toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Greboval, C.; Chu, A.; Vale Magalhaes, D.; Ramade, J.; Qu, J.; Rastogi, P.; Khalili, A.; Chee, S.-S.; Aubin, H.; Vincent, G.; Bals, S.; Delerue, C.; Lhuillier, E. pdf  url
doi  openurl
  Title Ferroelectric gating of narrow band-gap nanocrystal arrays with enhanced light-matter coupling Type A1 Journal article
  Year (down) 2021 Publication Acs Photonics Abbreviated Journal Acs Photonics  
  Volume 8 Issue 1 Pages 259-268  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract As narrow band gap nanocrystals become a considerable building block for the design of infrared sensors, device design needs to match their actual operating conditions. While in the near and shortwave infrared, room-temperature operation has been demonstrated, longer wavelengths still require low-temperature operations and thus specific design. Here, we discuss how field-effect transistors (FETs) can be compatible with low-temperature detection. To reach this goal, two key developments are proposed. First, we report the gating of nanocrystal films from SrTiO3 which leads to high gate capacitance with leakage and breakdown free operation in the 4-100 K range. Second, we demonstrate that this FET is compatible with a plasmonic resonator whose role is to achieve strong light absorption from a thin film used as the channel of the FET. Combining three resonances, broadband absorption from 1.5 to 3 mu m reaching 30% is demonstrated. Finally, combining gate and enhanced light-matter coupling, we show that detectivity can be as high as 10(12) Jones for a device presenting a 3 mu m cutoff wavelength and 30 K operation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612567900028 Publication Date 2021-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.756 Times cited 21 Open Access OpenAccess  
  Notes The project is supported by ERC Starting Grant BlackQD (Grant No. 756225) and Consolidator Grant Realnano (815128). This project has received funding from the European Commission (Grant 731019, EUSMI). We acknowledge the use of clean-room facilities from the “Centrale de ProximitéParis-Centre”. This work has been supported by the Region Ile-de-France in the framework of DIM Nano-K (Grant dopQD). This work was supported by French state funds managed by the ANR within the Investissements d’Avenir programme under Reference ANR-11-IDEX-0004-02 and, more specifically, within the framework of the Cluster of Excellence MATISSE and also by the Grant IPER-Nano2 (ANR-18CE30-0023-01), Copin (ANR-19-CE24-0022), Frontal (ANR-19-CE09-0017), Graskop (ANR-19-CE09-0026), and NITQuantum. J.Q. thanks Chinese Scholarship Council for Ph.D. Grant, while A.C. thanks Agence Innovation Defense.; sygma Approved Most recent IF: 6.756  
  Call Number UA @ admin @ c:irua:176708 Serial 6725  
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P. url  doi
openurl 
  Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
  Year (down) 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 410 Issue Pages 128234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623394200004 Publication Date 2021-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 15 Open Access OpenAccess  
  Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @c:irua:174591 Serial 6662  
Permanent link to this record
 

 
Author Liu, P.; Arslan Irmak, E.; De Backer, A.; De wael, A.; Lobato, I.; Béché, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Three-dimensional atomic structure of supported Au nanoparticles at high temperature Type A1 Journal article
  Year (down) 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Au nanoparticles (NPs) deposited on CeO2 are extensively used as thermal catalysts since the morphology of the NPs is expected to be stable at elevated temperatures. Although it is well known that the activity of Au NPs depends on their size and surface structure, their three-dimensional (3D) structure at the atomic scale has not been completely characterized as a function of temperature. In this paper, we overcome the limitations of conventional electron tomography by combining atom counting applied to aberration-corrected scanning transmission electron microscopy images and molecular dynamics relaxation. In this manner, we are able to perform an atomic resolution 3D investigation of supported Au NPs. Our results enable us to characterize the 3D equilibrium structure of single NPs as a function of temperature. Moreover, the dynamic 3D structural evolution of the NPs at high temperatures, including surface layer jumping and crystalline transformations, has been studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612999200029 Publication Date 2020-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 13 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A. D. w. and A. D. B. and project funding G.0267.18N.; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:174858 Serial 6665  
Permanent link to this record
 

 
Author Xia, C.; Pedrazo-Tardajos, A.; Wang, D.; Meeldijk, J.D.; Gerritsen, H.C.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title Seeded growth combined with cation exchange for the synthesis of anisotropic Cu2-xS/ZnS, Cu2-xS, and CuInS2 nanorods Type A1 Journal article
  Year (down) 2021 Publication Chemistry of materials Abbreviated Journal  
  Volume 33 Issue 1 Pages 102-116  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal copper(I) sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention for a wide range of applications because of their unique optoelectronic properties, driving scientists to explore the potential of using Cu2-xS NCs as seeds in the synthesis of heteronanocrystals to achieve new multifunctional materials. Herein, we developed a multistep synthesis strategy toward Cu2-xS/ZnS heteronanorods. The Janus-type Cu2-xS/ZnS heteronanorods are obtained by the injection of hexagonal high-chalcocite Cu2-xS seed NCs in a hot zinc oleate solution in the presence of suitable surfactants, 20 s after the injection of sulfur precursors. The Cu2-xS seed NCs undergo rapid aggregation and coalescence in the first few seconds after the injection, forming larger NCs that act as the effective seeds for heteronucleation and growth of ZnS. The ZnS heteronucleation occurs on a single (100) facet of the Cu2-xS seed NCs and is followed by fast anisotropic growth along a direction that is perpendicular to the c-axis, thus leading to Cu2-xS/ZnS Janus-type heteronanorods with a sharp heterointerface. Interestingly, the high-chalcocite crystal structure of the injected Cu2-xS seed NCs is preserved in the Cu2-xS segments of the heteronanorods because of the highthermodynamic stability of this Cu2-xS phase. The Cu2-xS/ZnS heteronanorods are subsequently converted into single-component Cu2-xS and CuInS2 nanorods by postsynthetic topotactic cation exchange. This work expands the possibilities for the rational synthesis of colloidal multicomponent heteronanorods by allowing the design principles of postsynthetic heteroepitaxial seeded growth and nanoscale cation exchange to be combined, yielding access to a plethora of multicomponent heteronanorods with diameters in the quantum confinement regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610984700009 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access OpenAccess  
  Notes C.X. acknowledges China Scholarship Council (CSC) for the financial support (grant number 201406330055). C.d.M.D. acknowledges funding from the European Commission for access to the EMAT facilities (grant number EUSMI E180900184). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. acknowledges support by means of the ERC Consolidator grant no. 815128 REALNANO. The authors thank Donglong Fu for XRD measurements.; sygma Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176587 Serial 6732  
Permanent link to this record
 

 
Author Vanrompay, H.; Skorikov, A.; Bladt, E.; Béché, A.; Freitag, B.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges Type A1 Journal article
  Year (down) 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 221 Issue Pages 113191  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract HAADF-STEM tomography is a widely used experimental technique for analyzing nanometer-scale crystalline structures of a large variety of materials in three dimensions. Unfortunately, the acquisition of conventional HAADF-STEM tilt series can easily take up one hour or more, depending on the complexity of the experiment. It is therefore far from straightforward to investigate samples that do not withstand long acquisition or to acquire large amounts of tilt series during a single TEM experiment. The latter would lead to the ability to obtain statistically meaningful 3D data, or to perform in situ 3D characterizations with a much shorter time resolution. Various HAADF-STEM acquisition strategies have been proposed to accelerate the tomographic acquisition and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a projection “movie” and a hybrid, incremental, methodology which combines the benefits of the conventional and continuous technique. However, until now an experimental evaluation has been lacking. In this paper, the different acquisition strategies will be experimentally compared in terms of speed, resolution and electron dose. This evaluation will be performed based on experimental tilt series acquired for various metallic nanoparticles with different shapes and sizes. We discuss the data processing involved with the fast HAADF-STEM tilt series and provide a general guideline when which acquisition strategy should be preferentially used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600003 Publication Date 2020-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 15 Open Access OpenAccess  
  Notes We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain for providing the Au@Ag nanoparticles, Prof. Sara. E. Skrabalak and co-workers of Indiana University, United States for the provision of the Au octopods and Prof. Teri W. Odom of Northwestern University, United States for the provision of the Au nanostars. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). The authors acknowledge the entire EMAT technical staff for their support.; sygma Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174551 Serial 6660  
Permanent link to this record
 

