toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mei, H.; Xu, W.; Wang, C.; Yuan, H.; Zhang, C.; Ding, L.; Zhang, J.; Deng, C.; Wang, Y.; Peeters, F.M. pdf  url
doi  openurl
  Title Terahertz magneto-optical properties of bi- and tri-layer graphene Type A1 Journal article
  Year (down) 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 17 Pages 175701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time tau for bi- and tri-layer graphene increases with magnetic field B roughly in a form tau similar to B-2. Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000429329500001 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 11 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (11574319, 11304317, 11304272), the Ministry of Science and Technology of China (2011YQ130018), the Center of Science and Technology of Hefei Academy of Science, the Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:150715UA @ admin @ c:irua:150715 Serial 4983  
Permanent link to this record
 

 
Author Vanherck, J.; Sorée, B.; Magnus, W. pdf  doi
openurl 
  Title Anisotropic bulk and planar Heisenberg ferromagnets in uniform, arbitrarily oriented magnetic fields Type A1 Journal article
  Year (down) 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 27 Pages 275801  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Today, further downscaling of mobile electronic devices poses serious problems, such as energy consumption and local heat dissipation. In this context, spin wave majority gates made of very thin ferromagnetic films may offer a viable alternative. However, similar downscaling of magnetic thin films eventually enforces the latter to operate as quasi-2D magnets, the magnetic properties of which are not yet fully understood, especially those related to anisotropies and external magnetic fields in arbitrary directions. To this end, we have investigated the behaviour of an easy-plane and easy-axis anisotropic ferromagnet-both in two and three dimensions-subjected to a uniform magnetic field, applied along an arbitrary direction. In this paper, a spin-1/2 Heisenberg Hamiltonian with anisotropic exchange interactions is solved using double-time temperature-dependent Green's functions and the Tyablikov decoupling approximation. We determine various magnetic properties such as the Curie temperature and the magnetization as a function of temperature and the applied magnetic field, discussing the impact of the system's dimensionality and the type of anisotropy. The magnetic reorientation transition taking place in anisotropic Heisenberg ferromagnets is studied in detail. Importantly, spontaneous magnetization is found to be absent for easy-plane 2D spin systems with short range interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000434980600001 Publication Date 2018-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:151945UA @ admin @ c:irua:151945 Serial 5012  
Permanent link to this record
 

 
Author Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F.M. pdf  url
doi  openurl
  Title Phase transition and field effect topological quantum transistor made of monolayer MoS2 Type A1 Journal article
  Year (down) 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 23 Pages 235303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q(2)) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q(2) diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q(2) diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000432821600001 Publication Date 2018-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:151457UA @ admin @ c:irua:151457 Serial 5035  
Permanent link to this record
 

 
Author Abdullah, H.M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B. pdf  doi
openurl 
  Title Confined states in graphene quantum blisters Type A1 Journal article
  Year (down) 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 38 Pages 385301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer graphene samples may exhibit regions where the two layers are locally delaminated forming a so-called quanttun blister in the graphene sheet. Electron and hole states can be confined in this graphene quantum blisters (GQB) by applying a global electrostatic bias. We scrutinize the electronic properties of these confined states under the variation of interlayer bias, coupling, and blister's size. The spectra display strong anti-crossings due to the coupling of the confined states on upper and lower layers inside the blister. These spectra are layer localized where the respective confined states reside on either layer or equally distributed. For finite angular momentum, this layer localization can be at the edge of the blister and corresponds to degenerate modes of opposite momenta. Furthermore, the energy levels in GQB exhibit electron-hole symmetry that is sensitive to the electrostatic bias. Finally, we demonstrate that confinement in GQB persists even in the presence of a variation in the interlayer coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000443135000001 Publication Date 2018-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 6 Open Access  
  Notes ; HMA and HB acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group projects RG1502-1 and RG1502-2. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (BVD). ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:153620UA @ admin @ c:irua:153620 Serial 5086  
Permanent link to this record
 

 
Author de Jong van Coevorden, C.M.; Gielis, J.; Caratelli, D. url  doi
openurl 
  Title Application of Gielis transformation to the design of metamaterial structures Type A1 Journal article
  Year (down) 2018 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 963 Issue Pages Unsp 012008  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this communication, the use of Gielis transformation to design more compact metamaterial unit cells is explored. For this purpose, transformed complementary split ring resonators and spiral resonators are coupled to micro-strip lines and theirbehaviour is investigated. The obtained results confirm that the useof the considered class of supershaped geometries enables the synthesis of very compact scalable microwave components.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000435022800008 Publication Date 2018-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:150947 Serial 7475  
Permanent link to this record
 

 
Author Hai, G.-Q.; Candido, L.; Brito, B.G.A.; Peeters, F.M. url  doi
openurl 
  Title Electron pairing: from metastable electron pair to bipolaron Type A1 Journal article
  Year (down) 2018 Publication Journal of physics communications Abbreviated Journal  
  Volume 2 Issue 3 Pages Unsp 035017  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the shell structure in atoms and the significant correlation within electron pairs, we distinguish the exchange-correlation effects between two electrons of opposite spins occupying the same orbital from the average correlation among many electrons in a crystal. In the periodic potential of the crystal with lattice constant larger than the effective Bohr radius of the valence electrons, these correlated electron pairs can form a metastable energy band above the corresponding single-electron band separated by an energy gap. In order to determine if these metastable electron pairs can be stabilized, we calculate the many-electron exchange-correlation renormalization and the polaron correction to the two-band system with single electrons and electron pairs. We find that the electron-phonon interaction is essential to counterbalance the Coulomb repulsion and to stabilize the electron pairs. The interplay of the electron-electron and electron-phonon interactions, manifested in the exchange-correlation energies, polaron effects, and screening, is responsible for the formation of electron pairs (bipolarons) that are located on the Fermi surface of the single-electron band.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000434996900022 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-6528 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes ; This work was supported by the Brazilian agencies FAPESP and CNPq. GQH would like to thank Prof. Bangfen Zhu for his invaluable support and expert advice. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:152079UA @ admin @ c:irua:152079 Serial 5022  
Permanent link to this record
 

 
Author Yusupov, M.; Yan, D.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Atomic scale simulation of H2O2permeation through aquaporin: toward the understanding of plasma cancer treatment Type A1 Journal article
  Year (down) 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue 12 Pages 125401  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Experiments have demonstrated the potential selective anticancer capacity of cold atmospheric plasmas (CAPs), but the underlying mechanisms remain unclear. Using computer simulations, we try to shed light on the mechanism of selectivity, based on aquaporins (AQPs), i.e. transmembrane protein channels transferring external H 2 O 2 and other reactive oxygen species, created e.g. by CAPs, to the cell interior. Specifically, we perform molecular dynamics simulations for the permeation of H 2 O 2 through AQP1 (one of the members of the AQP family) and the palmitoyl-oleoyl-phosphatidylcholine (POPC) phospholipid bilayer (PLB). The free energy barrier of H 2 O 2 across AQP1 is lower than for the POPC PLB, while the permeability coefficient, calculated using the free energy and diffusion rate profiles, is two orders of magnitude higher. This indicates that the delivery of H 2 O 2 into the cell interior should be through AQP. Our study gives a better insight into the role of AQPs in the selectivity of CAPs for treating cancer cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426378100001 Publication Date 2018-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 7 Open Access OpenAccess  
  Notes MY gratefully acknowledges financial support from the Research Foundation—Flanders (FWO) via Grant No. 1200216N and a travel grant to George Washington University (GWU). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Super- computer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Work at GWU was supported by the National Science Foundation, grant 1465061. RMC thanks FAPESP and CNPq for finan- cial support (Grant Nos. 2012/50680-5 and 459270/2014-1, respectively). Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:149382 Serial 4811  
Permanent link to this record
 

 
Author Leliaert, J.; Dvornik, M.; Mulkers, J.; De Clercq, J.; Milošević, M.V.; Van Waeyenberge, B. pdf  doi
openurl 
  Title Fast micromagnetic simulations on GPU-recent advances made with mumax3 Type A1 Journal article
  Year (down) 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue 12 Pages 123002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the last twenty years, numerical modeling has become an indispensable part of magnetism research. It has become a standard tool for both the exploration of new systems and for the interpretation of experimental data. In the last five years, the capabilities of micromagnetic modeling have dramatically increased due to the deployment of graphical processing units (GPU), which have sped up calculations to a factor of 200. This has enabled many studies which were previously unfeasible. In this topical review, we give an overview of this modeling approach and show how it has contributed to the forefront of current magnetism research.  
  Address  
  Corporate Author Thesis  
  Publisher Iop publishing ltd Place of Publication Bristol Editor  
  Language Wos 000425774100001 Publication Date 2018-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 65 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N. JL is supported by the Ghent University Special Research Fund (BOF postdoctoral fellowship). We gratefully acknowledge the support of the NVIDIA Corporation with the donation of a Titan Xp GPU used for this research. ; Approved Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:149852UA @ admin @ c:irua:149852 Serial 4934  
Permanent link to this record
 

 
Author Wang, W.; Berthelot, A.; Zhang, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling of plasma-based dry reforming: how do uncertainties in the input data affect the calculation results? Type A1 Journal article
  Year (down) 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue 20 Pages 204003  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract One of the main issues in plasma chemistry modeling is that the cross sections and rate coefficients are subject to uncertainties, which yields uncertainties in the modeling results and hence hinders the predictive capabilities. In this paper, we reveal the impact of these uncertainties on the model predictions of plasma-based dry reforming in a dielectric barrier discharge. For this purpose, we performed a detailed uncertainty analysis and sensitivity study. 2000 different combinations of rate coefficients, based on the uncertainty from a log-normal distribution, are used to predict the uncertainties in the model output. The uncertainties in the electron density and electron temperature are around 11% and 8% at the maximum of the power deposition for a 70% confidence level. Still, this can have a major effect on the electron impact rates and hence on the calculated conversions of CO2 and CH4, as well as on the selectivities of CO and H2. For the CO2 and CH4 conversion, we obtain uncertainties of 24% and 33%, respectively. For the CO and H2 selectivity, the corresponding uncertainties are 28% and 14%, respectively. We also identify which reactions contribute most to the uncertainty in the model predictions. In order to improve the accuracy and reliability of plasma chemistry models, we recommend using only verified rate coefficients, and we point out the need for dedicated verification experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430960600003 Publication Date 2018-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 7 Open Access OpenAccess  
  Notes We acknowledge financial support from the Fund for Scientific Research Flanders (FWO) (Grant No. G.0383.16N) and the TOP-BOF project of the University of Antwerp. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:151292 Serial 4958  
Permanent link to this record
 

 
Author Kumar, N.; Attri, P.; Dewilde, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of human pancreatic ductal adenocarcinoma with atmospheric plasma treated media and water: a comparative study Type A1 Journal article
  Year (down) 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue 25 Pages 255401  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years, the interest in treating cancer cells with plasma treated media (PTM) and plasma treated water (PTW) has increased tremendously. However, the actions of PTM and PTW are still not entirely understood. For instance, it is not clear whether the action of PTM is due to a modification in proteins/amino acids after plasma treatment of the media, or due to reactive oxygen and nitrogen species (RONS) generated from the plasma, or a combination of both effects. To differentiate between the actions of RONS and modified proteins/amino acids on the treatment of cancer cells, we compared the effects of PTM and PTW on two different pancreatic ductal adenocarcinomas (MiaPaca-2, BxPc3) and pancreatic stellate cells

(PSCs) (hPSC128-SV). PSCs closely interact with cancer cells to create a tumor-promoting environment that stimulates local tumor progression and metastasis. We treated culture media and deionized water with a cold atmospheric plasma (CAP) jet, and subsequently applied this PTM/PTW at various ratios to the pancreatic cancer and PSC cell lines. We evaluated cell death, intracellular ROS concentrations and the mRNA expression profiles of four oxidative stress-related genes, i.e. Mitogen-activated protein kinase 7 (MAPK7), B-cell lymphoma 2 (BCL2), Checkpoint kinase 1 (CHEK1) and DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP). Our findings demonstrate that PTM and PTW have a similar efficacy to kill pancreatic cancer cells, while PTW is slightly more effective in killing PSCs, as compared to PTM. Furthermore, we observed an enhancement of the intracellular ROS concentrations in both pancreatic cancer cells and PSCs. Thus, it is likely that under our experimental conditions, the anti-cancer activity of PTM can be attributed more to the RONS present in the treated liquid, than to the modification of proteins/amino acids in the media. Furthermore, the fact that the chemo-resistant PSCs were killed by PTM/PTW may offer possibilities for new anti-cancer therapies for pancreatic cancer cells, including PSCs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434266900001 Publication Date 2018-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 6 Open Access OpenAccess  
  Notes We gratefully acknowledge financial support from the Research Foundation—Flanders (FWO) (grant number 12J5617N) and from the European Marie Skłodowska–Curie Individual Fellowship ‘Anticancer-PAM’ within Horizon2020 (grant number 743546). We also thank Atsushi Masamune (Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Prefecture, Japan) for providing us with human PSCs (hPSC128-SV) for this study. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:151962 Serial 4997  
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Atomic scale understanding of the permeation of plasma species across native and oxidized membranes Type A1 Journal article
  Year (down) 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue 36 Pages 365203  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasmas (CAPs) have attracted significant interest for their potential benefits in medical applications, including cancer therapy. The therapeutic effects of CAPs are related to reactive oxygen and nitrogen species (ROS and RNS) present in the plasma. The impact of ROS has been extensively studied, but the role of RNS in CAP-treatment remains poorly understood at the molecular level. Here, we investigate the permeation of RNS and ROS across native and oxidized phospholipid bilayers (PLBs) by means of computer simulations. The results reveal significantly lower free energy barriers for RNS (i.e. NO, NO2, N2O4) and O3 compared to hydrophilic ROS, such as OH, HO2 and H2O2. This suggests that the investigated RNS and O3 can permeate more easily through both native and oxidized PLBs in comparison to hydrophilic ROS, indicating their potentially important role in plasma medicine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441182400002 Publication Date 2018-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 10 Open Access OpenAccess  
  Notes M Y gratefully acknowledges financial support from the Research Foundation—Flanders (FWO), grant 1200216N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. RMC thanks FAPESP and CNPq for financial support (grants 2012/50680-5 and 459270/2014-1, respectively). Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:152824 Serial 5005  
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Blundell, S.J.; Hunter, E.; Lang, F.; Hendrickx, M.; Sena, R.P.; Hadermann, J. pdf  doi
openurl 
  Title Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb Type A1 Journal article
  Year (down) 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 258 Issue 258 Pages 825-834  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (mu SR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random 1/3Ni/2/3B' mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B'O-9 (B' = Nb or Ta) at 5 K although in each case mu SR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2NbO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000423650400107 Publication Date 2017-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access Not_Open_Access  
  Notes ; We thank EPSRC for funding through Grants EP/M0189541 and EP/N023803. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful E. Suard for experimental assistance at ILL. ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:149284 Serial 4928  
Permanent link to this record
 

 
Author Istomin, S.Y.; Morozov, A.V.; Abdullayev, M.M.; Batuk, M.; Hadermann, J.; Kazakov, S.M.; Sobolev, A.V.; Presniakov, I.A.; Antipov, E.V. pdf  doi
openurl 
  Title High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-\delta perovskites as prospective electrode materials for symmetrical SOFC Type A1 Journal article
  Year (down) 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 258 Issue 258 Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract La1-yCayFe0.5+x(Mg,Mo)(0.5-x)O3-delta oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mossbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-delta and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-delta) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-delta is oxygen deficient with delta approximate to 0.15. Oxides are stable in reducing atmosphere (Ar/H-2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x >= 0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H-2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000423650400001 Publication Date 2017-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access Not_Open_Access  
  Notes ; This work was financially supported by Russian Science Foundation (project number 16-13-10327). ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:149283 Serial 4936  
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Sorée, B. doi  openurl
  Title Flux quantization and Aharonov-Bohm effect in superconducting rings Type A1 Journal article
  Year (down) 2018 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 31 Issue 5 Pages 1351-1357  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superconductivity is a macroscopic coherent state exhibiting various quantum phenomena such as magnetic flux quantization. When a superconducting ring is placed in a magnetic field, a current flows to expel the field from the ring and to ensure that the enclosed flux is an integer multiple of h/(2|e|). Although the quantization of magnetic flux in ring structures is extensively studied in literature, the applied magnetic field is typically assumed to be homogeneous, implicitly implying an interplay between field expulsion and flux quantization. Here, we propose to decouple these two effects by employing an Aharonov-Bohm-like structure where the superconducting ring is threaded by a magnetic core (to which the applied field is confined). Although the magnetic field vanishes inside the ring, the formation of vortices takes place, corresponding to a change in the flux state of the ring. The time evolution of the density of superconducting electrons is studied using the time-dependent Ginzburg-Landau equations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000429354100010 Publication Date 2017-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.18 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:150742UA @ admin @ c:irua:150742 Serial 4969  
Permanent link to this record
 

 
Author Xia, C.; Winckelmans, N.; Prins, P.T.; Bals, S.; Gerritsen, H.C.; de Mello Donegá, C. url  doi
openurl 
  Title Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth Type A1 Journal article
  Year (down) 2018 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 140 Issue 140 Pages 5755-5763  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431600000016 Publication Date 2018-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 43 Open Access OpenAccess  
  Notes Chenghui Xia acknowledges China Scholarship Council (CSC) for financial support (NO. 201406330055). S.B and N.W. acknowledge funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Number ECHO.712.014.001. The authors thank Xiaobin Xie and Da Wang for some TEM measurements, Donglong Fu for XRD measurements, Christina H. M. van Oversteeg for ICP-OES measurements, and Chun-Che Lin for suggestions regarding the synthesis. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:150362UA @ admin @ c:irua:150362 Serial 4917  
Permanent link to this record
 

 
Author Hasanli, N.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Hayward, M.A. url  doi
openurl 
  Title Small-moment paramagnetism and extensive twinning in the topochemically reduced phase Sr2ReLiO5.5 Type A1 Journal article
  Year (down) 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 47 Issue 44 Pages 15783-15790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reaction of the cation-ordered double perovskite Sr2ReLiO6 with dilute hydrogen at 475 degrees C leads to the topochemical deintercalation of oxide ions from the host lattice and the formation of a phase of composition Sr2ReLiO5.5, as confirmed by thermogravimetric and EELS data. A combination of neutron and electron diffraction data reveals the reduction process converts the -Sr2O2-ReLiO4-Sr2O2-ReLiO4- stacking sequence of the parent phase into a -Sr2O2-ReLiO3-Sr2O2-ReLiO4-, partially anion-vacant ordered sequence. Furthermore a combination of electron diffraction and imaging reveals Sr2ReLiO5.5 exhibits extensive twinning – a feature which can be attributed to the large, anisotropic volume expansion of the material on reduction. Magnetisation data reveal a strongly reduced moment of (eff) = 0.505(B) for the d(1) Re6+ centres in the phase, suggesting there remains a large orbital component to the magnetism of the rhenium centres, despite their location in low symmetry coordination environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450208000019 Publication Date 2018-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.029 Times cited Open Access Not_Open_Access  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC. NH acknowledges funding from the “State Programme on Education of Azerbaijani Youth Abroad in 2007-2015” by the Ministry of Education of Azerbaijan. J. V. and N. G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 4.029  
  Call Number EMAT @ emat @c:irua:155771 Serial 5137  
Permanent link to this record
 

 
Author Tarakanov, P.A.; Tarakanova, E.N.; Dorovatovskii, P.V.; Zubavichus, Y.V.; Khrustalev, V.N.; Trashin, S.A.; De Wael, K.; Neganova, M.E.; Mischenko, D.V.; Sessler, J.L.; Stuzhin, P.A.; Pushkarev, V.E.; Tomilova, L.G. url  doi
openurl 
  Title Optical readout of controlled monomer-dimer self-assembly Type A1 Journal article
  Year (down) 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 47 Issue 40 Pages 14169-14173  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract 5,7-Substituted 1,4-diazepinoporphyrazine magnesium(II) complexes were synthesized via Mg(II)-alkoxide templated macrocyclization. A single crystal growth synchrotron diffraction analysis permitted what is to our knowledge the first structural characterization of a 1,4-diazepinoporphyrazine. It exists as a dimer in the solid state. In silico calculations supported by solution phase spectral studies involving a series of representative derivatives, provided insights into the factors governing dimerization of 1,4-diazepinoporphyrazines. The present 1,4-diazepinoporphyrazines serve as useful probes for understanding the determinants that guide dimermonomer equilibria and the self-assembly of phthalocyanine derivatives.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447708900005 Publication Date 2018-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes ; We thank Dr Alexander V. Chernyak for recording the NMR spectra. Synthetic and optical spectroscopic studies in this work were supported by the RSF (Grant 17-73-10413). NMR studies were supported by the Council under the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (Grant MD-2991.2017.3). SR-XRD studies were supported by the RUDN University Program “5-100”. We also acknowledge support of electrochemical, in vitro and in vivo studies by the State Assignment (Theme 45.5 Creation of compounds with given physicochemical properties) and the facilities provided by the Center of Collective Use of IPAC RAS (Chernogolovka, Russia). Single-crystal X-ray measurements have been performed at the unique scientific facility Kurchatov Synchrotron Radiation Source supported by the Ministry of Education and Science of the Russian Federation (project code RFMEFI61917X0007). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:151294 Serial 5755  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Radu, I.; Neyts, E.C.; De Gendt, S. pdf  doi
openurl 
  Title Thermal recrystallization of short-range ordered WS2 films Type A1 Journal article
  Year (down) 2018 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 36 Issue 5 Pages 05g501  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The integration of van der Waals materials in nanoelectronic devices requires the deposition of few-layered MX2 films with excellent quality crystals covering a large area. In recent years, astonishing progress in the monolayer growth of WS2 and MoS2 was demonstrated, but multilayer growth resulted often in separated triangular or hexagonal islands. These polycrystalline films cannot fully employ the specific MX2 properties since they are not connected in-plane to the other domains. To coalesce separated islands, ultrahigh-temperature postdeposition anneals in H2S are applied, which are not compatible with bare silicon substrates. Starting from the deposition of stoichiometric short-ordered films, the present work studies different options for subsequent high-temperature annealing in an inert atmosphere to form crystalline films with large grains from stoichiometric films with small grains. The rapid thermal annealing, performed over a few seconds, is compared to excimer laser annealing in the nanosecond range, which are both able to crystallize the thin WS2. The WS2 recrystallization temperature can be lowered using metallic crystallization promoters (Co and Ni). The best result is obtained using a Co cap, due to the circumvention of Co and S binary phase formation below the eutectic temperature. The recrystallization above a critical temperature is accompanied by sulfur loss and 3D regrowth. These undesired effects can be suppressed by the application of a dielectric capping layer prior to annealing. A SiO2 cap can suppress the sulfur loss successfully during annealing and reveals improved material quality in comparison to noncapped films Published by the AVS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000444033200002 Publication Date 2018-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.374  
  Call Number UA @ lucian @ c:irua:153671 Serial 5134  
Permanent link to this record
 

 
Author Van Nijen, K.; Van Passel, S.; Squires, D. url  doi
openurl 
  Title A stochastic techno-economic assessment of seabed mining of polymetallic nodules in the Clarion Clipperton Fracture Zone Type A1 Journal article
  Year (down) 2018 Publication Marine Policy Abbreviated Journal Mar Policy  
  Volume 95 Issue 95 Pages 133-141  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Polymetallic nodules found in the Clarion Clipperton Fracture Zone in the NE Pacific contain more nickel, manganese and cobalt than all terrestrial reserves combined. Following the 1982 Law of the Sea Convention and its 1994 Implementing Agreement, the resources of the international seabed beyond the limits of national jurisdiction will be developed for the benefit of mankind by attracting investment and technology, whilst demanding that necessary measures be taken to ensure effective protection of the marine environment. To date, no single commercial seabed mining activity has taken place in international waters, and the development of balanced and stimulating exploitation regulation is needed, based on accurate economic analysis. This paper presents the first detailed, vertically integrated, stochastic techno-economic assessment from a contractor's perspective, and contributes to the development of the world's first exploitation regulations. The economic performance measured by the internal rate of return was compared using deterministic and probabilistic commodity price forecasting models. Different levels of a financial payment regime, comprising of a royalty payment and a payment to internalize environmental costs, were considered. When real growth was included, the internal rate of return remains above the hurdle rate when a transitional, total-cost, financial payment regime is below 2 per cent during the initial period and below 4 per cent for the remaining tenure period. Following a 10-year moving average of commodity prices, including real growth, a 77.51 per cent probability was calculated of achieving a hurdle rate of 18 per cent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000442190400016 Publication Date 2018-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-597x ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 2.235 Times cited 3 Open Access  
  Notes ; The methods and results of this paper were presented at the Deep Seabed Mining Payment Regime Workshop #3 (19-21 April 2017, Singapore): Exploring a Financial Model and Related Topics, organised by RESOLVE and PEW Charitable Trusts, and attended by a wide variety of stakeholders, including contractors, academics and nongovernmental organisations. Furthermore, this project has received funding from the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement no. 688975 (Blue Nodules). This output reflects only the authors' views and the European Union cannot be held responsible for any use that may be made of the information contained herein. ; Approved Most recent IF: 2.235  
  Call Number UA @ admin @ c:irua:153697 Serial 6144  
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
  Year (down) 2018 Publication Materials Abbreviated Journal Materials  
  Volume 11 Issue 11 Pages 1304  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000444112800041 Publication Date 2018-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.654 Times cited 15 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654  
  Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064  
Permanent link to this record
 

 
Author Radi, A.; Khalil-Allafi, J.; Etminanfar, M.R.; Pourbabak, S.; Schryvers, D.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title Influence of stress aging process on variants of nano-N4Ti3precipitates and martensitic transformation temperatures in NiTi shape memory alloy Type A1 Journal article
  Year (down) 2018 Publication Materials & design Abbreviated Journal Mater Design  
  Volume 262 Issue 262 Pages 74-81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study, the effect of a stress aging process on the microstructure and martensitic phase transformation of NiTi shape memory alloy has been investigated. NiTi samples were aged at 450 degrees C for 1 h and 5 h under different levels of external tensile stress of 15, 60 and 150 MPa. Transmission electron microscopy (TEM) was used to characterize different variants and morphology of precipitates. The results show that application of all stress levels restricts the formation of precipitates variants in the microstructure after I h stress aging process. However, all variants can be detected by prolonging aging time to 5 h at 15 MPa stress level and the variants formation is again restricted by increasing the stress level. Moreover, the stress aging process resulted in changing the shape of precipitates in comparison with that of the stress-free aged samples. Coffee-bean shaped morphologies were detected for precipitates in all stress levels. According to the Differential Scanning Calorimetry (DSC) results, the martensite start temperature (M-s) on cooling shifts to higher temperatures with increasing the tensile stress during the aging process. This can be related to the change ofaustenite to martensite interface energy due to the different volume fractions and variants of precipitates. (c) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2018-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.364  
  Call Number UA @ lucian @ c:irua:149854 Serial 4938  
Permanent link to this record
 

 
Author Du, C.; Hoefnagels, J.P.M.; Kolling, S.; Geers, M.G.D.; Sietsma, J.; Petrov, R.; Bliznuk, V.; Koenraad, P.M.; Schryvers, D.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title Martensite crystallography and chemistry in dual phase and fully martensitic steels Type A1 Journal article
  Year (down) 2018 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 139 Issue Pages 411-420  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Lath martensite is important in industry because it is the key strengthening component in many advanced high strength steels. The study of crystallography and chemistry of lath martensite is extensive in the literature, however, mostly based on fully martensitic steels. In this work, lath martensite in dual phase steels is investigated with a focus on the substructure identification of the martensite islands and microstructural bands using electron backscattered diffraction, and on the influence of the accompanied tempering process during industrial coating process on the distribution of alloying elements using atom probe tomography. Unlike findings for the fully martensitic steels, no martensite islands with all 24 Kurdjumov-Sachs variants have been observed. Almost all martensite islands contain only one main packet with all six variants and minor variants from the remaining three packets of the same prior austenite grain. Similarly, the martensite bands are typically composed of connected domains originating from prior austenite grains, each containing one main packets (mostly with all variants) and few separate variants. The effect of tempering at similar to 450 degrees C (due to the industrial zinc coating process) has also been investigated. The results show a strong carbon partitioning to lath boundaries and Cottrell atmospheres at dislocation core regions due to the thermal process of coating. In contrast, auto-tempering contributes to the carbon redistribution only in a limited manner. The substitutional elements are all homogenously distributed. The phase transformation process has two effects on the material: mechanically, the earlier-formed laths are larger and softer and therefore more ductile (as revealed by nanoindentation); chemically, due to the higher dislocation density inside the later-formed laths, which are generally smaller, carbon Cottrell atmospheres are predominantly observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000431469300044 Publication Date 2018-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.714  
  Call Number UA @ lucian @ c:irua:151554 Serial 5033  
Permanent link to this record
 

 
Author Gul, A.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Tomak, A.; Zareie, H.M.; Sahin, H. doi  openurl
  Title Theoretical and experimental investigation of conjugation of 1,6-hexanedithiol on MoS2 Type A1 Journal article
  Year (down) 2018 Publication Materials Research Express Abbreviated Journal Mater Res Express  
  Volume 5 Issue 3 Pages 036415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report an experimental and theoretical investigation of conjugation of 1,6-Hexaneditihiol (HDT) on MoS2 which is prepared by mixing MoS2 structure and HDT molecules in proper solvent. Raman spectra and the calculated phonon bands reveal that the HDT molecules bind covalently to MoS2. Surface morphology of MoS2/HDTstructure is changed upon conjugation ofHDTon MoS2 and characterized by using Scanning Electron Microscope (SEM). Density Functional Theory (DFT) based calculations show that HOMO-LUMO band gap of HDT is altered after the conjugation and two-S binding (handle-like) configuration is energetically most favorable among three different structures. This study displays that the facile thiol functionalization process of MoS2 is promising strategy for obtaining solution processable MoS2.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000428781400003 Publication Date 2018-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.068 Times cited 2 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 116C073. HS acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 1.068  
  Call Number UA @ lucian @ c:irua:154607UA @ admin @ c:irua:154607 Serial 5133  
Permanent link to this record
 

 
Author Mahr, C.; Müller-Caspary, K.; Graf, M.; Lackmann, A.; Grieb, T.; Schowalter, M.; Krause, F.F.; Mehrtens, T.; Wittstock, A.; Weissmueller, J.; Rosenauer, A. doi  openurl
  Title Measurement of local crystal lattice strain variations in dealloyed nanoporous gold Type A1 Journal article
  Year (down) 2018 Publication Materials research letters Abbreviated Journal Mater Res Lett  
  Volume 6 Issue 1 Pages 84-92  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reversible macroscopic length changes in nanoporous structures can be achieved by applying electric potentials or by exposing them to different gases or liquids. Thus, these materials are interesting candidates for applications as sensors or actuators. Macroscopic length changes originate from microscopic changes of crystal lattice parameters. In this report, we show spatially resolved measurements of crystal lattice strain in dealloyed nanoporous gold. The results confirm theory by indicating a compression of the lattice along the axis of cylindrically shaped ligaments and an expansion in radial direction. Furthermore, we show that curved npAu surfaces show inward relaxation of the surface layer. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Abingdon Editor  
  Language Wos 000428141500013 Publication Date 2017-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-3831 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.773 Times cited 4 Open Access Not_Open_Access  
  Notes ; This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts no. RO2057/12-1 (SP 6), WI4497/1-1 (SP 2) and WE1424/17-1 (SP 3) within the research unit FOR2213 (www.nagocat.de). K.M.-C acknowledges support by the DFG under contract no. MU3660/1-1 and T.G. under contract no. RO2057/ 11-1. ; Approved Most recent IF: 4.773  
  Call Number UA @ lucian @ c:irua:150921 Serial 4973  
Permanent link to this record
 

 
Author Vermeulen, M.; Janssens, K.; Sanyova, J.; Rahemi, V.; McGlinchey, C.; De Wael, K. pdf  url
doi  openurl
  Title Assessing the stability of arsenic sulfide pigments and influence of the binding media on their degradation by means of spectroscopic and electrochemical techniques Type A1 Journal article
  Year (down) 2018 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 138 Issue 138 Pages 82-91  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this paper, we used the semiconducting and lightfastness properties of synthetic and mineral arsenic sulfide pigments to study their stability by means of electrochemical and microfadometric techniques. A combination of these techniques shows that in the early stage of the degradation process, amorphous arsenic sulfides are more stable than both crystalline forms, while upon longer exposure time, amorphous pigments will fade more than both mineral pigments, making it less suitable. While the stability study was carried out on unbound pigments, the influence of the organic binder on the relative degradation of the arsenic sulfide pigments was investigated through a multi-analytical approach on pigment/binder mock-up paint samples. For this purpose, the formation of arsenic trioxide was assessed by micro Fourier transform infrared (μ-FTIR) spectroscopy while the influence of the binder on the formation of sulfates was studied by means of synchrotron radiation X-ray near edge structure (μ-XANES). Both techniques elucidate a higher stability of all pigments in gum arabic while the use of egg yolk as binder leads to the most degradation, most likely due to its sulfur-rich composition. In the context of the degradation of arsenic sulfide pigments, other binders such as animal glue, egg white or linseed oil show an intermediate impact.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428103000010 Publication Date 2018-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 4 Open Access  
  Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO, Brussels) through the research program Science for a Sustainable Development – SDD, “Long-term role and fate of metal-sulfides in painted works of art – S2ART” (grant number SD/RI/04A). We gratefully acknowledge Megane Willems (Institut Paul-Lambin) for her help with mu-FFIR analyses and realization of the mock-up paint samples. We acknowledge the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beamtime at beamline Phoenix of the SLS. ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:150149 Serial 5482  
Permanent link to this record
 

 
Author Hirayama, A.; Abe, Y.; van Loon, A.; De Keyser, N.; Noble, P.; Vanmeert, F.; Janssens, K.; Tantrakarn, K.; Taniguchi, K.; Nakai, I. pdf  doi
openurl 
  Title Development of a new portable X-ray powder diffractometer and its demonstration to on-site analysis of two selected old master paintings from the Rijksmuseum Type A1 Journal article
  Year (down) 2018 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 138 Issue 138 Pages 266-272  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A portable X-ray powder diffractometer (p-XRD) PT-APXRD III has been developed for onsite analysis of paintings and archaeological samples. By using a Cu anode X-ray tube and a silicon drift diode (SDD) detector, diffraction patterns with a high signalnoise (S/N) ratio can be recorded. The X-ray tube can be operated at a maximum voltage of 60 kV, which makes it possible to simultaneously record X-ray fluorescence spectra up to the high-energy region. The total weight of this instrument is 16 kg, which can be carried anywhere and the goniometer unit (5.6 kg) can be placed on a tripod for analysis of mural paintings. We brought the instrument to the Rijksmuseum in the Netherlands to examine its applicability for the analysis of oil paintings. We successfully analyzed two seventeenthcentury oil paintings by Johannes Vermeer and Jan Davidsz de Heem (copy after). Ultramarine blue, leadtin yellow type I, and Naples yellow were identified from the diffraction patterns, demonstrating the high practicality of this instrument. Furthermore, it was found from the SEM-EDX analysis of a paint cross section that the yellow pigment was applied in separate layers rather than being mixed. This diffractometer will be commercially available in the near future and will have many applications in the field of material analysis. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428103000030 Publication Date 2018-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 2 Open Access  
  Notes ; This research was conducted with the support of the JSPS (Tokyo, Japan)-FWO (Brussels, Belgium) bilateral exchange project. ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:151565 Serial 5575  
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Slama, I.; Van Zuien, E.; Gruber, G.; Van der Stighelen, K.; Klaassen, L.; Oberthaler, E.; Janssens, K. pdf  url
doi  openurl
  Title In situ macro X-ray fluorescence (MA-XRF) scanning as a non-invasive tool to probe for subsurface modifications in paintings by PP Rubens Type A1 Journal article
  Year (down) 2018 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 138 Issue 138 Pages 238-245  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Within the last decade, the established synchrotron- and laboratory-based micro-XRF scanning technology inspired the development of mobile instruments that allow performing in situ experiments on paintings on a macro scale. Since the development of the first mobile scanner at the start of this decade, this chemical imaging technique has brought new insights with respect to several iconic paintings, especially in cases when standard imaging techniques such as X-Ray Radiography (XRR) or Infrared Refiectography (IRR) yielded ambiguous results. The ability of scanning MA-XRF to visualise the distribution of elements detected at and below the paint surface renders this spectrometric method particularly helpful for studying painting techniques and revealing materials that remain hidden below the paint surface. The latter aspect is especially relevant for the technical study of works by Pieter Paul Rubens (1577-1640) as this highly productive seventeenth century master is particularly renowned for the continuous application of modifications during (and even after) the entire course of the creative process. In this work, the added value of MA-XRF scanning experiments for visualising these subsurface features is exemplified by interpreting the chemical images obtained on three of Rubens' key works. Special attention is given to three types of adjustments that are particularly relevant for the technical study of Rubens' oeuvre: (1) compositional changes ('pentimenti'), exemplified by results obtained on The Portrait of Helene Fourment (ca. 1638), (2) extensions to the support ('Anstlickungen.), illustrated by imaging experiments performed on the Venus Frigida (1614) and (3) Rubens' intriguing halos around flesh tones, as found amongst others in The Incredulity of Saint Thomas (1613). The ensuing insights in the paint stratigraphy and the underlying supporting structure illustrate the potential of MA-XRF scanning for the non-invasive, comparative study of Rubens' oeuvre. The results do not only augment the understanding of the complex genesis of Rubens' works of art and his efficient painting technique, but prove valuable during conservation treatments as well, as addressed in this paper. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428103000027 Publication Date 2018-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 5 Open Access  
  Notes ; ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:151564 Serial 5657  
Permanent link to this record
 

 
Author Legrand, S.; Ricciardi, P.; Nodari, L.; Janssens, K. pdf  url
doi  openurl
  Title Non-invasive analysis of a 15th century illuminated manuscript fragment: point-based vs imaging spectroscopy Type A1 Journal article
  Year (down) 2018 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 138 Issue 138 Pages 162-172  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Illuminated manuscript fragments are some of the best preserved objects of Western cultural heritage. Therefore, scholars are limited to non-invasive – often point-based – methods, to answer questions on material usage, technique, origin and previous treatments. These powerful methods yield specific information; however, the information is limited to the number of points analyzed. Imaging spectroscopies such as MA-XRF and MA-rFTIR combine specificity with the power of imaging, resulting in distribution images that are interpretable by non-spectroscopists and the public at large. In this paper the possible added value of using imaging spectroscopy is discussed. Do these methods yield the same results as an extensive point-based spectroscopic campaign and can they bring novel information? As a case study, a 15th century illuminated manuscript fragment is employed in order to explore the differences between these approaches and present an inventory of their advantages and limitations. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428103000019 Publication Date 2018-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 12 Open Access  
  Notes ; The authors wish to thank Dr. Stella Panayotova, Keeper of Manuscripts and Printed Books at the Fitzwilliam Museum, for allowing technical analysis of the manuscript fragment, and Dr. Suzanne Reynolds, Assistant Keeper of Manuscripts and Printed Books, for crucial help in identifying the text on the reverse of the fragment and its significance. We also wish to thank Prof. Andrew Beeby and Dr. Catherine Nicholson for their complementary Raman analyses. The warm hospitality of the Hamilton Kerr Institute is also gratefully acknowledged. The Esmee Fairbairn Collections Fund and Cambridge University's Returning Carers Scheme provided funding for part of this research. SL and KJ acknowledge support from project METOX (contract BR/165/A6/MetOx), BELSPO, Brussels. ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:151563 Serial 5749  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Janssens, K. pdf  url
doi  openurl
  Title Protecting and stimulating effect on the degradation of eosin lakes. Part 1 : lead white and cobalt blue Type A1 Journal article
  Year (down) 2018 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 141 Issue 141 Pages 51-63  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract An important problem encountered during the preservation of paintings and other artworks is the fading of the original colors due to exposure of the colorants to light. This fact is clearly evidenced in some of Vincent Van Gogh's paintings in which an organic red, eosin or geranium lake, is present. The identification of eosin and the characterization of its degradation products in paintings represents a challenge because of (i) the generally low concentration of the pigment remaining after an aging period of ca 100 years, (ii) the scarcity of the paint micro samples available for analysis and the difficulty of obtaining additional ones and (iii) the complexity of the degradation behavior of eosin when it is mixed with organic or inorganic pigments, binding media or varnish. This study presents an accelerated aging experiment of eosin paint models in order to understand better the discoloration process; more specifically the influence of different metals with which eosin forms complexes and of the presence of admixture pigments such as lead white and cobalt blue on the lightfastness of eosin is evaluated. Paint model samples were prepared using eosin, lead white, and cobalt blue in different mixing ratios and were characterized with several techniques before and after aging. The possible formation of intermediate molecular forms during the aging experiment and the influence of pigment ratios on the discoloration process were monitored at periodic intervals using a combination of LTV Visible and attenuated total Reflectance-Fourier transform infrared (ATR-FTIR) spectroscopies. Raman spectroscopy, scanning electron microscopy coupled to energy-dispersive X-ray analysis (SEM-EDX) and optical microscopy (OM) analyses were performed to gain information about the discoloration processes taking place within the paint models. Eosin precipitated on lead, aluminum and potassium/aluminum salts was used. These three lakes showed similar discoloration rates under light exposure. In contrast, the presence and relative abundance of the admixture pigments lead white and cobalt blue had a significant influence on the (speed of the) eosin discoloration process. The presence of lead white and cobalt blue appears to stimulate the eosin degradation. However, the cobalt blue shows less influence in the discoloration process, showing a protective effect during the first stages of the aging. This may be qualitatively explained in terms of the ability of lead white to scatter light towards eosin molecules and the absorption characteristics of cobalt blue in the green range of the electromagnetic spectrum, shielding eosin from incoming light. The color changes observed in the paint reconstructions are similar to discoloration phenomena visible in some Van Gogh paintings and can offer an explanation of the gradual discoloration process that took place over the years. These insights will be helpful to estimate the original hues color used/intended by the artist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000439678200006 Publication Date 2018-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 3 Open Access  
  Notes ; The authors sincerely acknowledged Dr. Costanza Miliani for sharing information about the synthesis of geranium lake. The authors also acknowledged Dr. Geert van der Snickt and Gert Nuyts for the help with the aging experiments and for carrying out the SEM-EDX measurements respectively. The authors would like to acknowledge the SolarPaint project (GOA programme, Antwerp University Research Council) for financial support. ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:153087 Serial 5788  
Permanent link to this record
 

 
Author Vereecke, G.; De Coster, H.; Van Alphen, S.; Carolan, P.; Bender, H.; Willems, K.; Ragnarsson, L.-A.; Van Dorpe, P.; Horiguchi, N.; Holsteyns, F. pdf  doi
openurl 
  Title Wet etching of TiN in 1-D and 2-D confined nano-spaces of FinFET transistors Type A1 Journal article
  Year (down) 2018 Publication Microelectronic engineering Abbreviated Journal  
  Volume 200 Issue Pages 56-61  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In the manufacturing of multi-Vt FinFET transistors, the gate material deposited in the nano-spaces left by the removed dummy gate must be etched back in mask-defined wafer areas. Etch conformality is a necessary condition for the control of under-etch at the boundary between areas defined by masking. We studied the feasibility of TiN etching by APM (ammonia peroxide mixture, also known as SC1) in nano-confined volumes representative of FinFET transistors of the 7 nm node and below, namely nanotrenches with 1-D confinement and nanoholes with 2-D confinement. TiN etching was characterized for rate and conformality using different electron microscopy techniques. Etching in closed nanotrenches was conformal, starting and progressing all along the 2-D seam, with a rate that was 38% higher compared to a planar film. Etching in closed nanoholes proved also to be conformal and faster than planar films, but with a delay to open the 1-D seam that seemed to depend strongly on small variations in the hole diameter. However, holes between the fins at the bottom of the removed dummy gate, are not circular and do present 2-D seams that should lend themselves for an easier start of conformal etching as compared to the circular nanoholes used in this study. Finally, to explain the higher etch rate observed in nano-confined features, concentrations of ions in nanoholes were calculated taking the overlap of electrostatic double layers (EDL) into account. With negatively charged TiN walls, as measured by streaming potential on planar films, ammonium was the dominant ion in nanoholes. As no chemical reaction proposed in the literature for TiN etching matched with this finding, we proposed that the formation of ammine complexes, dissolving the formed Ti oxide, was the rate-determining step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000449134800010 Publication Date 2018-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155414 Serial 8757  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: