|
Record |
Links |
|
Author |
Xi, J.; Yang, S.; Silvioli, L.; Cao, S.; Liu, P.; Chen, Q.; Zhao, Y.; Sun, H.; Hansen, J.N.; Haraldsted, J.-P.B.; Kibsgaard, J.; Rossmeisl, J.; Bals, S.; Wang, S.; Chorkendorff, I. |
|
|
Title |
Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H₂O₂ synthesis under acidic conditions |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Journal Of Catalysis |
Abbreviated Journal |
J Catal |
|
|
Volume |
393 |
Issue |
|
Pages |
313-323 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Single-atom catalysts (SACs) have recently attracted broad scientific interests due to their unique structural feature, the single-atom dispersion. Optimized electronic structure as well as high stability are required for single-atom catalysts to enable efficient electrochemical production of H2O2. Herein, we report a facile synthesis method that stabilizes atomic Pd species on the reduced graphene oxide/Ndoped carbon hollow carbon nanospheres (Pd1/N-C). Pd1/N-C exhibited remarkable electrochemical H2O2 production rate with high faradaic efficiency, reaching 80%. The single-atom structure and its high H2O2 production rate were maintained even after 10,000 cycle stability test. The existence of single-atom Pd as well as its coordination with N species is responsible for its high activity, selectivity, and stability. The N coordination number and substrate doping around Pd atoms are found to be critical for an optimized adsorption energy of intermediate *OOH, resulting in efficient electrochemical H2O2 production. (C) 2020 Elsevier Inc. All rights reserved. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000640923500003 |
Publication Date |
2020-11-26 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-9517 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.844 |
Times cited |
40 |
Open Access |
Not_Open_Access |
|
|
Notes |
This research was financially supported by the National Natural Science Foundation of China (No. 51772110), Natural Science Foundation of Hubei Province (No. 2019CFB539), Danmarks Innovationsfond within the ProActivE project (5160-00003B), Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals, the Carlsberg Foundation grant CF18-0435, the Institutional Research Program (2E30220) of the Korea Institute of Science and Technology (KIST), Shenzhen Science and Technology Plan under Grant (JCYJ20170818160751460) and the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (No. GCP20200205). The authors would like to acknowledge the Analytical and Testing Center of Huazhong University of Science and Technology and the Wuhan National Laboratory for Optoelectronics for SEM, TEM, Raman and XPS measurements. |
Approved |
Most recent IF: 6.844 |
|
|
Call Number |
UA @ admin @ c:irua:178321 |
Serial |
6796 |
|
Permanent link to this record |