 
Author Xi, J.; Yang, S.; Silvioli, L.; Cao, S.; Liu, P.; Chen, Q.; Zhao, Y.; Sun, H.; Hansen, J.N.; Haraldsted, J.-P.B.; Kibsgaard, J.; Rossmeisl, J.; Bals, S.; Wang, S.; Chorkendorff, I. pdf  doi
openurl 
  Title Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H₂O₂ synthesis under acidic conditions Type A1 Journal article
  Year (down) 2021 Publication Journal Of Catalysis Abbreviated Journal J Catal  
  Volume 393 Issue Pages 313-323  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Single-atom catalysts (SACs) have recently attracted broad scientific interests due to their unique structural feature, the single-atom dispersion. Optimized electronic structure as well as high stability are required for single-atom catalysts to enable efficient electrochemical production of H2O2. Herein, we report a facile synthesis method that stabilizes atomic Pd species on the reduced graphene oxide/Ndoped carbon hollow carbon nanospheres (Pd1/N-C). Pd1/N-C exhibited remarkable electrochemical H2O2 production rate with high faradaic efficiency, reaching 80%. The single-atom structure and its high H2O2 production rate were maintained even after 10,000 cycle stability test. The existence of single-atom Pd as well as its coordination with N species is responsible for its high activity, selectivity, and stability. The N coordination number and substrate doping around Pd atoms are found to be critical for an optimized adsorption energy of intermediate *OOH, resulting in efficient electrochemical H2O2 production. (C) 2020 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640923500003 Publication Date 2020-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 40 Open Access Not_Open_Access  
  Notes This research was financially supported by the National Natural Science Foundation of China (No. 51772110), Natural Science Foundation of Hubei Province (No. 2019CFB539), Danmarks Innovationsfond within the ProActivE project (5160-00003B), Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals, the Carlsberg Foundation grant CF18-0435, the Institutional Research Program (2E30220) of the Korea Institute of Science and Technology (KIST), Shenzhen Science and Technology Plan under Grant (JCYJ20170818160751460) and the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (No. GCP20200205). The authors would like to acknowledge the Analytical and Testing Center of Huazhong University of Science and Technology and the Wuhan National Laboratory for Optoelectronics for SEM, TEM, Raman and XPS measurements. Approved Most recent IF: 6.844  
  Call Number UA @ admin @ c:irua:178321 Serial 6796  
Permanent link to this record
 

 
Author Locardi, F.; Samoli, M.; Martinelli, A.; Erdem, O.; Vale Magalhaes, D.; Bals, S.; Hens, Z. url  doi
openurl 
  Title Cyan emission in two-dimensional colloidal Cs2CdCl4:SB3+ Ruddlesden-Popper phase nanoplatelets Type A1 Journal article
  Year (down) 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 11 Pages 17729-17737  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metal halide perovskites are one of the most investigated materials in optoelectronics, with their lead-based counterparts being renowned for their enhanced optoelectronic performance. The 3D CsPbX3 structure has set the standard with many studies currently attempting to substitute lead with other metals while retaining the properties of this material. This effort has led to the fabrication of metal halides with lower dimensionality, wherein particular 2D layered perovskite structures have captured attention as inspiration for the next generation of colloidal semiconductors. Here we report the synthesis of the Ruddlesden-Popper Cs2CdCl4:Sb3+ phase as colloidal nanoplatelets (NPs) using a facile hot injection approach under atmospheric conditions. Through strict adjustment of the synthesis parameters with emphasis on the ligand ratio, we obtained NPs with a relatively uniform size and good morphological control. The particles were characterized through transmission electron microscopy, synchrotron X-ray diffraction, and pair distribution function analysis. The spectroscopic characterization revealed most strikingly an intense cyan emission under UV excitation with a measured PLQY of similar to 20%. The emission was attributed to the Sb3+-doping within the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000747115200053 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 34 Open Access OpenAccess  
  Notes The authors acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and they would like to thank Andrew Fitch for assistance in using beamline ID22 (proposal HC-4098). Z.H. and S.B acknowledge funding from the Research Foundation − Flanders (FWO-Vlaanderen under the SBO − PROCEED project (No: S0002019N). Z.H. acknowledges Ghent University for funding (BOF-GOA 01G01019). S.B. is grateful to the European Research Council (ERC Consolidator Grant 815128, REALNANO). F.L. thanks Emanuela Sartori and Stefano Toso for the fruitful discussions. M.S. would like to thank Olivier Janssens for collecting XRPD data and Gabriele Pippia for helpful insights and discussions. Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:186465 Serial 7059  
Permanent link to this record
 

 
Author Li, W.; Tong, W.; Yadav, A.; Bladt, E.; Bals, S.; Funston, A.M.; Etheridge, J. pdf  doi
openurl 
  Title Shape control beyond the seeds in gold nanoparticles Type A1 Journal article
  Year (down) 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 33 Issue 23 Pages 9152-9164  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In typical seed-mediated syntheses of metal nanocrystals, the shape of the nanocrystal is determined largely by the seed nucleation environment and subsequent growth environment (where “environment” refers to the chemical environment, including the surfactant and additives). In this approach, crystallinity is typically determined by the seeds, and surfaces are controlled by the environment(s). However, surface energies, and crystallinity, are both influenced by the choice of environment(s). This limits the permutations of crystallinity and surface facets that can be mixed and matched to generate new nanocrystal morphologies. Here, we control post-seed growth to deliberately incorporate twin planes during the growth stage to deliver new final morphologies, including twinned cubes and bipyramids from single-crystal seeds. The nature and number of twin planes, together with surfactant control of facet growth, define the final nanoparticle morphology. Moreover, by breaking symmetry, the twin planes introduce new facet orientations. This additional mechanism opens new routes for the synthesis of different morphologies and facet orientations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000753956100012 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 3 Open Access Not_Open_Access  
  Notes This work was supported by the Australian Research Council (ARC) Grants DP160104679 and CE170100026 and used microscopes at the Monash Centre for Electron Microscopy funded by ARC Grants LE0454166, LE110100223, and LE140100104. W.L. thanks the support of the Australian Government Research Training Program (RTP) scholarship. W.T. thanks the Australian Department of Education and Monash University for the IPRS and APA scholarships. E.B. acknowledges financial support and a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). The authors thank Dr. Matthew Weyland and Dr. Tim Peterson for helpful discussions. A.Y. thanks the support from Post Graduation Publication Award (PPA) scholarship from Monash University. Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:187229 Serial 7065  
Permanent link to this record
 

 
Author Li, C.; Tardajos, A.P.; Wang, D.; Choukroun, D.; Van Daele, K.; Breugelmans, T.; Bals, S. url  doi
openurl 
  Title A simple method to clean ligand contamination on TEM grids Type A1 Journal article
  Year (down) 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 221 Issue Pages 113195  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Colloidal nanoparticles (NPs) including nanowires and nanosheets made by chemical methods involve many organic ligands. When the structure of NPs is investigated via transmission electron microscopy (TEM), the organic ligands act as a source for e-beam induced deposition and this causes substantial build-up of carbon layers in the investigated areas, which is typically referred to as “contamination” in the eld of electron mi- croscopy. This contamination is often more severe for scanning TEM, a technique that is based on a focused electron beam and hence higher electron dose rate. In this paper, we report a simple and effective method to clean drop-cast TEM grids that contain NPs with ligands. Using a combination of activated carbon and ethanol, this method effectively reduces the amount of ligands on TEM grids, and therefore greatly improves the quality of electron microscopy images and subsequent analytical measurements. This ef cient and facile method can be helpful during electron microscopy investigation of different kinds of nanomaterials that suffer from ligand- induced contamination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 10 Open Access OpenAccess  
  Notes This research was funded by the University Antwerp GOA project (ID 33928). DW acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174947 Serial 6666  
Permanent link to this record
 

