|
Record |
Links |
|
Author |
Berdiyorov, G.R.; Milošević, M.V.; Kusmartsev, F.; Peeters, F.M.; Savel'ev, S. |
|
|
Title |
Josephson vortex loops in nanostructured Josephson junctions |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Scientific reports |
Abbreviated Journal |
Sci Rep-Uk |
|
|
Volume |
8 |
Issue |
8 |
Pages |
2733 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT) |
|
|
Abstract |
Linked and knotted vortex loops have recently received a revival of interest. Such three-dimensional topological entities have been observed in both classical-and super-fluids, as well as in optical systems. In superconductors, they remained obscure due to their instability against collapse – unless supported by inhomogeneous magnetic field. Here we reveal a new kind of vortex matter in superconductors -the Josephson vortex loops – formed and stabilized in planar junctions or layered superconductors as a result of nontrivial cutting and recombination of Josephson vortices around the barriers for their motion. Engineering latter barriers opens broad perspectives on loop manipulation and control of other possible knotted/linked/entangled vortex topologies in nanostructured superconductors. In the context of Josephson devices proposed to date, the high-frequency excitations of the Josephson loops can be utilized in future design of powerful emitters, tunable filters and waveguides of high-frequency electromagnetic radiation, thereby pushing forward the much needed Terahertz technology. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Nature Publishing Group |
Place of Publication |
London |
Editor |
|
|
|
Language |
|
Wos |
000424630400046 |
Publication Date |
2018-02-05 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2045-2322 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.259 |
Times cited |
10 |
Open Access |
|
|
|
Notes |
; This work was supported by EU Marie-Curie program (project No: 253057), Special Research Funds of the University of Antwerp (BOF-UA), and by the Research Foundation – Flanders (FWO). ; |
Approved |
Most recent IF: 4.259 |
|
|
Call Number |
UA @ lucian @ c:irua:149262UA @ admin @ c:irua:149262 |
Serial |
4940 |
|
Permanent link to this record |