|
Record |
Links |
|
Author |
Alvarez-Martin, A.; Janssens, K. |
|
|
Title |
Protecting and stimulating effect on the degradation of eosin lakes. Part 1 : lead white and cobalt blue |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Microchemical journal |
Abbreviated Journal |
Microchem J |
|
|
Volume |
141 |
Issue |
141 |
Pages |
51-63 |
|
|
Keywords |
A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation) |
|
|
Abstract |
An important problem encountered during the preservation of paintings and other artworks is the fading of the original colors due to exposure of the colorants to light. This fact is clearly evidenced in some of Vincent Van Gogh's paintings in which an organic red, eosin or geranium lake, is present. The identification of eosin and the characterization of its degradation products in paintings represents a challenge because of (i) the generally low concentration of the pigment remaining after an aging period of ca 100 years, (ii) the scarcity of the paint micro samples available for analysis and the difficulty of obtaining additional ones and (iii) the complexity of the degradation behavior of eosin when it is mixed with organic or inorganic pigments, binding media or varnish. This study presents an accelerated aging experiment of eosin paint models in order to understand better the discoloration process; more specifically the influence of different metals with which eosin forms complexes and of the presence of admixture pigments such as lead white and cobalt blue on the lightfastness of eosin is evaluated. Paint model samples were prepared using eosin, lead white, and cobalt blue in different mixing ratios and were characterized with several techniques before and after aging. The possible formation of intermediate molecular forms during the aging experiment and the influence of pigment ratios on the discoloration process were monitored at periodic intervals using a combination of LTV Visible and attenuated total Reflectance-Fourier transform infrared (ATR-FTIR) spectroscopies. Raman spectroscopy, scanning electron microscopy coupled to energy-dispersive X-ray analysis (SEM-EDX) and optical microscopy (OM) analyses were performed to gain information about the discoloration processes taking place within the paint models. Eosin precipitated on lead, aluminum and potassium/aluminum salts was used. These three lakes showed similar discoloration rates under light exposure. In contrast, the presence and relative abundance of the admixture pigments lead white and cobalt blue had a significant influence on the (speed of the) eosin discoloration process. The presence of lead white and cobalt blue appears to stimulate the eosin degradation. However, the cobalt blue shows less influence in the discoloration process, showing a protective effect during the first stages of the aging. This may be qualitatively explained in terms of the ability of lead white to scatter light towards eosin molecules and the absorption characteristics of cobalt blue in the green range of the electromagnetic spectrum, shielding eosin from incoming light. The color changes observed in the paint reconstructions are similar to discoloration phenomena visible in some Van Gogh paintings and can offer an explanation of the gradual discoloration process that took place over the years. These insights will be helpful to estimate the original hues color used/intended by the artist. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000439678200006 |
Publication Date |
2018-05-07 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0026-265x; 0026-265x |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.034 |
Times cited |
3 |
Open Access |
|
|
|
Notes |
; The authors sincerely acknowledged Dr. Costanza Miliani for sharing information about the synthesis of geranium lake. The authors also acknowledged Dr. Geert van der Snickt and Gert Nuyts for the help with the aging experiments and for carrying out the SEM-EDX measurements respectively. The authors would like to acknowledge the SolarPaint project (GOA programme, Antwerp University Research Council) for financial support. ; |
Approved |
Most recent IF: 3.034 |
|
|
Call Number |
UA @ admin @ c:irua:153087 |
Serial |
5788 |
|
Permanent link to this record |