 
Author Skorikov, A.; Heyvaert, W.; Albrecht, W.; Pelt, D.M.; Bals, S. doi  openurl
  Title EMAT Simulated 3D Nanoparticle Structures Dataset Type Dataset
  Year (down) 2021 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset contains 1000 simulated nanoparticle-like 3D structures and noisy EDX-like elemental maps based on them. These data are intended to be used for quantitative analysis of data processing methods in (EDX) tomography of nanoparticles and training the data-driven approaches for these tasks. The dataset is structured as follows: voxel_data/clean 3D voxel grid representation of the simulated nanoparticles. Voxel intensities are adjusted so that the total intensity equals 103. All 3D structures have unique identifiers in 0..999 range. The data derived from a 3D structure preserves this unique identifier. sinograms/clean Tilt series of projection images obtained from the corresponding 3D structures over an angular range of -75..75 degrees with a tilt step of 10 degrees to simulate a typical tilt series used in EDX tomography. Total intensity in each projection image equals 103. sinograms/noisy Tilt series of projection images corrupted with Poisson noise and an additional spatially uniform background noise. projections/clean Projection images extracted from the clean tilt series at 0 degrees tilt angle. projections/noisy Projection images extracted from the noisy tilt series at 0 degrees tilt angle. images/clean Visualizations of the clean projections as PNG images with the intensity range adjusted to 0..255 images/noisy Visualizations of the noisy projections as PNG images with the intensity range adjusted to 0..255  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180615 Serial 6838  
Permanent link to this record
 

 
Author Imran, M.; Ramade, J.; Di Stasio, F.; De Franco, M.; Buha, J.; Van Aert, S.; Goldoni, L.; Lauciello, S.; Prato, M.; Infante, I.; Bals, S.; Manna, L. url  doi
openurl 
  Title Alloy CsCdxPb1–xBr3Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emission Type A1 Journal article
  Year (down) 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 32 Issue Pages acs.chemmater.0c03825  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Various strategies have been proposed to engineer the band gap of metal halide perovskite nanocrystals (NCs) while preserving their structure and composition and thus ensuring spectral stability of the emission color. An aspect that has only been marginally investigated is how the type of surface passivation influences the structural/color stability of AMX3 perovskite NCs composed of two different M2+ cations. Here, we report the synthesis of blue-emitting Cs-oleate capped CsCdxPb1–xBr3 NCs, which exhibit a cubic perovskite phase containing Cd-rich domains of Ruddlesden–Popper phases (RP phases). The RP domains spontaneously transform into pure orthorhombic perovskite ones upon NC aging, and the emission color of the NCs shifts from blue to green over days. On the other hand, postsynthesis ligand exchange with various Cs-carboxylate or ammonium bromide salts, right after NC synthesis, provides monocrystalline NCs with cubic phase, highlighting the metastability of RP domains. When NCs are treated with Cs-carboxylates (including Cs-oleate), most of the Cd2+ ions are expelled from NCs upon aging, and the NCs phase evolves from cubic to orthorhombic and their emission color changes from blue to green. Instead, when NCs are coated with ammonium bromides, the loss of Cd2+ ions is suppressed and the NCs tend to retain their blue emission (both in colloidal dispersions and in electroluminescent devices), as well as their cubic phase, over time. The improved compositional and structural stability in the latter cases is ascribed to the saturation of surface vacancies, which may act as channels for the expulsion of Cd2+ ions from NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603288800034 Publication Date 2020-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 44 Open Access OpenAccess  
  Notes European Commission; Fonds Wetenschappelijk Onderzoek, G.0267.18N ; H2020 European Research Council, 770887 815128 851794 ; We acknowledge funding from the FLAG-ERA JTC2019 project PeroGas. S.B., and S.V.A. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants #815128REALNANO and #770887PICOMETRICS) and from the Research Foundation Flanders (FWO, Belgium) through project funding G.0267.18N. F.D.S. acknowledges the funding from ERC starting grant NANOLED (851794). The computational work was carried out on the Dutch National e-infrastructure with the support of the SURF Cooperative; sygma Approved Most recent IF: 8.6; 2020 IF: 9.466  
  Call Number EMAT @ emat @c:irua:174004 Serial 6659  
Permanent link to this record
 

 
Author Albrecht, W.; Bals, S. url  doi
openurl 
  Title Fast Electron Tomography for Nanomaterials Type A1 Journal article
  Year (down) 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c08939  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography (ET) has become a well-established technique to visualize nanomaterials in three dimensions. A vast richness in information can be gained by ET, but the conventional acquisition of a tomography series is an inherently slow process on the order of 1 h. The slow acquisition limits the applicability of ET for monitoring dynamic processes or visualizing nanoparticles, which are sensitive to the electron beam. In this Perspective, we summarize recent work on the development of emerging experimental and computational schemes to enhance the data acquisition process. We particularly focus on the application of these fast ET techniques for beam-sensitive materials and highlight insight into dynamic transformations of nanoparticles under external stimuli, which could be gained by fast in situ ET. Moreover, we discuss challenges and possible solutions for simultaneously increasing the speed and quality of fast ET.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000608876900003 Publication Date 2020-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 26 Open Access OpenAccess  
  Notes H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 815128 ; The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grant No. 815128-REALNANO) and the European Commission (EUSMI). The authors furthermore acknowledge funding from the European Union’s Horizon 2020 research and innovation program, ESTEEM3. The authors also acknowledge contributions from all co-workers that have contributed over the years: J. Batenburg and co-workers, A. Béché, E. Bladt, L. Liz-Marzán and co-workers, H. Pérez Garza and co-workers, A. Skorikov, S. Skrabalak and co-workers, S. Van Aert, A. van Blaaderen and co-workers, H. Vanrompay, and J. Verbeeck.; sygma Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number EMAT @ emat @c:irua:173965 Serial 6656  
Permanent link to this record
 

 
Author Irtem, E.; Arenas Esteban, D.; Duarte, M.; Choukroun, D.; Lee, S.; Ibáñez, M.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Ligand-Mode Directed Selectivity in Cu–Ag Core–Shell Based Gas Diffusion Electrodes for CO2Electroreduction Type A1 Journal article
  Year (down) 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume Issue Pages 13468-13478  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bimetallic nanoparticles with tailored size and specific composition have shown promise as stable and selective catalysts for electrochemical reduction of CO2 (CO2R) in batch systems. Yet, limited effort was devoted to understand the effect of ligand coverage and postsynthesis treatments on CO2 reduction, especially under industrially applicable conditions, such as at high currents (>100 mA/cm2) using gas diffusion electrodes (GDE) and flow reactors. In this work, Cu–Ag core–shell nanoparticles (11 ± 2 nm) were prepared with three different surface modes: (i) capped with oleylamine, (ii) capped with monoisopropylamine, and (iii) surfactant free with a reducing borohydride agent; Cu–Ag (OAm), Cu–Ag (MIPA), and Cu–Ag (NaBH4), respectively. The ligand exchange and removal was evidenced by infrared spectroscopy (ATR-FTIR) analysis, whereas high-resolution scanning transmission electron microscopy (HAADF-STEM) showed their effect on the interparticle distance and nanoparticle rearrangement. Later on, we developed a process-on-substrate method to track these effects on CO2R. Cu–Ag (OAm) gave a lower on-set potential for hydrocarbon production, whereas Cu–Ag (MIPA) and Cu–Ag (NaBH4) promoted syngas production. The electrochemical impedance and surface area analysis on the well-controlled electrodes showed gradual increases in the electrical conductivity and active surface area after each surface treatment. We found that the increasing amount of the triple phase boundaries (the meeting point for the electron–electrolyte–CO2 reactant) affect the required electrode potential and eventually the C+2e̅/C2e̅ product ratio. This study highlights the importance of the electron transfer to those active sites affected by the capping agents—particularly on larger substrates that are crucial for their industrial application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592978900031 Publication Date 2020-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited 23 Open Access OpenAccess  
  Notes The authors also acknowledge financial support from the University Research Fund (BOF-GOA-PS ID No. 33928). S.L. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SkłodowskaCurie Grant Agreement No. 665385. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number EMAT @ emat @c:irua:173803 Serial 6432  
Permanent link to this record
 

 
Author Busatto, S.; Ruiter, M. de; Jastrzebski, J.T.B.H.; Albrecht, W.; Pinchetti, V.; Brovelli, S.; Bals, S.; Moret, M.-E.; de Mello Donega, C. url  doi
openurl 
  Title Luminescent Colloidal InSb Quantum Dots from In Situ Generated Single-Source Precursor Type A1 Journal article
  Year (down) 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue 10 Pages 13146-13160  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Despite recent advances, the synthesis of colloidal InSb quantum dots (QDs) remains underdeveloped, mostly due to the lack of suitable precursors. In this work, we use Lewis acid–base interactions between Sb(III) and In(III) species formed at room temperature in situ from commercially available compounds (viz., InCl3, Sb[NMe2]3 and a primary alkylamine) to obtain InSb adduct complexes. These complexes are successfully used as precursors for the synthesis of colloidal InSb QDs ranging from 2.8 to 18.2 nm in diameter by fast coreduction at sufficiently high temperatures (≥230 °C). Our findings allow us to propose a formation mechanism for the QDs synthesized in our work, which is based on a nonclassical nucleation event, followed by aggregative growth. This yields ensembles with multimodal size distributions, which can be fractionated in subensembles with relatively narrow polydispersity by postsynthetic size fractionation. InSb QDs with diameters below 7.0 nm have the zinc blende crystal structure, while ensembles of larger QDs (≥10 nm) consist of a mixture of wurtzite and zinc blende QDs. The QDs exhibit photoluminescence with small Stokes shifts and short radiative lifetimes, implying that the emission is due to band-edge recombination and that the direct nature of the bandgap of bulk InSb is preserved in InSb QDs. Finally, we constructed a sizing curve correlating the peak position of the lowest energy absorption transition with the QD diameters, which shows that the band gap of colloidal InSb QDs increases with size reduction following a 1/d dependence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000586793400068 Publication Date 2020-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 21 Open Access OpenAccess  
  Notes S.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. TOP.715.016.001. W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA) under the EU?s Horizon 2020 program (Grant No. 797153, SOPMEN). This project has received funding from the European Commission Grant (EUSMI E180900184) and European Research Council (ERC Consolidator Grant No. 815128 REALNANO).; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number EMAT @ emat @c:irua:173862 Serial 6438  
Permanent link to this record
 

 
Author Pacquets, L.; Irtem, E.; Neukermans, S.; Daems, N.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title Size-controlled electrodeposition of Cu nanoparticles on gas diffusion electrodes in methanesulfonic acid solution Type A1 Journal article
  Year (down) 2020 Publication Journal Of Applied Electrochemistry Abbreviated Journal J Appl Electrochem  
  Volume 51 Issue 2 Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract In this paper electrodeposition is used to obtain Cu nanoparticles, as it allows good control over particle size and distribution. These Cu particles were deposited onto a gas diffusion electrode which increased the resulting surface area. Prior to deposition, the surface was pre-treated with NaOH, HNO3, MQ and TX100 to investigate the influence on the electrodeposition of Cu on the gas diffusion electrode (GDE). When using HNO3, the smallest particles with the most homogeneous distribution and high particle roughness were obtained. Once the optimal substrate was determined, we further demonstrated that by altering the electrodeposition parameters, the particle size and density could be tuned. On the one hand, increasing the nucleation potential led to a higher particle density resulting in smaller particles because of an increased competition between particles. Finally, the Cu particle size increased when applying a greater growth charge and growth potential. This fundamental study thus opens up a path towards the synthesis of supported Cu materials with increased surface areas, which is interesting from a catalytic point of view. Larger surface areas are generally correlated with a better catalyst performance and thus higher product yields. This research can contributed in obtaining new insides into the deposition of metallic nanoparticles on rough surfaces. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000568651000001 Publication Date 2020-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-891x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.9 Times cited 3 Open Access OpenAccess  
  Notes ; L. Pacquets was supported through a PhD fellowship strategic basic research (1S56918N) of the Research Foundation-Flanders (FWO). N. Daems was supported through a postdoctoral fellowship (12Y3919N-ND) of the Research Foundation-Flanders (FWO). S. Neukermans was supported through an FWO project grant (G093317N). This research was financed by the research counsel of the university of Antwerp (BOF-GOA 33928). The authors recognize the contribution of Thomas Kenis for analytical validation and methodology. ; Approved Most recent IF: 2.9; 2020 IF: 2.235  
  Call Number UA @ admin @ c:irua:171588 Serial 6603  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Zhuo, X.; Albrecht, W.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Tuning Size and Seed Position in Small Silver Nanorods Type A1 Journal article
  Year (down) 2020 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.  
  Volume 2 Issue 9 Pages 1246-1250  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571390700022 Publication Date 2020-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Commission under the Horizon 2020 Programme, by means of Grant Agreement No. 731019 (EUSMI), the ERC Consolidator Grant (No. 815128) (REALNANO), and the ERC Advanced Grant (No. 787510) (4DbioSERS). W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA), under the EU’s Horizon 2020 program (Grant 797153, SOPMEN). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720).; sygma Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:171980 Serial 6439  
Permanent link to this record
 

 
Author Rodal-Cedeira, S.; Vázquez-Arias, A.; Bodelon, G.; Skorikov, A.; Núñez-Sanchez, S.; La Porta, A.; Polavarapu, L.; Bals, S.; Liz-Marzán, L.M.; Perez-Juste, J.; Pastoriza-Santos, I. url  doi
openurl 
  Title An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells Type A1 Journal article
  Year (down) 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Raman-encoded gold nanoparticles have been widely employed as photostable multifunctional probes for sensing, bioimaging, multiplex diagnostics, and surface-enhanced Raman scattering (SERS)-guided tumor therapy. We report a strategy toward obtaining a particularly large library of Au nanocapsules encoded with Raman codes defined by the combination of different thiol-free Raman reporters, encapsulated at defined molar ratios. The fabrication of SERS tags with tailored size and pre-defined codes is based on the in situ incorporation of Raman reporter molecules inside Au nanocapsules during their formation via Galvanic replacement coupled to seeded growth on Ag NPs. The hole-free closed shell structure of the nanocapsules is confirmed by electron tomography. The unusually wide encoding possibilities of the obtained SERS tags are investigated by means of either wavenumber-based encoding or Raman frequency combined with signal intensity, leading to an outstanding performance as exemplified by 26 and 54 different codes, respectively. We additionally demonstrate that encoded nanocapsules can be readily bioconjugated with antibodies for applications such as SERS-based targeted cell imaging and phenotyping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595533800019 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 14 Open Access OpenAccess  
  Notes L.M.L.-M. acknowledges financial support from the European Research Council (ERC-AdG-4DbioSERS-787510) and the Spanish State Research Agency (Grant No. MDM-2017-0720 and PID2019-108954RB-I00). I.P.-S. and J.P.-J. acknowledge financial support from the Spanish State Research Agency (Grant No. MAT2016-77809-R)) and Ramon Areces Foundation (Grant No. SERSforSAFETY). G.B. acknowledges financial support from CINBIO (Grant number ED431G 2019/07 Xunta de Galicia). S.B. and A.S. acknowledge financial support by the Research Foundation Flanders (FWO grant G038116N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI). S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). We thank Carlos Fernández-Lodeiro and Daniel García-Lojo for their helpful contribution to the SEM characterization and SERS analysis and Veronica Montes-García for her fruitful contribution in the PCA analysis.; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number EMAT @ emat @c:irua:172492 Serial 6403  
Permanent link to this record
 

 
Author Wang, D.; Dasgupta, T.; van der Wee, E.B.; Zanaga, D.; Altantzis, T.; Wu, Y.; Coli, G.M.; Murray, C.B.; Bals, S.; Dijkstra, M.; van Blaaderen, A. pdf  url
doi  openurl
  Title Binary icosahedral clusters of hard spheres in spherical confinement Type A1 Journal article
  Year (down) 2020 Publication Nature Physics Abbreviated Journal Nat Phys  
  Volume Issue Pages 1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The influence of geometry on the local and global packing of particles is important to many fundamental and applied research themes, such as the structure and stability of liquids, crystals and glasses. Here we show by experiments and simulations that a binary mixture of hard-sphere-like nanoparticles crystallizing into a MgZn(2)Laves phase in bulk spontaneously forms icosahedral clusters in slowly drying droplets. Using advanced electron tomography, we are able to obtain the real-space coordinates of all the spheres in the icosahedral clusters of up to about 10,000 particles. The local structure of 70-80% of the particles became similar to that of the MgCu(2)Laves phase. These observations are important for photonic applications. In addition, we observed in simulations that the icosahedral clusters nucleated away from the spherical boundary, which is distinctly different from that of the single species clusters. Our findings open the way for particle-level studies of nucleation and growth of icosahedral clusters, and of binary crystallization. The authors investigate out-of-equilibrium crystallization of a binary mixture of sphere-like nanoparticles in small droplets. They observe the spontaneous formation of an icosahedral structure with stable MgCu(2)phases, which are promising for photonic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000564497300002 Publication Date 2020-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473; 1745-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.6 Times cited 38 Open Access OpenAccess  
  Notes ; D.W., E.B.v.d.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union's Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. T.D. and M. D. acknowledge financial support from the Industrial Partnership Programme, 'Computational Sciences for Energy Research' (grant number 13CSER025), of the Netherlands Organization for Scientific Research (NWO), which was co-financed by Shell Global Solutions International BV G.M.C. was also financially supported by NWO. S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). C.B.M. and Y.W. acknowledge support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. G. A. Blab is gratefully acknowledged for 3D printing numerous truncated tetrahedra, which increased our understanding of the connection between the binary icosahedral cluster and Laves phase structures. N. Tasios is sincerely thanked for providing the code for the diffraction pattern calculation. M. Hermes is sincerely thanked for providing interactive views of the structures in this work. We thank G. van Tendeloo, M. Engel, J. Wang, S. Dussi, L. Filion, E. Boattini, S. Paliwal, N. Tasios, B. van der Meer, I. Lobato, J. Wu and L. Laurens for fruitful discussions. We acknowledge the EM Square centre at Utrecht University for the access to the microscopes. ; sygma Approved Most recent IF: 19.6; 2020 IF: 22.806  
  Call Number UA @ admin @ c:irua:172044 Serial 6460  
Permanent link to this record
 

 
Author Nicolas-Boluda, A.; Yang, Z.; Dobryden, I.; Carn, F.; Winckelmans, N.; Pechoux, C.; Bonville, P.; Bals, S.; Claesson, P.M.; Gazeau, F.; Pileni, M.P. pdf  doi
openurl 
  Title Intracellular fate of hydrophobic nanocrystal self-assemblies in tumor cells Type A1 Journal article
  Year (down) 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 30 Issue 40 Pages 2004274-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Control of interactions between nanomaterials and cells remains a biomedical challenge. A strategy is proposed to modulate the intralysosomal distribution of nanoparticles through the design of 3D suprastructures built by hydrophilic nanocrystals (NCs) coated with alkyl chains. The intracellular fate of two water-dispersible architectures of self-assembled hydrophobic magnetic NCs: hollow deformable shells (colloidosomes) or solid fcc particles (supraballs) is compared. These two self-assemblies display increased cellular uptake by tumor cells compared to dispersions of the water-soluble NC building blocks. Moreover, the self-assembly structures increase the NCs density in lysosomes and close to the lysosome membrane. Importantly, the structural organization of NCs in colloidosomes and supraballs are maintained in lysosomes up to 8 days after internalization, whereas initially dispersed hydrophilic NCs are randomly aggregated. Supraballs and colloidosomes are differently sensed by cells due to their different architectures and mechanical properties. Flexible and soft colloidosomes deform and spread along the biological membranes. In contrast, the more rigid supraballs remain spherical. By subjecting the internalized suprastructures to a magnetic field, they both align and form long chains. Overall, it is highlighted that the mechanical and topological properties of the self-assemblies direct their intracellular fate allowing the control intralysosomal density, ordering, and localization of NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000559913300001 Publication Date 2020-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited 11 Open Access Not_Open_Access  
  Notes ; F.G. and M.P.P. contributed equally to this work. Dr. J. Teixeira from Laboratoire Leon Brillouin CEA Saclay is thanked for fruitful discussions on SAXS measurement. Dr. J.M. Guinier is thanked for cryoTEM experiments. A.N.-B. received a Ph.D. fellowship from the Institute thematique multi-organismes (ITMO) Cancer and the doctoral school Frontieres du Vivant (FdV)-Programme Bettencourt and the Fondation ARC pour la recherche sur le cancer. ; Approved Most recent IF: 19; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:171145 Serial 6551  
Permanent link to this record
 

 
Author Milagres de Oliveira, T.; Albrecht, W.; González-Rubio, G.; Altantzis, T.; Lobato Hoyos, I.P.; Béché, A.; Van Aert, S.; Guerrero-Martínez, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title 3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation Type A1 Journal article
  Year (down) 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue Pages acsnano.0c02610  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Ultrafast laser irradiation can induce morphological and structural changes in plasmonic nanoparticles. Gold nanorods (Au NRs), in particular, can be welded together upon irradiation with femtosecond laser pulses, leading to dimers and trimers through the formation of necks between individual nanorods. We used electron tomography to determine the 3D (atomic) structure at such necks for representative welding geometries and to characterize the induced defects. The spatial distribution of localized surface plasmon modes for different welding configurations was assessed by electron energy loss spectroscopy. Additionally, we were able to directly compare the plasmon line width of single-crystalline and welded Au NRs with single defects at the same resonance energy, thus making a direct link between the structural and plasmonic properties. In this manner, we show that the occurrence of (single) defects results in significant plasmon broadening.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000586793400016 Publication Date 2020-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 25 Open Access OpenAccess  
  Notes This project has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants #815128 – REALNANO and #770887 – PICOMETRICS). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and G.0267.18N. W.A. acknowledges an Individual Fellowship funded by the Marie 27 Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 797153, SOPMEN). G.G.-R. acknowledge receipt of FPI Fellowship from the Spanish MINECO. This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00 and MAT2017-86659-R) and the Madrid Regional Government (Grant P2018/NMT-4389). A.B. acknowledges funding from FWO project G093417N and from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720); Comunidad de Madrid, P2018/NMT-4389 ; Ministerio de Ciencia, Innovación y Universidades, MAT2017-86659-R RTI2018-095844-B-I00 ; Ministerio de Economía y Competitividad; H2020 Marie Sklodowska-Curie Actions, 797153 ; Fonds Wetenschappelijk Onderzoek, G.0267.18N G.0381.16N G093417N ; H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 770887 815128 ; Agencia Estatal de Investigación, Ministerio de Ciencia, Innovación y Universidades, MDM-2017-0720 ; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number EMAT @ emat @c:irua:172440 Serial 6426  
Permanent link to this record
 

 
Author González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D.M.; Lobato, I.; Noya, E.G.; Guerrero-Martínez, A.; Taboada, J.M.; Obelleiro, F.; MacDowell, L.G.; Bals, S.; Liz-Marzán, L.M. url  doi
openurl 
  Title Micelle-directed chiral seeded growth on anisotropic gold nanocrystals Type A1 Journal article
  Year (down) 2020 Publication Science Abbreviated Journal Science  
  Volume 368 Issue 368 Pages 1472-1477  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Surfactant-assisted seeded growth of metal nanoparticles (NPs) can be engineered to produce anisotropic gold nanocrystals with high chiroptical activity through the templating effect of chiral micelles formed in the presence of dissymmetric cosurfactants. Mixed micelles adsorb on gold nanorods, forming quasihelical patterns that direct seeded growth into NPs with pronounced morphological and optical handedness. Sharp chiral wrinkles lead to chiral plasmon modes with high dissymmetry factors (~0.20). Through variation of the dimensions of chiral wrinkles, the chiroptical properties can be tuned within the visible and near-infrared electromagnetic spectrum. The micelle-directed mechanism allows extension to other systems, such as the seeded growth of chiral platinum shells on gold nanorods. This approach provides a reproducible, simple, and scalable method toward the fabrication of NPs with high chiral optical activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000545264600040 Publication Date 2020-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 187 Open Access OpenAccess  
  Notes L.M.L.-M. acknowledges funding from the European Research Council (ERC AdG No. 787510). G.G.-R. and J.M. thanks the Spanish MICIU for FPI (BES-2014-068972) and Juan de la Cierva-fellowships (FJCI-2015-25080). S.B., L.M.L.-M., V.K, and A.P.- T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement No. 731019 (EUSMI) and the ERC Consolidator Grant No. 815128 (REALNANO). J.M.T and F.O acknowledge financial support from the Spanish MICIU (Grants TEC2017-85376-C2-1-R, TEC2017-85376-C2-2-R), as well as from the ERDF and the Galician Regional Government as part of the agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC). AG-M acknowledges financial support from the Spanish MICIU (Grant RTI2018-095844-BI00), EGN and LGM acknowledge funds from the Spanish MICIU (Grant No. FIS2017- 89361-C3-2-P), as well as the use of the Mare-Nostrum supercomputer and the technical support provided by Barcelona Supercomputing Center from the Spanish Network of Supercomputing (Grants QCM-2018-3-0039 and QCM-2019-1-0038). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State 13 Research Agency – Grant No. MDM-2017-0720.; sygma Approved Most recent IF: 56.9; 2020 IF: 37.205  
  Call Number EMAT @ emat @c:irua:170137 Serial 6391  
Permanent link to this record
 

 
Author Ben Dkhil, S.; Perkhun, P.; Luo, C.; Mueller, D.; Alkarsifi, R.; Barulina, E.; Quiroz, Y.A.A.; Margeat, O.; Dubas, S.T.; Koganezawa, T.; Kuzuhara, D.; Yoshimoto, N.; Caddeo, C.; Mattoni, A.; Zimmermann, B.; Wuerfel, U.; Pfannmöller, M.; Bals, S.; Ackermann, J.; Videlot-Ackermann, C. pdf  url
doi  openurl
  Title Direct correlation of nanoscale morphology and device performance to study photocurrent generation in donor-enriched phases of polymer solar cells Type A1 Journal article
  Year (down) 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 12 Issue 25 Pages 28404-28415  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C-71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543780900058 Publication Date 2020-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 7 Open Access OpenAccess  
  Notes ; J.A., O.M., and C.V.-A. acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant Number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant Number: 287594). J.A., C.V.-A., and E.B. acknowledge the Association Nationale de la Recherche et de la Technologie (ANRT) and the Ministere de l'Enseignement Superieur, de la Recherche et de l'Innovation, awarded through the company Dracula Technologies (Valence, France), for framework of a CIFRE Ph.D. grant 2017/0529. J.A. and P.P. received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant agreement no. 713750. They further acknowledge support of the Regional Council of Provence-Alpes-Cote d'Azur, A*MIDEX (no. ANR-11-IDEX-0001-02), and the Investissements d'Avenir project funded by the French Government, managed by the French National Research Agency (ANR). J.A. and Y.A.A.Q. acknowledge the French Research Agency for funding through the project NFA-15 (ANR-17-CE05-0020-01). N.Y. acknowledges that the synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2017B1629 and 2018B1791). S.B. acknowledges financial support from the European Research Council (ERC Consolidator Grant 815128-REALNANO) and from FWO (G.0381.16N). M.P. gratefully acknowledges funding by the Ministerium fur Wissenschaft, Forschung und Kunst Baden-Wurttemberg through the HEiKA materials research centre FunTECH-3D (MWK, 33-753-30-20/3/3) and the Large-Scale-Data-Facility (LSDF) sds@hd through grant INST 35/1314-1 FUGG. A.M. acknowledges Italian MIUR for funding through the project PON04a2 00490 M2M Netergit, PRACE, for awarding access to Marconi KNL at CINECA, Italy, through projects DECONVOLVES (2018184466) and PROVING-IL (2019204911). C.C. acknowledges the CINECA award under the ISCRA initiative for the availability of high-performance computing resources and support (project MITOMASC). ; sygma Approved Most recent IF: 9.5; 2020 IF: 7.504  
  Call Number UA @ admin @ c:irua:170703 Serial 6484  
Permanent link to this record
 

 
Author Vanrompay, H.; Buurlage, J.‐W.; Pelt, D.M.; Kumar, V.; Zhuo, X.; Liz‐Marzán, L.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Real‐Time Reconstruction of Arbitrary Slices for Quantitative and In Situ 3D Characterization of Nanoparticles Type A1 Journal article
  Year (down) 2020 Publication Particle & Particle Systems Characterization Abbreviated Journal Part Part Syst Char  
  Volume 37 Issue 37 Pages 2000073  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A detailed 3D investigation of nanoparticles at a local scale is of great importance to connect their structure and composition to their properties. Electron tomography has therefore become an important tool for the 3D characterization of nanomaterials. 3D investigations typically comprise multiple steps, including acquisition, reconstruction, and analysis/quantification. Usually, the latter two steps are performed offline, at a dedicated workstation. This sequential workflow prevents on-the-fly control of experimental parameters to improve the quality of the 3D reconstruction, to select a relevant nanoparticle for further characterization or to steer an in-situ tomography experiment. Here, we present an efficient approach to overcome these limitations, based on the real-time reconstruction of arbitrary 2D reconstructed slices through a 3D object. Implementation of this method may lead to generalized implementation of electron tomography for routine nanoparticle characterization in 3D.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536357100001 Publication Date 2020-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 10 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 1S32617N ; Fonds Wetenschappelijk Onderzoek, G026718N ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 639.073.506 016.Veni.192.235 ; H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G026718N). Financial support was provided by The Netherlands Organization for Scientific Research (NWO), project numbers 639.073.506 and 016.Veni.192.235. This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). H.V. and J.-W.B contributed equally to this work.; sygma Approved Most recent IF: 2.7; 2020 IF: 4.474  
  Call Number EMAT @ emat @c:irua:169704 Serial 6371  
Permanent link to this record
 

 
Author Leemans, J.; Singh, S.; Li, C.; Ten Brinck, S.; Bals, S.; Infante, I.; Moreels, I.; Hens, Z. url  doi
openurl 
  Title Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets Type A1 Journal article
  Year (down) 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 9 Pages 3339-3344  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We address the relation between surface chemistry and optoelectronic properties in semiconductor nanocrystals using core/crown CdSe/CdS nanoplatelets passivated by cadmium oleate (Cd(Ol)2) as model systems. We show that addition of butylamine to a nanoplatelet (NPL) dispersion maximally displaces ∼40% of the original Cd(Ol)2 capping. On the basis of density functional theory simulations, we argue that this behavior reflects the preferential displacement of Cd(Ol)2 from (near)-edge surface sites. Opposite from CdSe core NPLs, core/crown NPL dispersions can retain 45% of their initial photoluminescence efficiency after ligand displacement, while radiative exciton recombination keeps dominating the luminescent decay. Using electron microscopy observations, we assign this robust photoluminescence to NPLs with a complete CdS crown, which prevents charge carrier trapping in the near-edge surface sites created by ligand displacement. We conclude that Z-type ligands such as cadmium carboxylates can provide full electronic passivation of (100) facets yet are prone to displacement from (near)-edge surface sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535177500024 Publication Date 2020-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 24 Open Access OpenAccess  
  Notes Universiteit Gent, GOA 01G01019 ; Fonds Wetenschappelijk Onderzoek, 17006602 FWO17/PDO/184 ; H2020 European Research Council, 714876 Phocona 815128 Realnano ; SIM-Flanders, SBO-QDOCCO ; Z.H. and S.B. acknowledge support by SIM-Flanders (SBO-QDOCCO). Z.H. acknowledges support by FWO-Vlaanderen (research project 17006602). Z.H. and I.M. acknowledge support by Ghent University (GOA n◦ 01G01019). J.L. acknowledges FWO-vlaanderen for a fellowship (SB PhD fellow at FWO). Sh.S acknowledges FWO postdoctoral funding (FWO17/PDO/184). This project has further received funding from the European Research Counsil under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator grant no. 815128 REALNANO and starting grant no. 714876 PHOCONA).; sygma Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number EMAT @ emat @c:irua:173994 Serial 6657  
Permanent link to this record
 

 
Author Toso, S.; Akkerman, Q.A.; Martin-Garcia, B.; Prato, M.; Zito, J.; Infante, I.; Dang, Z.; Moliterni, A.; Giannini, C.; Bladt, E.; Lobato, I.; Ramade, J.; Bals, S.; Buha, J.; Spirito, D.; Mugnaioli, E.; Gemmi, M.; Manna, L. pdf  url
doi  openurl
  Title Nanocrystals of lead chalcohalides : a series of kinetically trapped metastable nanostructures Type A1 Journal article
  Year (down) 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 142 Issue 22 Pages 10198-10211  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to similar to 30 nm), an indirect bandgap, photoconductivity (responsivity = 4 +/- 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538526500035 Publication Date 2020-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited 32 Open Access OpenAccess  
  Notes ; We would like to thank Dr. A. Toma for the access to the IIT clean room facilities' SEM/FIB and evaporators, the Smart Materials group (IIT) for the access to the ATR-FTIR equipment, S. Marras for the support during XRPD measurements, G. Pugliese for help with the TGA measurements, M. Campolucci for help with the experiments on NC growth kinetics, S. Lauciello for help with the SEM-EDX analyses, and D. Baranov and R. Brescia for the helpful discussions. We also acknowledge funding from the Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement COMPASS No. 691185. I.I. acknowledges the Dutch NWO for financial support under the Vidi scheme (Grant No. 723.013.002). S.B. acknowledges support by means of the ERC Consolidator Grant No. 815128 REALNANO. E. M. and M.G acknowledge the Regione Toscana for funding the purchase of the Timepix detector through the FELIX project (Por CREO FESR 2014-2020 action). ; sygma Approved Most recent IF: 15; 2020 IF: 13.858  
  Call Number UA @ admin @ c:irua:170218 Serial 6566  
Permanent link to this record
 

 
Author Reguera, J.; Flora, T.; Winckelmans, N.; Rodriguez-Cabello, J.C.; Bals, S. url  doi
openurl 
  Title Self-assembly of Janus Au:Fe₃O₄ branched nanoparticles. From organized clusters to stimuli-responsive nanogel suprastructures Type A1 Journal article
  Year (down) 2020 Publication Nanoscale Advances Abbreviated Journal  
  Volume 2 Issue 6 Pages 2525-2530  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Janus nanoparticles offer enormous possibilities through a binary selective functionalization and dual properties. Their self-assembly has attracted strong interest due to their potential as building blocks to obtain molecular colloids, supracrystals and well-organized nanostructures that can lead to new functionalities. However, this self-assembly has been focused on relatively simple symmetrical morphologies, while for complex nanostructures this process has been unexplored. Here, we study the assembly of plasmonic-magnetic Janus nanoparticles with a branched (nanostar) – sphere morphology. The branched morphology enhances their plasmonic properties in the near-infrared region and therefore their applicability, but at the same time constrains their self-assembly capabilities to obtain more organized or functional suprastructures. We describe the self-assembly of these nanoparticles after amphiphilic functionalization. The role of the nanoparticle branching, as well as the size of the polymer-coating, is explored. We show how the use of large molecular weight stabilizing polymers can overcome the anisotropy of the nanoparticles producing a change in the morphology from small clusters to larger quasi-cylindrical nanostructures. Finally, the Janus nanoparticles are functionalized with a thermo-responsive elastin-like recombinamer. These nanoparticles undergo reversible self-assembly in the presence of free polymer giving rise to nanoparticle-stabilized nanogel-like structures with controlled size, providing the possibility to expand their applicability to multi-stimuli controlled self-assembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543283200032 Publication Date 2020-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2516-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited 10 Open Access OpenAccess  
  Notes ; J. R. acknowledges the.nancial support of Basque Country Elkartek-KK-2019/ 00101. T. F. and J. C. R-C acknowledge the funding from the European Commission (NMP-2014-646075), the Spanish Government (PCIN-2015-010 (FunBioPlas), MAT2016-78903-R), Junta de Castilla y Leon (VA317P18) and Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leon. ; Approved Most recent IF: 4.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:170773 Serial 6600  
Permanent link to this record
 

 
Author Paul, S.; Bladt, E.; Richter, A.F.; Döblinger, M.; Tong, Y.; Huang, H.; Dey, A.; Bals, S.; Debnath, T.; Polavarapu, L.; Feldmann, J. url  doi
openurl 
  Title Manganese‐Doping‐Induced Quantum Confinement within Host Perovskite Nanocrystals through Ruddlesden–Popper Defects Type A1 Journal article
  Year (down) 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit  
  Volume 59 Issue 17 Pages 6794-6799  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of doping Mn2+ ions into II–VI semiconductor nanocrystals (NCs) was recently extended to perovskite NCs. To date, most studies on Mn2+ doped NCs focus on enhancing the emission related to the Mn2+ dopant via an energy transfer mechanism. Herein, we found that the doping of Mn2+ ions into CsPbCl3 NCs not only results in a Mn2+‐related orange emission, but also strongly influences the excitonic properties of the host NCs. We observe for the first time that Mn2+ doping leads to the formation of Ruddlesden–Popper (R.P.) defects and thus induces quantum confinement within the host NCs. We find that a slight doping with Mn2+ ions improves the size distribution of the NCs, which results in a prominent excitonic peak. However, with increasing the Mn2+ concentration, the number of R.P. planes increases leading to smaller single‐crystal domains. The thus enhanced confinement and crystal inhomogeneity cause a gradual blue shift and broadening of the excitonic transition, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525279800024 Publication Date 2020-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 64 Open Access OpenAccess  
  Notes Deutsche Forschungsgemeinschaft, EXC 2089/1-390776260 ; H2020 European Research Council, 815128-REALNANO ; Horizon 2020 Framework Programme, 839042 731019 ; Alexander von Humboldt-Stiftung; We acknowledge financial support by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy—EXC 2089/1‐390776260 (“e‐conversion”), the Alexander von Humboldt Foundation (A.D. and T.D.), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska‐Curie grant agreement No. 839042 (H.H.). E.B. acknowledges a postdoctoral grant 12T2719N from the Research Foundation Flanders (FWO, Belgium). E.B. and S.B. acknowledge the financial support from the European Research Council ERC Consolidator Grants #815128‐REALNANO. L.P. thanks the EU Infrastructure Project EUSMI (European Union's Horizon 2020, grant No 731019). We thank local research center “Center for NanoScience (CeNS)” for providing communicative networking structure. We acknowledge the funding of Nanosystems Initiative Munich (NIM) for color figures.; sygma Approved Most recent IF: 16.6; 2020 IF: 11.994  
  Call Number EMAT @ emat @c:irua:168535 Serial 6399  
Permanent link to this record
 

 
Author Reclusa, P.; Verstraelen, P.; Taverna, S.; Gunasekaran, M.; Pucci, M.; Pintelon, I.; Claes, N.; de Miguel-Pérez, D.; Alessandro, R.; Bals, S.; Kaushal, S.; Rolfo, C. pdf  url
doi  openurl
  Title Improving extracellular vesicles visualization: From static to motion Type A1 Journal article
  Year (down) 2020 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 10 Issue 10 Pages 6494  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the last decade extracellular vesicles (EVs) have become a hot topic. The findings on EVs content and effects have made them a major field of interest in cancer research. EVs, are able to be internalized through integrins expressed in parental cells, in a tissue specific manner, as a key step of cancer progression and pre-metastatic niche formation. However, this specificity might lead to new opportunities in cancer treatment by using EVs as devices for drug delivery. For future applications of EVs in cancer, improved protocols and methods for EVs isolation and visualization are required. Our group has put efforts on developing a protocol, able to track the EVs for in vivo internalization analysis. We showed, for the first time, the videos of labeled EVs uptake by living lung cancer cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000562145000002 Publication Date 2020-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 25 Open Access OpenAccess  
  Notes Marzia Pucci is supported by a “AIRC” (Associazione Italiana Ricerca sul Cancro) fellowship. “The Leica SP 8 (Hercules grant AUHA.15.12) microscope was funded by the Hercules Foundation of the Flemish Government.” DdM-P is funded by the University of Granada PhD grant and University of Granada international mobility grant 2018/19. Approved Most recent IF: 4.6; 2020 IF: 4.259  
  Call Number EMAT @ emat @c:irua:169234 Serial 6362  
Permanent link to this record
 

 
Author Van Velthoven, N.; Henrion, M.; Dallenes, J.; Krajnc, A.; Bugaev, A.L.; Liu, P.; Bals, S.; Soldatov, A.; Mali, G.; De Vos, D.E. pdf  url
doi  openurl
  Title S,O-functionalized metal-organic frameworks as heterogeneous single-site catalysts for the oxidative alkenylation of arenes via C- H activation Type A1 Journal article
  Year (down) 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 10 Issue 9 Pages 5077-5085  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Heterogeneous single-site catalysts can combine the R precise active site design of organometallic complexes with the efficient recovery of solid catalysts. Based on recent progress on homogeneous thioether ligands for Pd-catalyzed C-H activation reactions, we here develop a scalable metal-organic framework-based heterogeneous single-site catalyst containing S,O-moieties that increase the catalytic activity of Pd(II) for the oxidative alkenylation of arenes. The structure of the Pd@MOF-808-L1 catalyst was characterized in detail via solid-state nuclear magnetic resonance spectroscopy, N-2 physisorption, and high-angle annular dark field scanning transmission electron microscopy, and the structure of the isolated palladium active sites could be identified by X-ray absorption spectroscopy. A turnover frequency (TOF) of 8.4 h(-1) was reached after 1 h of reaction time, which was 3 times higher than the TOF of standard Pd(OAc)(2), ranking Pd@MOF-808-L1 among the most active heterogeneous catalysts ever reported for the nondirected oxidative alkenylation of arenes. Finally, we showed that the single-site catalyst promotes the oxidative alkenylation of a broad range of electron-rich arenes, and the applicability of this heterogeneous system was demonstrated by the gram-scale synthesis of industrially relevant products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530090800026 Publication Date 2020-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited 37 Open Access OpenAccess  
  Notes ; The research leading to these results has received funding from the NMBP-01-2016 Program of the European Union's Horizon 2020 Framework Program H2020/2014-2020/under grant agreement no [720996]. N.V.V. and D.E.D.V. thank the FWO for funding (1S32917N and G0F2320N). D.E.D.V. is grateful for KU Leuven's support in the frame of the CASAS Metusalem project and a C3 type project. A.K. and G.M. acknowledge the financial support from the Slovenian Research Agency (research core funding no. P1-0021 and project no. N1-0079). A.L.B and A.V.S. acknowledge Russian Science Foundation grant no. 20-43-01015 for financial support. We thank Alexander Trigub and Alexey Veligzhanin for their support during the beamtime at Kurchatov Institute. We are indebted to Elizaveta Kamyshova and Anna Pnevskaya for their valuable help during EXAFS measurements. P.L. and S.B. thank European Research Council for the ERC Consolidator Grant 815128, REALNANO. Kassem Amro and Guillaume Gracy from Sikemia are gratefully acknowledged for providing ; sygma Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number UA @ admin @ c:irua:169530 Serial 6598  
Permanent link to this record
 

 
Author Mulder, J.T.; Kirkwood, N.; De Trizio, L.; Li, C.; Bals, S.; Manna, L.; Houtepen, A.J. url  doi
openurl 
  Title Developing lattice matched ZnMgSe shells on InZnP quantum dots for phosphor applications Type A1 Journal article
  Year (down) 2020 Publication ACS applied nano materials Abbreviated Journal  
  Volume 3 Issue 4 Pages 3859-3867  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Indium phosphide quantum dots (QDs) have drawn attention as alternatives to cadmium- and lead-based QDs that are currently used as phosphors in lamps and displays. The main drawbacks of InP QDs are, in general, a lower photoluminescence quantum yield (PLQY), a decreased color purity, and poor chemical stability. In this research, we attempted to increase the PLQY and stability of indium phosphide QDs by developing lattice matched InP/MgSe core-shell nanoheterostructures. The choice of MgSe comes from the fact that, in theory, it has a near-perfect lattice match with InP, provided MgSe is grown in the zinc blende crystal structure, which can be achieved by alloying with zinc. To retain lattice matching, we used Zn in both the core and shell and we fabricated InZnP/ZnxMg1-xSe core/shell QDs. To identify the most suitable conditions for the shell growth, we first developed a synthesis route to ZnxMg1-xSe nanocrystals (NCs) wherein Mg is effectively incorporated. Our optimized procedure was employed for the successful growth of ZnxMg1-xSe shells around In(Zn)P QDs. The corresponding core/ shell systems exhibit PLQYs higher than those of the starting In(Zn)P QDs and, more importantly, a higher color purity upon increasing the Mg content. The results are discussed in the context of a reduced density of interface states upon using better lattice matched ZnxMg1-xSe shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529206200076 Publication Date 2020-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 22 Open Access OpenAccess  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 766900 (testing the large-scale limit of quantum mechanics). A.J.H. acknowledges support from the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand). This research is supported by the Dutch Technology Foundation TTW, which is part of The Netherlands Organization for Scientific Research (NWO) and which is partly funded by Ministry of Economic Affairs. The authors thank Wiel Evers for performing the TEM imaging and the EDX analysis. The authors also thank Lea Pasquale and Mirko Prato for their help with performing and analyzing the XPS measurements and Filippo Drago for the ICP measurements. ; Approved Most recent IF: 5.9; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169563 Serial 6482  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: