex phase diagram for a rotating trapped two-band Fermi gas in the BCS-BEC crossover Type A1 Journal article
  Year 2018 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 20 Issue 20 Pages 025010  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract We report the equilibrium vortex phase diagram of a rotating two-band Fermi gas confined to a cylindrically symmetric parabolic trapping potential, using the recently developed finite-temperature effective field theory (Klimin et al 2016 Phys. Rev. A 94 023620). A non-monotonic resonant dependence of the free energy as a function of the temperature and the rotation frequency is revealed for a two-band superfluid. We particularly focus on novel features that appear as a result of interband interactions and can be experimentally resolved. The resonant dependence of the free energy is directly manifested in vortex phase diagrams, where areas of stability for both integer and fractional vortex states are found. The study embraces the BCS-BEC crossover regime and the entire temperature range below the critical temperature T-c. Significantly different behavior of vortex matter as a function of the interband coupling is revealed in the BCS and BEC regimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000426002900001 Publication Date 2018-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 6 Open Access  
  Notes ; We thank C A R Sa de Melo and N Verhelst for valuable discussions. This work has been supported by the Research Foundation-Flanders (FWO-Vl), project nrs. G.0115.12N, G.0119.12N, G.0122.12N, G.0429.15N, G.0666.16N, by the Scientific Research Network of the Flemish Research Foundation, WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 3.786  
  Call Number UA @ lucian @ c:irua:149909UA @ admin @ c:irua:149909 Serial 4930  
Permanent link to this record
 

 
Author Jelić, Ž. url  openurl
  Title Emergent vortex phenomena in spatially and temporally modulated superconducting condensates Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Liège Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149394 Serial 4932  
Permanent link to this record
 

 
Author Leliaert, J.; Dvornik, M.; Mulkers, J.; De Clercq, J.; Milošević, M.V.; Van Waeyenberge, B. pdf  doi
openurl 
  Title Fast micromagnetic simulations on GPU-recent advances made with mumax3 Type A1 Journal article
  Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue 12 Pages 123002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the last twenty years, numerical modeling has become an indispensable part of magnetism research. It has become a standard tool for both the exploration of new systems and for the interpretation of experimental data. In the last five years, the capabilities of micromagnetic modeling have dramatically increased due to the deployment of graphical processing units (GPU), which have sped up calculations to a factor of 200. This has enabled many studies which were previously unfeasible. In this topical review, we give an overview of this modeling approach and show how it has contributed to the forefront of current magnetism research.  
  Address  
  Corporate Author Thesis  
  Publisher Iop publishing ltd Place of Publication Bristol Editor  
  Language Wos 000425774100001 Publication Date 2018-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 65 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N. JL is supported by the Ghent University Special Research Fund (BOF postdoctoral fellowship). We gratefully acknowledge the support of the NVIDIA Corporation with the donation of a Titan Xp GPU used for this research. ; Approved Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:149852UA @ admin @ c:irua:149852 Serial 4934  
Permanent link to this record
 

 
Author Lombardo, J.; Jelić, Ž.L.; Baumans, X.D.A.; Scheerder, J.E.; Nacenta, J.P.; Moshchalkov, V.V.; Van de Vondel, J.; Kramer, R.B.G.; Milošević, M.V.; Silhanek, A.V. url  doi
openurl 
  Title In situ tailoring of superconducting junctions via electro-annealing Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 4 Pages 1987-1996  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We demonstrate the in situ engineering of superconducting nanocircuitry by targeted modulation of material properties through high applied current densities. We show that the sequential repetition of such customized electro-annealing in a niobium (Nb) nanoconstriction can broadly tune the superconducting critical temperature T-c and the normal-state resistance R-n in the targeted area. Once a sizable R-n is reached, clear magneto-resistance oscillations are detected along with a Fraunhofer-like field dependence of the critical current, indicating the formation of a weak link but with further adjustable characteristics. Advanced Ginzburg-Landau simulations fully corroborate this picture, employing the detailed parametrization from the electrical characterization and high resolution electron microscope images of the region within the constriction where the material has undergone amorphization by electro-annealing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000423355300049 Publication Date 2017-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 23 Open Access  
  Notes ; The authors thank the Fonds de la Recherche Scientifique – FNRS, the ARC grant 13/18-08 for Concerted Research Actions, financed by the French Community of Belgium (Wallonia-Brussels Federation), the Research Foundation – Flanders (FWO-Vlaanderen) and the COST action NanoCoHybri (CA16218). The work is also suppported by Methusalem Funding by the Flemish Government. J. Lombardo acknowledges support from F. R. S.-FNRS (FRIA Research Fellowship). The LANEF framework (ANR-10-LABX-51-01) and the Nanoscience Foundation are acknowledged for their support with mutualized infrastructure. The work of A. V. Silhanek is partially supported by PDR T.0106.16 of the F. R. S.-FNRS. The authors thank the ULg Microscopy facility CAREM for part of the SEM investigations. ; Approved Most recent IF: 7.367  
  Call Number UA @ lucian @ c:irua:149315UA @ admin @ c:irua:149315 Serial 4937  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Kusmartsev, F.; Peeters, F.M.; Savel'ev, S. url  doi
openurl 
  Title Josephson vortex loops in nanostructured Josephson junctions Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 8 Pages 2733  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Linked and knotted vortex loops have recently received a revival of interest. Such three-dimensional topological entities have been observed in both classical-and super-fluids, as well as in optical systems. In superconductors, they remained obscure due to their instability against collapse – unless supported by inhomogeneous magnetic field. Here we reveal a new kind of vortex matter in superconductors -the Josephson vortex loops – formed and stabilized in planar junctions or layered superconductors as a result of nontrivial cutting and recombination of Josephson vortices around the barriers for their motion. Engineering latter barriers opens broad perspectives on loop manipulation and control of other possible knotted/linked/entangled vortex topologies in nanostructured superconductors. In the context of Josephson devices proposed to date, the high-frequency excitations of the Josephson loops can be utilized in future design of powerful emitters, tunable filters and waveguides of high-frequency electromagnetic radiation, thereby pushing forward the much needed Terahertz technology.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000424630400046 Publication Date 2018-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 10 Open Access  
  Notes ; This work was supported by EU Marie-Curie program (project No: 253057), Special Research Funds of the University of Antwerp (BOF-UA), and by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:149262UA @ admin @ c:irua:149262 Serial 4940  
Permanent link to this record
 

 
Author Chen, Q.; Li, L.L.; Peeters, F.M. url  doi
openurl 
  Title Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 8 Pages 085437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we investigate the energy spectrum of square, triangular, and hexagonal MoS2 quantum dots (QDs) in the presence of a perpendicular magnetic field. Novel edge states emerge in MoS2 QDs, which are distributed over the whole edge which we call ring states. The ring states are robust in the presence of spin-orbit coupling (SOC). The corresponding energy levels of the ring states oscillate as a function of the perpendicular magnetic field which are related to Aharonov-Bohm oscillations. Oscillations in the magnetic field dependence of the energy levels and the peaks in the magneto-optical spectrum emerge (disappear) as the ring states are formed (collapsed). The period and the amplitude of the oscillation decrease with the size of the MoS2 QDs.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000426042800009 Publication Date 2018-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; Q. Chen acknowledges financial support from the (China Scholarship Council (CSC)). This work was also supported by Hunan Provincial Natural Science Foundation of China (Grant No. 2015JJ2040) and by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15A042). Additional support from the FLAG-ERA TRANS-2D-TMD is acknowledged. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149905UA @ admin @ c:irua:149905 Serial 4941  
Permanent link to this record
 

 
Author Wang, W.; Van Duppen, B.; Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Magnetopolaron effect on shallow-impurity states in the presence of magnetic and intense terahertz laser fields in the Faraday configuration Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 6 Pages 064108  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetopolaron effect on shallow-impurity states in semiconductors is investigated when subjected simultaneously to a magnetic field and an intense terahertz laser field within the Faraday configuration. We use a time-dependent nonperturbative theory to describe electron interactions. The externally applied fields are exactly included via a laser-dressed interaction potential. Through a variational approach we evaluate the binding energy of the shallow-impurity states. We find that the interaction strength of the laser-dressed Coulomb potential can not only be enhanced but also weakened by varying the two external fields. In this way, the binding energy can be tuned by the external fields and red-or blue-shifted with respect to the static binding energy. In the nonresonant polaron region, a magnetopolaron correction that includes the effects of photon process is observed. In the resonant polaron region, moreover, the resonant magnetopolaron effect accompanied by the emission and absorption of a single photon is distinctly observed. This can be modulated to be far away from the reststrahlen band. The intriguing findings of this paper can be observed experimentally and, in turn, provide a way to measure the strength of the electron-phonon interaction.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000426041900004 Publication Date 2018-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grants No. 11404214 and No. 11455015) and the China Scholarship Council (CSC), Anhui Provincial Natural Science Foundation (Grant No. 1408085QA13), Key Projects of Anhui Provincial Department of Education (Grants No. KJ2017A406 and No. KJ2017A401). B.V.D. was financially supported by the Research Science Foundation-Flanders (FWO-Vl) through a postdoctoral fellowship and M.V.d.D. was financially supported by the Research Science Foundation-Flanders (FWO-Vl) through a doctoral fellowship. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149906UA @ admin @ c:irua:149906 Serial 4942  
Permanent link to this record
 

 
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D. pdf  doi
openurl 
  Title MXenes/graphene heterostructures for Li battery applications : a first principles study Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 6 Issue 5 Pages 2337-2345  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract MXenes are the newest class of two-dimensional (2D) materials, and they offer great potential in a wide range of applications including electronic devices, sensors, and thermoelectric and energy storage materials. In this work, we combined the outstanding electrical conductivity, that is essential for battery applications, of graphene with MXene monolayers (M2CX2 where M = Sc, Ti, V and X = OH, O) to explore its potential in Li battery applications. Through first principles calculations, we determined the stable stacking configurations of M2CX2/graphene bilayer heterostructures and their Li atom intercalation by calculating the Li binding energy, diffusion barrier and voltage. We found that: (1) for the ground state stacking, the interlayer binding is strong, yet the interlayer friction is small; (2) Li binds more strongly to the O-terminated monolayer, bilayer and heterostructure MXene systems when compared with the OHterminated MXenes due to the H+ induced repulsion to the Li atoms. The binding energy of Li decreases as the Li concentration increases due to enhanced repulsive interaction between the positively charged Li ions; (3) Ti2CO2/graphene and V2CO2/graphene heterostructures exhibit large Li atom binding energies making them the most promising candidates for battery applications. When fully loaded with Li atoms, the binding energy is -1.43 eV per Li atom and -1.78 eV per Li atom for Ti2CO2/graphene and V2CO2/graphene, respectively. These two heterostructures exhibit a nice compromise between storage capacity and kinetics. For example, the diffusion barrier of Li in Ti2CO2/graphene is around 0.3 eV which is comparable to that of graphite. Additionally, the calculated average voltages are 1.49 V and 1.93 V for Ti2CO2/graphene and V2CO2/graphene structures, respectively; (4) a small change in the in-plane lattice parameters (<1%), interatomic bond lengths and interlayer distances (<0.5 angstrom) proves the stability of the heterostructures against Li intercalation, and the impending phase separation into constituent layers and capacity fading during charge-discharge cycles in real battery applications; (5) as compared to bare M2CX2 bilayers, M2CX2/graphene heterostructures have lower molecular mass, offering high storage capacity; (6) the presence of graphene ensures good electrical conductivity that is essential for battery applications. Given these advantages, Ti2CO2/graphene and V2CO2/graphene heterostructures are predicted to be promising for lithium-ion battery applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000423981200049 Publication Date 2018-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 131 Open Access  
  Notes ; This work was supported by the bilateral project between the Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from the TUBITAK (Grant No. 115F024 and 116F080). Part of this work was supported by the BAGEP Award of the Science Academy. ; Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:149265UA @ admin @ c:irua:149265 Serial 4945  
Permanent link to this record
 

 
Author Li, L.L.; Peeters, F.M. url  doi
openurl 
  Title Quantum transport in defective phosphorene nanoribbons : effects of atomic vacancies Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 7 Pages 075414  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Defects are almost inevitably present in realistic materials and defective materials are expected to exhibit very different properties than their nondefective (perfect) counterparts. Here, using a combination of the tight-binding approach and the scattering matrix formalism, we investigate the electronic transport properties of defective phosphorene nanoribbons (PNRs) containing atomic vacancies. We find that for both armchair PNRs (APNRs) and zigzag PNRs (ZPNRs), single vacancies can create quasilocalized states, which can affect their conductance. With increasing vacancy concentration, three different transport regimes are identified: ballistic, diffusive, and Anderson localized ones. In particular, ZPNRs that are known to be metallic due to the presence of edge states become semiconducting: edge conductance vanishes and transport gap appears due to Anderson localization. Moreover, we find that for a fixed vacancy concentration, both APNRs and ZPNRs of narrower width and/or longer length are more sensitive to vacancy disorder than their wider and/or shorter counterparts, and that for the same ribbon length and width, ZPNRs are more sensitive to vacancy disorder than APNRs.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000424901800006 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 30 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the FLAG-ERA TRANS 2D TMD, and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149255UA @ admin @ c:irua:149255 Serial 4946  
Permanent link to this record
 

 
Author De Clercq, M.; Moors, K.; Sankaran, K.; Pourtois, G.; Dutta, S.; Adelmann, C.; Magnus, W.; Sorée, B. url  doi
openurl 
  Title Resistivity scaling model for metals with conduction band anisotropy Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal  
  Volume 2 Issue 3 Pages 033801  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is generally understood that the resistivity of metal thin films scales with film thickness mainly due to grain boundary and boundary surface scattering. Recently, several experiments and ab initio simulations have demonstrated the impact of crystal orientation on resistivity scaling. The crystal orientation cannot be captured by the commonly used resistivity scaling models and a qualitative understanding of its impact is currently lacking. In this work, we derive a resistivity scaling model that captures grain boundary and boundary surface scattering as well as the anisotropy of the band structure. The model is applied to Cu and Ru thin films, whose conduction bands are (quasi-) isotropic and anisotropic, respectively. After calibrating the anisotropy with ab initio simulations, the resistivity scaling models are compared to experimental resistivity data and a renormalization of the fitted grain boundary reflection coefficient can be identified for textured Ru.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication College Park, Md Editor  
  Language Wos 000426787600001 Publication Date 2018-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; The authors acknowledge the support by the Fonds National de la Recherche Luxembourg (ATTRACT Grant No. 7556175). ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149866UA @ admin @ c:irua:149866 Serial 4947  
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 8 Pages 081109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantitatively reproduces the available experimental PL spectra for perpendicular and in-plane magnetic fields. In the presence of a tilted magnetic field, we demonstrate that the dark exciton PL peaks brighten due to the in-plane component of the magnetic field and split for light with different circular polarizations as a consequence of the perpendicular component of the magnetic field. This splitting is more than twice as large as the splitting of the bright exciton peaks in tungsten-based TMDs. We propose an experimental setup that will allow for accessing the predicted splitting of the dark exciton peaks in the PL spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000425603600001 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This Rapid Communication was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149913UA @ admin @ c:irua:149913 Serial 4948  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Rivera-Julio, J.; Peeters, F.M.; Mendoza-Estrada, V.; Gonzalez-Hernandez, R. pdf  doi
openurl 
  Title Structural, mechanical and electronic properties of two-dimensional structure of III-arsenide (111) binary compounds: An ab-initio study Type A1 Journal article
  Year 2018 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 144 Issue 144 Pages 285-293  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural, mechanical and electronic properties of two-dimensional single-layer hexagonal structures in the (111) crystal plane of IIIAs-ZnS systems (III = B, Ga and In) are studied by first-principles calculations based on density functional theory (DFT). Elastic and phonon dispersion relation display that 2D h-IIIAs systems (III = B, Ga and In) are both mechanical and dynamically stable. Electronic structures analysis show that the semiconducting nature of the 3D-IIIAs compounds is retained by their 2D single layer counterpart. Furthermore, density of states reveals the influence of sigma and pi bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Calculations of elastic constants show that the Young's modulus, bulk modulus and shear modulus decrease for 2D h-IIIAs binary compounds as we move down on the group of elements of the periodic table. In addition, as the bond length between the neighboring cation-anion atoms increases, the 2D h-IIIAs binary compounds display less stiffness and more plasticity. Our findings can be used to understand the contribution of the r and p bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Structural and electronic properties of h-IIIAs systems as a function of the number of layers have been also studied. It is shown that h-BAs keeps its planar geometry while both h-GAs and h-InAs retained their buckled ones obtained by their single layers. Bilayer h-IIIAs present the same bandgap nature of their counterpart in 3D. As the number of layers increase from 2 to 4, the bandgap width for layered h-IIIAs decreases until they become semimetal or metal. Interestingly, these results are different to those found for layered h-GaN. The results presented in this study for single and few-layer h-IIIAs structures could give some physical insights for further theoretical and experimental studies of 2D h-IIIV-like systems. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424902300036 Publication Date 2017-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 3 Open Access  
  Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712 – Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.292  
  Call Number UA @ lucian @ c:irua:149897UA @ admin @ c:irua:149897 Serial 4949  
Permanent link to this record
 

 
Author Iyikanat, F.; Yagmurcukardes, M.; Senger, R.T.; Sahin, H. url  doi
openurl 
  Title Tuning electronic and magnetic properties of monolayer \alpha-RuCl3 by in-plane strain Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 8 Pages 2019-2025  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By employing density functional theory-based methods, the structural, vibrational, electronic, and magnetic properties of monolayer -RuCl3 were investigated. It was demonstrated that ferromagnetic (FM) and zigzag-antiferromagnetic (ZZ-AFM) spin orders in the material have very close total energies with the latter being the ground state. We found that each Ru atom possesses a magnetic moment of 0.9 (B) and the material exhibits strong magnetic anisotropy. While both phases exhibit indirect gaps, the FM phase is a magnetic semiconductor and the ZZ-AFM phase is a non-magnetic semiconductor. The structural stability of the material was confirmed by phonon calculations. Moreover, dynamical analysis revealed that the magnetic order in the material can be monitored via Raman measurements of the crystal structure. In addition, the magnetic ground state of the material changes from ZZ-AFM to FM upon certain applied strains. Valence and conduction band-edges of the material vary considerably under in-plane strains. Owing to the stable lattice structure and unique and controllable magnetic properties, monolayer -RuCl3 is a promising material in nanoscale device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426483800015 Publication Date 2018-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 16 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. acknowledges financial support from TUBITAK under project number 116C073. H. S. also acknowledges support from Bilim Akademisi-The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:149900UA @ admin @ c:irua:149900 Serial 4952  
Permanent link to this record
 

 
Author Bekaert, J. url  openurl
  Title Ab initio description of multicomponent superconductivity in bulk to atomically thin materials Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:151304 Serial 4961  
Permanent link to this record
 

 
Author Andelkovic, M.; Covaci, L.; Peeters, F.M. doi  openurl
  Title DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal  
  Volume 2 Issue 3 Pages 034004  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The in-plane dc conductivity of twisted bilayer graphene is calculated using an expansion of the real-space Kubo-Bastin conductivity in terms of Chebyshev polynomials. We investigate within a tight-binding approach the transport properties as a function of rotation angle, applied perpendicular electric field, and vacancy disorder. We find that for high-angle twists, the two layers are effectively decoupled, and the minimum conductivity at the Dirac point corresponds to double the value observed in monolayer graphene. This remains valid even in the presence of vacancies, hinting that chiral symmetry is still preserved. On the contrary, for low twist angles, the conductivity at the Dirac point depends on the twist angle and is not protected in the presence of disorder. Furthermore, for low angles and in the presence of an applied electric field, we find that the chiral boundary states emerging between AB and BA regions contribute to the dc conductivity, despite the appearance of localized states in the AA regions. The results agree qualitatively with recent transport experiments in low-angle twisted bilayer graphene.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication College Park, Md Editor  
  Language Wos 000427822700002 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 27 Open Access  
  Notes ; We acknowledge financial support from the graphene FLAG-ERA project TRANS2DTMD. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150838UA @ admin @ c:irua:150838 Serial 4964  
Permanent link to this record
 

 
Author Pinto, N.; Rezvani, S.J.; Perali, A.; Flammia, L.; Milošević, M.V.; Fretto, M.; Cassiago, C.; De Leo, N. doi  openurl
  Title Dimensional crossover and incipient quantum size effects in superconducting niobium nanofilms Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 8 Pages 4710  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Superconducting and normal state properties of Niobium nanofilms have been systematically investigated as a function of film thickness, on different substrates. The width of the superconductingto- normal transition for all films is remarkably narrow, confirming their high quality. The superconducting critical current density exhibits a pronounced maximum for thickness around 25 nm, marking the 3D-to-2D crossover. The magnetic penetration depth shows a sizeable enhancement for the thinnest films. Additional amplification effects of the superconducting properties have been obtained with sapphire substrates or squeezing the lateral size of the nanofilms. For thickness close to 20 nm we measured a doubled perpendicular critical magnetic field compared to its large thickness value, indicating shortening of the correlation length and the formation of small Cooper pairs. Our data analysis indicates an exciting interplay between quantum-size and proximity effects together with strong-coupling effects and the importance of disorder in the thinnest films, placing these nanofilms close to the BCS-BEC crossover regime.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000427588300011 Publication Date 2018-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 37 Open Access  
  Notes ; We thank Antonio Bianconi, Mauro Doria and Vincenzo Lacquaniti for useful discussions. We acknowledge the collaboration with Federica Celegato for AFM analysis and Sara Quercetti for the electrical properties characterization. A. P. and N. P. acknowledge financial support from University of Camerino FAR project CESEMN. We also acknowledge the collaboration within the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:150843UA @ admin @ c:irua:150843 Serial 4965  
Permanent link to this record
 

 
Author Rios, P.L.; Perali, A.; Needs, R.J.; Neilson, D. doi  openurl
  Title Evidence from quantum Monte Carlo simulations of large-gap superfluidity and BCS-BEC crossover in double electron-hole layers Type A1 Journal article
  Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 120 Issue 17 Pages 177701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report quantum Monte Carlo evidence of the existence of large gap superfluidity in electron-hole double layers over wide density ranges. The superfluid parameters evolve from normal state to BEC with decreasing density, with the BCS state restricted to a tiny range of densities due to the strong screening of Coulomb interactions, which causes the gap to rapidly become large near the onset of superfluidity. The superfluid properties exhibit similarities to ultracold fermions and iron-based superconductors, suggesting an underlying universal behavior of BCS-BEC crossovers in pairing systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000430547800002 Publication Date 2018-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 11 Open Access  
  Notes ; The authors thank G. Baym, M. Bonitz, and G. Senatore for useful discussions. A. P. and D. N. acknowledge financial support from University of Camerino FAR project CESEMN and from the Italian MIUR through the PRIN 2015 program under Contract No. 2015C5SEJJ001. R. J. N. acknowledges financial support from the Engineering and Physical Sciences Research Council, U.K., under Grant No. EP/ P034616/1. P. L. R. acknowledges financial support from the Max-Planck Society. Computational resources have been provided by the High Performance Computing Service of the University of Cambridge and by the Max-Planck Institute for Solid State Research. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:150750UA @ admin @ c:irua:150750 Serial 4967  
Permanent link to this record
 

 
Author Zhang, R.; Wu, Z.; Li, X.J.; Li, L.L.; Chen, Q.; Li, Y.-M.; Peeters, F.M. pdf  doi
openurl 
  Title Fano resonances in bilayer phosphorene nanoring Type A1 Journal article
  Year 2018 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 29 Issue 21 Pages 215202  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov-Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000428920200001 Publication Date 2018-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 4 Open Access  
  Notes ; This work was supported by Grant No. 2017YFA0303400 from the National Key R&D Program of China, the Flemish Science Foundation, the grants No. 2016YFE0110000, No. 2015CB921503, and No. 2016YFA0202300 from the MOST of China, the NSFC (Grants Nos. 11504366, 11434010, 61674145 and 61774168) and CAS (Grants No. QYZDJ-SSW-SYS001). ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:150713UA @ admin @ c:irua:150713 Serial 4968  
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Sorée, B. doi  openurl
  Title Flux quantization and Aharonov-Bohm effect in superconducting rings Type A1 Journal article
  Year 2018 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 31 Issue 5 Pages 1351-1357  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superconductivity is a macroscopic coherent state exhibiting various quantum phenomena such as magnetic flux quantization. When a superconducting ring is placed in a magnetic field, a current flows to expel the field from the ring and to ensure that the enclosed flux is an integer multiple of h/(2|e|). Although the quantization of magnetic flux in ring structures is extensively studied in literature, the applied magnetic field is typically assumed to be homogeneous, implicitly implying an interplay between field expulsion and flux quantization. Here, we propose to decouple these two effects by employing an Aharonov-Bohm-like structure where the superconducting ring is threaded by a magnetic core (to which the applied field is confined). Although the magnetic field vanishes inside the ring, the formation of vortices takes place, corresponding to a change in the flux state of the ring. The time evolution of the density of superconducting electrons is studied using the time-dependent Ginzburg-Landau equations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000429354100010 Publication Date 2017-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN (up) Additional Links UA library record; WoS full record  
  Impact Factor 1.18 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:150742UA @ admin @ c:irua:150742 Serial 4969  
Permanent link to this record
 

 
Author Pourtois, G.; Dabral, A.; Sankaran, K.; Magnus, W.; Yu, H.; de de Meux, A.J.; Lu, A.K.A.; Clima, S.; Stokbro, K.; Schaekers, M.; Houssa, M.; Collaert, N.; Horiguchi, N. pdf  doi
openurl 
  Title Probing the intrinsic limitations of the contact resistance of metal/semiconductor interfaces through atomistic simulations Type P1 Proceeding
  Year 2017 Publication Semiconductors, Dielectrics, And Metals For Nanoelectronics 15: In Memory Of Samares Kar Abbreviated Journal  
  Volume Issue Pages 303-311  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this contribution, we report a fundamental study of the factors that set the contact resistivity between metals and highly doped semiconductors. We investigate the case of n-type doped Si contacted with amorphous TiSi combining first-principles calculations with Non-Equilibrium Green functions transport simulations. The intrinsic contact resistivity is found to saturate at similar to 2x10(-10) Omega.cm(2) with the doping concentration and sets an intrinsic limit to the ultimate contact resistance achievable for n-doped Si vertical bar amorphous-TiSi. This limit arises from the intrinsic properties of the semiconductor and of the metal such as their electron effective masses and Fermi energies. We illustrate that, in this regime, contacting metals with a heavy electron effective mass helps reducing the interface intrinsic contact resistivity.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical soc inc Place of Publication Pennington Editor  
  Language Wos 000426271800028 Publication Date 2017-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 80 Series Issue 1 Edition  
  ISSN 978-1-62332-470-4; 978-1-60768-818-1 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149966 Serial 4976  
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P. url  doi
openurl 
  Title Self-assembly and clustering of magnetic peapod-like rods with tunable directional interaction Type A1 Journal article
  Year 2018 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 13 Issue 4 Pages e0195552  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Based on extensive Langevin Dynamics simulations we investigate the structural properties of a two-dimensional ensemble of magnetic rods with a peapod-like morphology, i.e, rods consisting of aligned single dipolar beads. Self-assembled configurations are studied for different directions of the dipole with respect to the rod axis. We found that with increasing misalignment of the dipole from the rod axis, the smaller the packing fraction at which the percolation transition is found. For the same density, the system exhibits different aggregation states for different misalignment. We also study the stability of the percolated structures with respect to temperature, which is found to be affected by the microstructure of the assembly of rods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.806 Times cited Open Access  
  Notes Approved Most recent IF: 2.806  
  Call Number UA @ lucian @ c:irua:150778UA @ admin @ c:irua:150778 Serial 4977  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Magnus, W.; Collaert, N.; Mocuta, A.; Groeseneken, G. pdf  openurl
  Title Self-consistent 30-band simulation approach for (non-)uniformly strained confined heterostructure tunnel field-effect transistors Type P1 Proceeding
  Year 2017 Publication Simulation of Semiconductor Processes and, Devices (SISPAD)AND DEVICES (SISPAD 2017) Abbreviated Journal  
  Volume Issue Pages 29-32  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract Heterostructures of III-V materials under a mechanical strain are being actively researched to enhance the performance of the tunnel field-effect transistor (TFET). In scaled III-V device structures, however, the interplay between the effects of strain and quantum confinement on the semiconductor band structure and hence the performance is highly non-trivial. We have therefore developed a computationally efficient quantum mechanical simulator Pharos, which enables self-consistent full-zone k.p-based simulations of III-V TFETs under a general non-uniform strain. We present the self-consistent procedure and demonstrate it on confined staggered bandgap GaAs0.5Sb0.5/In0.53Ga0.47As TFETs. We find a large performance degradation due to size-induced quantum confinement compared to non-confined devices. We show that some performance can be regained either by applying a uniform biaxial tensile strain or through the non-uniform strain profile at a lattice-mismatched heterostructure.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-4-86348-610-2 ISBN (up) Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149949 Serial 4978  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R.T.; Sahin, H. url  doi
openurl 
  Title Strain mapping in single-layer two-dimensional crystals via Raman activity Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 11 Pages 115427  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono-and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X = S, Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427799300006 Publication Date 2018-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 116C073. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150840UA @ admin @ c:irua:150840 Serial 4979  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: