|
Record |
Links |
|
Author |
Mei, H.; Xu, W.; Wang, C.; Yuan, H.; Zhang, C.; Ding, L.; Zhang, J.; Deng, C.; Wang, Y.; Peeters, F.M. |
|
|
Title |
Terahertz magneto-optical properties of bi- and tri-layer graphene |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Journal of physics : condensed matter |
Abbreviated Journal |
J Phys-Condens Mat |
|
|
Volume |
30 |
Issue |
17 |
Pages |
175701 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time tau for bi- and tri-layer graphene increases with magnetic field B roughly in a form tau similar to B-2. Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
London |
Editor |
|
|
|
Language |
|
Wos |
000429329500001 |
Publication Date |
2018-03-20 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0953-8984 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.649 |
Times cited |
11 |
Open Access |
|
|
|
Notes |
; This work was supported by the National Natural Science Foundation of China (11574319, 11304317, 11304272), the Ministry of Science and Technology of China (2011YQ130018), the Center of Science and Technology of Hefei Academy of Science, the Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; |
Approved |
Most recent IF: 2.649 |
|
|
Call Number |
UA @ lucian @ c:irua:150715UA @ admin @ c:irua:150715 |
Serial |
4983 |
|
Permanent link to this record |