toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ghidelli, M.; Orekhov, A.; Bassi, A.L.; Terraneo, G.; Djemia, P.; Abadias, G.; Nord, M.; Béché, A.; Gauquelin, N.; Verbeeck, J.; Raskin, J.-p.; Schryvers, D.; Pardoen, T.; Idrissi, H. url  doi
openurl 
  Title Novel class of nanostructured metallic glass films with superior and tunable mechanical properties Type A1 Journal article
  Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume (down) Issue Pages 116955  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A novel class of nanostructured Zr50Cu50 (%at.) metallic glass films with superior and tunable mechanical

properties is produced by pulsed laser deposition. The process can be controlled to synthetize a wide

range of film microstructures including dense fully amorphous, amorphous embedded with nanocrystals

and amorphous nano-granular. A unique dense self-assembled nano-laminated atomic arrangement

characterized by alternating Cu-rich and Zr/O-rich nanolayers with different local chemical enrichment

and amorphous or amorphous-crystalline composite nanostructure has been discovered, while

significant in-plane clustering is reported for films synthetized at high deposition pressures. This unique

nanoarchitecture is at the basis of superior mechanical properties including large hardness and elastic

modulus up to 10 and 140 GPa, respectively and outstanding total elongation to failure (>9%), leading to

excellent strength/ductility balance, which can be tuned by playing with the film architecture. These

results pave the way to the synthesis of novel class of engineered nanostructured metallic glass films

with high structural performances attractive for a number of applications in microelectronics and

coating industry.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670077800004 Publication Date 2021-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 27 Open Access OpenAccess  
  Notes H.I. is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the Fonds de la Recherche Scientifique – FNRS under Grant T.0178.19 and Grant CDR– J011320F. We acknowledge funding for the direct electron detector used in the 4D stem studies from the Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government J.V acknowledges funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. A.O. has received partial funding from the GOA project “Solarpaint” of the University of Antwerp. A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.G. and A.L.B acknowledge Chantelle Ekanem for support in PLD depositions. Approved Most recent IF: 5.301  
  Call Number EMAT @ emat @c:irua:178142 Serial 6761  
Permanent link to this record
 

 
Author Fatermans, J.; de Backer, A.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Atom column detection Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume (down) Issue Pages 177-214  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract By combining statistical parameter estimation and model-order selection using a Bayesian framework, the maximum a posteriori (MAP) probability rule is proposed in this chapter as an objective and quantitative method to detect atom columns from high-resolution scanning transmission electron microscopy (HRSTEM) images. The validity and usefulness of this approach is demonstrated to both simulated and experimental annular dark-field (ADF) STEM images, but also to simultaneously acquired annular bright-field (ABF) and ADF STEM image data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177531 Serial 6775  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Atom counting Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume (down) Issue Pages 91-144  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this chapter, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high-resolution annular dark-field (ADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. We show that this method can be applied to nanocrystals of arbitrary shape, size, and atom type. The validity of the atom-counting results is confirmed by means of detailed image simulations and it is shown that the high sensitivity of our method enables us to count atoms with single atom sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177529 Serial 6776  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Efficient fitting algorithm Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume (down) Issue Pages 73-90  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)  
  Abstract An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic-resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighboring columns, enabling the analysis of a large field of view. To provide end-users with this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. In this chapter, this efficient algorithm is applied to three different nanostructures for which the analysis of a large field of view is required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177528 Serial 6778  
Permanent link to this record
 

 
Author Vishwakarma, M.; Kumar, M.; Hendrickx, M.; Hadermann, J.; Singh, A.P.; Batra, Y.; Mehta, B.R. pdf  url
doi  openurl
  Title Enhancing the hydrogen evolution properties of kesterite absorber by Si-doping in the surface of CZTS thin film Type A1 Journal article
  Year 2021 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume (down) Issue Pages 2002124  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, the effects of Si-doping in Cu2ZnSnS4 are examined computationally and experimentally. The density functional theory calculations show that an increasing concentration of Si (from x = 0 to x = 1) yields a band gap rise due to shifting of the conduction band minimum towards higher energy states in the Cu2Zn(Sn1-xSix)S-4. CZTSiS thin film prepared by co-sputtering process shows Cu2Zn(Sn1-xSix)S-4 (Si-rich) and Cu2ZnSnS4 (S-rich) kesterite phases on the surface and in the bulk of the sample, respectively. A significant change in surface electronic properties is observed in CZTSiS thin film. Si-doping in CZTS inverts the band bending at grain-boundaries from downward to upward and the Fermi level of CZTSiS shifts upward. Further, the coating of the CdS and ZnO layer improves the photocurrent to approximate to 5.57 mA cm(-2) at -0.41 V-RHE in the CZTSiS/CdS/ZnO sample, which is 2.39 times higher than that of pure CZTS. The flat band potential increases from CZTS approximate to 0.43 V-RHE to CZTSiS/CdS/ZnO approximate to 1.31 V-RHE indicating the faster carrier separation process at the electrode-electrolyte interface in the latter sample. CdS/ZnO layers over CZTSiS significantly reduce the charge transfer resistance at the semiconductor-electrolyte interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000635804900001 Publication Date 2021-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.279  
  Call Number UA @ admin @ c:irua:177688 Serial 6780  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title General conclusions and future perspectives Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume (down) Issue Pages 243-253  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract This chapter provides an overview of statistical and quantitative methodologies that have pushed (scanning) transmission electron microscopy ((S)TEM) toward accurate and precise measurements of unknown structure parameters for understanding the relation between the structure of a material and its properties. Hereby, statistical parameter estimation theory has extensively been used which enabled not only measuring atomic column positions, but also quantifying the number of atoms, and detecting atomic columns as accurately and precisely as possible from experimental images. As a general conclusion, it can be stated that advanced statistical techniques are ideal tools to perform quantitative electron microscopy at the atomic scale. In the future, statistical methods will continue to be developed and novel quantification procedures will open up new possibilities for studying material structures at the atomic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177533 Serial 6781  
Permanent link to this record
 

 
Author Fatermans, J.; de Backer, A.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Image-quality evaluation and model selection with maximum a posteriori probability Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume (down) Issue Pages 215-242  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The maximum a posteriori (MAP) probability rule for atom column detection can also be used as a tool to evaluate the relation between scanning transmission electron microscopy (STEM) image quality and atom detectability. In this chapter, a new image-quality measure is proposed that correlates well with atom detectability, namely the integrated contrast-to-noise ratio (ICNR). Furthermore, the working principle of the MAP probability rule is described in detail showing a close relation to the principles of model-selection methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177532 Serial 6782  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Introduction Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume (down) Issue Pages 1-28  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177525 Serial 6784  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Optimal experiment design for nanoparticle atom counting from ADF STEM images Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume (down) Issue Pages 145-175  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this chapter, the principles of detection theory are used to quantify the probability of error for atom counting from high-resolution scanning transmission electron microscopy (HRSTEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom counting using the expression of the probability of error. We show that for very thin objects the low-angle annular dark-field (LAADF) regime is optimal and that for thicker objects the optimal inner detector angle increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177530 Serial 6785  
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo-Tardajos, A.; Nuti, S.; Vande Velde, C.; De Wael, K.; Lenaerts, S.; Bals, S.; Verbruggen, S. pdf  url
doi  openurl
  Title Selectivity in ligand functionalization of photocatalytic metal oxide nanoparticles for phase transfer and self‐assembly applications Type A1 Journal article
  Year 2021 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume (down) Issue Pages chem.202100029-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Functionalization of photocatalytic metal oxide nanoparticles of TiO 2 , ZnO, WO 3 and CuO with amine‐terminated (oleylamine) and thiol‐terminated (1‐dodecanethiol) alkyl chained ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO 2 and WO 3 , while 1‐dodecanethiol binds stably only to ZnO and CuO. Similarly, polar to non‐polar solvent phase transfer of TiO 2 and WO 3 nanoparticles could be achieved by using oleylamine, but not by 1‐dodecanethiol, while the contrary holds for ZnO and CuO. The surface chemistry of ligand functionalized nanoparticles was probed by ATR‐FTIR spectroscopy, that enabled to elucidate the occupation of the ligands at the active sites. The photo‐stability of the ligands on the nanoparticle surface was determined by the photocatalytic self‐cleaning properties of the material. While TiO 2 and WO 3 degrade the ligands within 24 hours under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, since the ligand functionalized nanoparticles are hydrophobic in nature, they can thus be self‐assembled at the air‐water interface, for obtaining nanoparticle films with demonstrated photocatalytic as well as anti‐fogging properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652651400001 Publication Date 2021-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 15 Open Access OpenAccess  
  Notes R.B. and S.W.V. acknowledge financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Program by means of the grant agreement no. 731019 EUSMI and the ERC Consolidator grant no. 815128 REALNANO.; sygmaSB Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:177495 Serial 6787  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Statistical parameter estimation theory : principles and simulation studies Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume (down) Issue Pages 29-72  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this chapter, the principles of statistical parameter estimation theory for a quantitative analysis of atomic-resolution electron microscopy images are introduced. Within this framework, electron microscopy images are described by a parametric statistical model. Here, parametric models are introduced for different types of electron microscopy images: reconstructed exit waves, annular dark-field (ADF) scanning transmission electron microscopy (STEM) images, and simultaneously acquired ADF and annular bright-field (ABF) STEM images. Furthermore, the Cramér-Rao lower bound (CRLB) is introduced, i.e. a theoretical lower bound on the variance of any unbiased estimator. This CRLB is used to quantify the precision of the structure parameters of interest, such as the atomic column positions and the integrated atomic column intensities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177527 Serial 6788  
Permanent link to this record
 

 
Author Skorikov, A. openurl 
  Title Fast approaches for investigating 3D elemental distribution in nanomaterials Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume (down) Issue Pages 143 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178855 Serial 6795  
Permanent link to this record
 

 
Author Mychinko, M.; Skorikov, A.; Albrecht, W.; Sánchez‐Iglesias, A.; Zhuo, X.; Kumar, V.; Liz‐Marzán, L.M.; Bals, S. pdf  url
doi  openurl
  Title The Influence of Size, Shape, and Twin Boundaries on Heat‐Induced Alloying in Individual Au@Ag Core–Shell Nanoparticles Type A1 Journal article
  Year 2021 Publication Small Abbreviated Journal Small  
  Volume (down) Issue Pages 2102348  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Environmental conditions during real-world application of bimetallic core–shell nanoparticles (NPs) often include the use of elevated temperatures, which are known to cause elemental redistribution, in turn significantly altering the properties of these nanomaterials. Therefore, a thorough understanding of such processes is of great importance. The recently developed combination of fast electron tomography with in situ heating holders is a powerful approach to investigate heat-induced processes at the single NP level, with high spatial resolution in 3D. In combination with 3D finite-difference diffusion simulations, this method can be used to disclose the influence of various NP parameters on the diffusion dynamics in Au@Ag core–shell systems. A detailed study of the influence of heating on atomic diffusion and alloying for Au@Ag NPs with varying core morphology and crystallographic details is carried out. Whereas the core shape and aspect ratio of the NPs play a minor role, twin boundaries are found to have a strong influence on the elemental diffusion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000673326600001 Publication Date 2021-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 8 Open Access OpenAccess  
  Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO) and European Commission (grant 731019, EUSMI and grant 26019, ESTEEM). This work was performed under the Maria de Maeztu Units of Excellence Programme-Grant No. MDM-2017-0720, Ministry of Science and Innovation.; sygmaSB Approved Most recent IF: 8.643  
  Call Number EMAT @ emat @c:irua:179856 Serial 6804  
Permanent link to this record
 

 
Author Albrecht, W.; Arslan Irmak, E.; Altantzis, T.; Pedrazo‐Tardajos, A.; Skorikov, A.; Deng, T.‐S.; van der Hoeven, J.E.S.; van Blaaderen, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title 3D Atomic‐Scale Dynamics of Laser‐Light‐Induced Restructuring of Nanoparticles Unraveled by Electron Tomography Type A1 Journal article
  Year 2021 Publication Advanced Materials Abbreviated Journal Adv Mater  
  Volume (down) Issue Pages 2100972  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Understanding light–matter interactions in nanomaterials is crucial for

optoelectronic, photonic, and plasmonic applications. Specifically, metal

nanoparticles (NPs) strongly interact with light and can undergo shape

transformations, fragmentation and ablation upon (pulsed) laser excitation.

Despite being vital for technological applications, experimental insight into

the underlying atomistic processes is still lacking due to the complexity of

such measurements. Herein, atomic resolution electron tomography is performed

on the same mesoporous-silica-coated gold nanorod, before and after

femtosecond laser irradiation, to assess the missing information. Combined

with molecular dynamics (MD) simulations based on the experimentally

determined 3D atomic-scale morphology, the complex atomistic rearrangements,

causing shape deformations and defect generation, are unraveled.

These rearrangements are simultaneously driven by surface diffusion, facet

restructuring, and strain formation, and are influenced by subtleties in the

atomic distribution at the surface.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000671662000001 Publication Date 2021-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 8 Open Access OpenAccess  
  Notes W.A. and E.A.I. contributed equally to this work. The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128 – REALNANO and No. 770887 – PICOMETRICS), the European Union’s Seventh Framework Programme (ERC Advanced Grant No. 291667 – HierarSACol), and the European Commission (EUSMI). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in the Horizon2020 program (Grant 797153, SOPMEN). T.-S.D. acknowledges financial support from the National Science Foundation of China (NSFC, Grant No. 61905056). The authors also acknowledge financial support by the Research Foundation Flanders (FWO Grant G.0267.18N).; sygmaSB Approved Most recent IF: 19.791  
  Call Number EMAT @ emat @c:irua:179781 Serial 6805  
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Lobato, I.; Van Aert, S. pdf  url
doi  openurl
  Title Modelling ADF STEM images using elliptical Gaussian peaks and its effects on the quantification of structure parameters in the presence of sample tilt Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (down) Issue Pages 113391  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A small sample tilt away from a main zone axis orientation results in an elongation of the atomic columns in ADF STEM images. An often posed research question is therefore whether the ADF STEM image intensities of tilted nanomaterials should be quantified using a parametric imaging model consisting of elliptical rather than the currently used symmetrical peaks. To this purpose, simulated ADF STEM images corresponding to different amounts of sample tilt are studied using a parametric imaging model that consists of superimposed 2D elliptical Gaussian peaks on the one hand and symmetrical Gaussian peaks on the other hand. We investigate the quantification of structural parameters such as atomic column positions and scattering cross sections using both parametric imaging models. In this manner, we quantitatively study what can be gained from this elliptical model for quantitative ADF STEM, despite the increased parameter space and computational effort. Although a qualitative improvement can be achieved, no significant quantitative improvement in the estimated structure parameters is achieved by the elliptical model as compared to the symmetrical model. The decrease in scattering cross sections with increasing sample tilt is even identical for both types of parametric imaging models. This impedes direct comparison with zone axis image simulations. Nonetheless, we demonstrate how reliable atom-counting can still be achieved in the presence of small sample tilt.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704334200001 Publication Date 2021-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N, G.0267.18N, and EOS 30489208. S.V.A. acknowledges TOP BOF funding from the University of Antwerp.; esteem3JRA; esteem3reported Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:181462 Serial 6810  
Permanent link to this record
 

 
Author Hudry, D.; De Backer, A.; Popescu, R.; Busko, D.; Howard, I.A.; Bals, S.; Zhang, Y.; Pedrazo‐Tardajos, A.; Van Aert, S.; Gerthsen, D.; Altantzis, T.; Richards, B.S. pdf  url
doi  openurl
  Title Interface Pattern Engineering in Core‐Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties Type A1 Journal article
  Year 2021 Publication Small Abbreviated Journal Small  
  Volume (down) Issue Pages 2104441  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000710758000001 Publication Date 2021-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 17 Open Access OpenAccess  
  Notes The authors would like to acknowledge the financial support provided by the Helmholtz Recruitment Initiative Fellowship (B.S.R.) and the Helmholtz Association's Research Field Energy (Materials and Technologies for the Energy Transition program, Topic 1 Photovoltaics and Wind Energy). The authors would like to thank the Karlsruhe Nano Micro Facility (KNMF) for STEM access. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (Grant agreement no. 770887 PICOMETRICS to S.V.A. and Grant agreement no. 815128 REALNANO to S.B.). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Projects no. G.0502.18N, G.0267.18N, and a postdoctoral grant to A.D.B. T.A. acknowledges funding from the University of Antwerp Research fund (BOF). This project had received funding (EUSMI proposal #E181100205) from the European Union's Horizon 2020 Research and Innovation Programme under Grant agreement no 731019 (EUSMI). D.H. would like to thank “CGFigures” for helpful tutorials on 3D graphics with Blender.; sygmaSB Approved Most recent IF: 8.643  
  Call Number EMAT @ emat @c:irua:183285 Serial 6817  
Permanent link to this record
 

 
Author Arslan Irmak, E.; Liu, P.; Bals, S.; Van Aert, S. pdf  url
doi  openurl
  Title 3D Atomic Structure of Supported Metallic Nanoparticles Estimated from 2D ADF STEM Images: A Combination of Atom – Counting and a Local Minima Search Algorithm Type A1 Journal article
  Year 2021 Publication Small methods Abbreviated Journal Small Methods  
  Volume (down) Issue Pages 2101150  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Determining the three-dimensional (3D) atomic structure of nanoparticles (NPs) is critical to understand their structure-dependent properties. It is hereby important to perform such analyses under conditions relevant for the envisioned application. Here, we investigate the 3D structure of supported Au NPs at high temperature, which is of importance to understand their behavior during catalytic reactions. To overcome limitations related to conventional high-resolution electron tomography at high temperature, 3D characterization of NPs with atomic resolution has been performed by applying atom-counting using atomic resolution annular darkfield scanning transmission electron microscopy (ADF STEM) images followed by structural relaxation. However, at high temperatures, thermal displacements, which affect the ADF STEM intensities, should be taken into account. Moreover, it is very likely that the structure of a NP investigated at elevated temperature deviates from a ground state configuration, which is difficult to determine using purely computational energy minimization approaches. In this paper, we therefore propose an optimized approach using an iterative local minima search algorithm followed by molecular dynamics (MD) structural relaxation of candidate structures associated with each local minimum. In this manner, it becomes possible to investigate the 3D atomic structure of supported NPs, which may deviate from their ground state configuration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000716511600001 Publication Date 2021-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 12 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0267.18N, G.0502.18N, G.0346.21N).; sygmaSB; esteem3jra; esteem3reported Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:183289 Serial 6820  
Permanent link to this record
 

 
Author Feng, X.; Jena, H.S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G.; Sun, J.; Rüscher, M.; Timoshenko, J.; Roldan Cuenya, B.; Bals, S.; Voort, P.V.D. pdf  url
doi  openurl
  Title Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66 Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume (down) Issue Pages jacs.1c05357  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The differentiation between missing linker defects

and missing cluster defects in MOFs is difficult, thereby limiting the

ability to correlate materials properties to a specific type of defects.

Herein, we present a novel and easy synthesis strategy for the

creation of solely “missing cluster defects” by preparing mixed-metal

(Zn, Zr)-UiO-66 followed by a gentle acid wash to remove the Zn

nodes. The resulting material has the reo UiO-66 structure, typical

for well-defined missing cluster defects. The missing clusters are

thoroughly characterized, including low-pressure Ar-sorption, iDPCSTEM

at a low dose (1.5 pA), and XANES/EXAFS analysis. We

show that the missing cluster UiO-66 has a negligible number of missing linkers. We show the performance of the missing cluster

UiO-66 in CO2 sorption and heterogeneous catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000730569500001 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 29 Open Access OpenAccess  
  Notes Agentschap Innoveren en Ondernemen, HBC.2019.0110 HBC.2021.0254 ; Universiteit Gent; Fonds Wetenschappelijk Onderzoek, 665501 ; Dalian University of Technology; China Scholarship Council, 201507565009 ; National Natural Science Foundation of China, 22101039 ; H2020 European Research Council, 815128 REALNANO ; sygmaSB Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:183951 Serial 6833  
Permanent link to this record
 

 
Author Mustonen, K.; Hofer, C.; Kotrusz, P.; Markevich, A.; Hulman, M.; Mangler, C.; Susi, T.; Pennycook, T.J.; Hricovini, K.; Richter, C.M.; Meyer, J.C.; Kotakoski, J.; Skákalová, V. url  doi
openurl 
  Title Towards Exotic Layered Materials: 2D Cuprous Iodide Type A1 Journal article
  Year 2021 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume (down) Issue Pages 2106922  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Heterostructures composed of two-dimensional (2D) materials are already opening many new possibilities in such fields of technology as electronics and magnonics, but far more could be achieved if the number and diversity of 2D materials is increased. So far, only a few dozen 2D crystals have been extracted from materials that exhibit a layered phase in ambient conditions, omitting entirely the large number of layered materials that may exist in other temperatures and pressures. Here, we demonstrate how these structures can be stabilized in 2D van der Waals stacks under room temperature via growing them directly in graphene encapsulation by using graphene oxide as the template material. Specifically, we produce an ambient stable 2D structure of copper and iodine, a material that normally only occurs in layered form at elevated temperatures between 645 and 675 K. Our results establish a simple route to the production of more exotic phases of materials that would otherwise be difficult or impossible to stabilize for experiments in ambient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000744012500001 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited Open Access OpenAccess  
  Notes We acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant agreements No.~756277-ATMEN (A.M. and T.S.) and No.802123-HDEM (C.H. and T.J.P.). Computational resources from the Vienna Scientific Cluster (VSC) are gratefully acknowledged. V.S. was supported by the Austrian Science Fund (FWF) (project no. I2344-N36), the Slovak Research and Development Agency (APVV-16-0319), the project CEMEA of the Slovak Academy of Sciences, ITMS project code 313021T081 of the Research & Innovation Operational Programme and from the V4-Japan Joint Research Program (BGapEng). J.K. acknowledges the FWF funding within project P31605-N36 and M.H. the funding from Slovak Research and Development Agency via the APVV-15-0693 and APVV-19-0365 project grants. Danubia NanoTech s.r.o. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101008099 (CompSafeNano project) and also thanks Mr. Kamil Bernath for his support. Approved Most recent IF: 19.791  
  Call Number EMAT @ emat @c:irua:183956 Serial 6834  
Permanent link to this record
 

 
Author Pedrazo Tardajos, A. openurl 
  Title Advanced graphene supports for 3D in situ transmission electron microscopy Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume (down) Issue Pages 247 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is an ideal tool to investigate nanomaterials. The information from TEM experiments allows us to link the structure and composition of nanomaterials to their intrinsic physical properties. However, despite the significant evolution of the TEM field during the last two decades, major progress is still possible through the development of optimal TEM techniques and supports. The results presented in this thesis focus on the optimization of sample supports and their application. Among the different options, graphene has previously been reported as useful sample support for electron microscopy due to its unparalleled properties, for example, it is the thinnest known support and provides a protective effect to the sample under investigation. Unfortunately, commercial graphene grids show poor quality, in terms of intactness and cleanness, inhibiting their wide application within the field. Therefore, this thesis focuses on the application of optimized graphene TEM grids, obtained by transferring high quality graphene using an advanced procedure. This improvement on the transfer has enabled the visualization of materials with low contrast and high sensitivity towards the electron beam, such as surface ligands capping gold nanoparticles or metal halide perovskites. Furthermore, the implemented protocol is not only of interest for conventional TEM grids but also a major benefit for in situ TEM studies, where the sample is investigated in real time under certain stimuli. Hence, the same graphene transfer technology can be also applied to advanced in situ MEMS holders dedicated for both heating and gas experiments, where the thickness and insulating nature of the silicon nitride (Si3N4) support may hamper some applications. By engineering periodic arrays of holes in their Si3N4 membrane by focused ion beam, onto which the graphene is transferred, it has been possible to get proof-of-concept 3D in situ investigations of heat-induced morphological and compositional transformations of complex nanosystems. As an example, it has enabled the investigation of the possible phase-transition of metal halide perovskites upon heating using 2D and 3D structural characterization. Moreover, it has allowed the study of in situ three-dimensional nanoparticle dynamics during gas phase catalysis as well as the first steps that would lead towards the design and creation of the first Graphene Gas Cell. Consequently, implementation of the advanced graphene transfer technology described in this thesis is envisaged to impact a broad range of future experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181143 Serial 6836  
Permanent link to this record
 

 
Author Skorikov, A.; Heyvaert, W.; Albrecht, W.; Pelt, D.M.; Bals, S. doi  openurl
  Title EMAT Simulated 3D Nanoparticle Structures Dataset Type Dataset
  Year 2021 Publication Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset contains 1000 simulated nanoparticle-like 3D structures and noisy EDX-like elemental maps based on them. These data are intended to be used for quantitative analysis of data processing methods in (EDX) tomography of nanoparticles and training the data-driven approaches for these tasks. The dataset is structured as follows: voxel_data/clean 3D voxel grid representation of the simulated nanoparticles. Voxel intensities are adjusted so that the total intensity equals 103. All 3D structures have unique identifiers in 0..999 range. The data derived from a 3D structure preserves this unique identifier. sinograms/clean Tilt series of projection images obtained from the corresponding 3D structures over an angular range of -75..75 degrees with a tilt step of 10 degrees to simulate a typical tilt series used in EDX tomography. Total intensity in each projection image equals 103. sinograms/noisy Tilt series of projection images corrupted with Poisson noise and an additional spatially uniform background noise. projections/clean Projection images extracted from the clean tilt series at 0 degrees tilt angle. projections/noisy Projection images extracted from the noisy tilt series at 0 degrees tilt angle. images/clean Visualizations of the clean projections as PNG images with the intensity range adjusted to 0..255 images/noisy Visualizations of the noisy projections as PNG images with the intensity range adjusted to 0..255  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180615 Serial 6838  
Permanent link to this record
 

 
Author Du, K. url  openurl
  Title In situ TEM study on the manipulation of ferroelectrics Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume (down) Issue Pages 91 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The strong correlated oxide systems attract a lot of attentions of scientists recently, the coexistence and interplay between various degrees of freedom, such as charge, spin and orbital, has been demonstrated to induce some fancy physical properties and phenomenon, including metal-insulator transition, high temperature superconductivity, colossal magnetoresistance. As a part of the strong correlated oxide systems, the ferroelectrics is abundant in both physical properties and application. First, if the electric dipole continuously rotating around a stable core then a topological structure is produced. If people could manipulate the topological structure and simultaneously observe the structure evolution, with external field applied on the topological structure, then it is very likely for such kind of ferroelectrics to be the next generation of storage, for it is reported to need low power input and produce high density of storage. In the other hand, in solids, charge polarity can one-to-one correspond to spin polarity phenomenologically, such as ferroelectricity and ferromagnetism, antiferroelectricity and antiferromagnetism, but ferrielectricity and ferrimagnetism kept telling a disparate story in microscopic level. The claimed “ferrielectrics” in existing research is equivalent to ferroelectric ones, thus the findings of such a real irreducible solids would complete the last piece of the ferroelectrics family. While solving the above two questions remain challengeable: the size of topological structure is small (typically below 10 nm), general characterization methods are insufficient for such high demand on space resolution, not to mention manipulating and observing its dynamic behavior at an atomic level. Here, employing the spherical aberration corrected electron microscope, we applied external field (heating and bias) on ferroelectrics. Combined with high-end characterization methods including the high-angle annular dark field (HAADF-STEM) image, Electron Energy Loss Spectroscopy (EELS) and integrated differential phase contrast (iDPC), the dynamic evolution of ferroelectrics are observed and analyzed. The main findings of this paper could be concluded as listed here: (1) PbTiO3(001)// SrTiO3(001) is grown on DyScO3 and SrRuO3 by pusled laser deposition, the atomical EDS mapping results reveal that the interface between PTO and STO is atomically sharp. Increasing the thickness of PTO from 1 uc to 21 uc, the topological structure wihtin PTO layer would transform from a/c domain to wave, vortex and finally flux closure domain. The geometric phase analysis results (GPA) reveal that above topological structures are corresponding to various strain. (2) Combined with in-situ biasing holder, the electric bias was applied on polar vortex, and it evolved from vortex (0 V) to polar wave (2 V) and finally polar down (5 V). EELS analysis was performed and we find that negative charge is gathered at vortex core, which turns the Ti4+ to Ti3+ there. The oxygen vacancy at negative polarization surface and the negative charge at the positive polarization surface realized the polarization screening of polar down domain. (3) Through the atomic inspection and analysis on lattice structure of BaFe2Se3, the near ladders within single unit are found to be different in degree of tetramerization, thus leading to a residual polarization along the a-axis. The further in-situ heating and biasing experiment was conducted on BaFe2Se3, and the strong and weak ladders are proved to be independent for their behavior under external field. This findings distinguishes ferrielectrics from ferroelectrics in solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179310 Serial 6842  
Permanent link to this record
 

 
Author Prabhakara, V. url  openurl
  Title Strain measurement for semiconductor applications with Raman spectroscopy and Transmission electron microscopy Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume (down) Issue Pages 149 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Scaling down the size of transistors has been a trend for several decades which has led to improved transistor performance, increased transistor density and hence the overall computation power of IC chips. The trend slowed in recent years due to reliability and power consumption issues at the nanoscale. Hence strain is introduced into transistor channels that has beneficial effects on improving the mobility of charge carriers, providing an alternative pathway for enhancing transistor performance. Therefore, monitoring strain is vital for the semiconductor industry. With the recent trend of decreasing device dimensions (FinFETS ~ 10-20nm) and strain modulation being used throughout, industry needs a reliable and fast method as quality control or defect characterisation. Such a universal strain measurement method does not exist, and one relies on a combination of quantitative in-line methods and complex off-line approaches. In this thesis, I investigated TEM and Raman spectroscopy-based methodologies for strain measurement. In terms of TEM methodologies, advancements are made for the STEM moiré imaging, targeting strain spatial resolution enhancement. I introduce advanced quadrature demodulation and phase stepping interferometry applied to STEM moiré that greatly enhances the spatial resolution while providing enhanced field of view and sensitivity for strain measurement. We introduce ways to reduce scan distortions in strain maps using an alternative scan strategy called “Block scanning” and the non-linear regression applied for strain extraction. Prospects for 3D strain analysis using high-resolution tomography is also investigated which gives direct access for the full second order strain tensors calculation. Finally, we compare strain measurements from TEM techniques with inline techniques like Raman spectroscopy. Raman stress measurement involves sensitive identification of the TO and LO phonon peaks. Raman spectrum of strained Ge transistor channel consists of strongly overlapping peaks within the spectral resolution of the spectrometer. Hence, the process of deconvolution of the two peaks is rather challenging. Hence, we explore new polarisation geometries like radially polarised incoming light which was shown to ease the deconvolution problem resulting in improved precision for Raman stress–strain measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182261 Serial 6847  
Permanent link to this record
 

 
Author Shi, R.; Choudhuri, D.; Kashiwar, A.; Dasari, S.; Wang, Y.; Banerjee, R.; Banerjee, D. doi  openurl
  Title α phase growth and branching in titanium alloys Type A1 Journal article
  Year 2021 Publication Philosophical magazine Abbreviated Journal Philos Mag  
  Volume (down) Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The morphology and spatial distribution of alpha (α) precipitates have been mapped as a function of Mo content in Ti-Mo binary alloys employing a combinatorial approach. Heat-treatments were carried out on compositionally graded Ti-xMo samples processed using a rapid throughput laser engineered net shape (LENS) process. The composition space spans 1.5 at% to 6 at% Mo with ageing at 750°C, 650°C and 600°C following a β solution treatment. Three distinct regimes of α morphology and distribution were observed. These are colony-dominated microstructures originating from grain boundary α allotriomorphs, bundles of intragranular α laths, and homogeneously distributed individual fine-scale α laths. Branching of the α precipitates was observed in all these domains in a manner reminiscent of solid-state dendritic growth. The phenomenon is particularly apparent at low volume fractions of α. Similar features are present in a wide variety of alloy compositions. 3-dimensional features of such branched structures have been analysed. Simulation of the branching process by phase field methods incorporating anisotropy in the α/β interface energy and elasticity suggests that it can be initiated at growth ledges present at broad faces of the α laths, driven by the enhancement of the diffusion flux at these steps. The dependence of branching on various parameters such as supersaturation and diffusivity, and microstructural features like ledge height and distribution and the presence of adjacent α variants has been evaluated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000722082700001 Publication Date 2021-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.505 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.505  
  Call Number UA @ admin @ c:irua:183616 Serial 6849  
Permanent link to this record
 

 
Author Velazco Torrejón, A. url  openurl
  Title Alternative scan strategies for high resolution STEM imaging Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume (down) Issue Pages 131 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Currently, a large variety of materials are studied by transmission electron microscopy (TEM) as it offers the possibility to perform structural and elemental analysis at a local scale. Relatively recent advances in aberration correctors and electron sources allow the instrument to achieve atomic resolution. Along with these advances, a state-of-the-art technology has been reached in TEM. However, the instrument is far from being perfect and imperfections or external sources can make the interpretation of information troublesome. Environmental factors such as acoustic and mechanical vibrations, temperature fluctuations, etc., can induce sample drift and create image distortions. These distortions are enhanced in scanning operation because of the serial acquisition of the information, which are more apparent at atomic resolution as small field of views are imaged. In addition, scanning distortions are induced due to the finite time response of the scan coils. These types of distortions would reduce precision in atomic-scale strain analysis, for instance, in semiconductors. Most of the efforts to correct these distortions are focused on data processing techniques post-acquisition. Another limitation in TEM is beam damage effects. Beam damage arises because of the energy transferred to the sample in electron-sample interactions. In scanning TEM, at atomic resolution, the increased electron charge density (electron dose) carried on a sub-Å size electron probe may aggravate beam damage effects. Soft materials such as zeolites, organic, biological materials, etc., can be destroyed under irradiation limiting the amount of information that can be acquired. Current efforts to circumvent beam damage are mostly based on low electron dose acquisitions and data processing methods to maximize the signal at low dose conditions. In this thesis, a different approach is given to address drift and scanning distortions, as well as beam damage effects. Novel scan strategies are proposed for that purpose, which are shown to substantially overcome these issues compared to the standard scan method in TEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180973 Serial 6852  
Permanent link to this record
 

 
Author Roegiers, J. file  openurl
  Title Development of combined photocatalytic and active carbon fiber technology for indoor air purification based on Multiphysics models Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume (down) Issue Pages XXX, 197 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Exposure to volatile organic compounds (VOCs) remains a major public health concern. Indoor VOC concentrations typically far exceed outdoor levels due to a variety of emission sources and the stringent insulation measures that are imposed today. Many attempts have been made to use photocatalysis for indoor air purification. In an ideal situation, photocatalysis is capable of complete mineralization of VOCs to H2O and CO2, without any byproduct formation. Moreover, the process can take place at standard atmospheric conditions, i.e. ambient temperature and atmospheric pressure. However, successful exploitation is still impeded due to low conversion efficiency, significant pressure loss (and hence a high energy consumption) and byproduct formation. In the first part of this thesis an attempt was made to tackles these problems by designing a novel type of photocatalytic (PCO) reactor. The PCO device consists of a cylindrical vessel filled with TiO2-coated glass tubes and equipped with UV fluorescence lamps. It was investigated in terms of fluid dynamics, coating properties, UV-light distribution and photocatalytic activity. Experimental data was later used to develop and calibrate a Multiphysics model. The model proved to be a useful tool for designing and upscaling the PCO reactor. Consequently, an optimized prototype reactor was constructed and tested according the CEN-EN-16846-1 standard for VOC removal. Although the prototype showed promising results for lab-scale conditions, it struggled with byproduct formation when purifying ppb-level VOCs. In the second part of this thesis, activated carbon adsorption was investigated in order to combine it with photocatalysis. Activated carbon fiber was opted for its fast kinetics, high adsorption capacity and thermo-electrical regeneration. The filter was studied in detail regarding the adsorption of polar and apolar VOCs at indoor air concentration levels and regeneration capabilities. Experimental data was used to develop a Multiphysics model for activated carbon adsorption as well. Consequently, a novel type of ACF filter was developed using the Multiphysics model, which was equipped with electrodes in the tips of the pleats for effective thermal regeneration. In the last part, the combination of both ACF and PCO was studied using a realistic case study. Based on the Multiphysics model, the feasibility of a so-called hybrid air purification device could be investigated. The Multiphysics model shows promising results for this hybrid PCO-ACF system and hence, a demo setup was constructed for future research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181137 Serial 6860  
Permanent link to this record
 

 
Author De wael, A. url  openurl
  Title Model-based quantitative scanning transmission electron microscopy for measuring dynamic structural changes at the atomic scale Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume (down) Issue Pages xiv, 146 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Nanomaterialen kunnen uiterst interessante eigenschappen vertonen voor een verscheidenheid aan veelbelovende toepassingen, gaande van zonnecrème tot batterijen voor elektrische auto’s. Een nanometer is een miljard keer kleiner dan een meter. Op deze schaal kunnen de materiaaleigenschappen volledig verschillen van bulkmaterialen op grotere schaal. Bovendien hangen de eigenschappen van nanomaterialen sterk af van hun exacte grootte en vorm. Kleine verschillen in de posities van de atomen, in de grootte-orde van een picometer (nog eens duizend maal kleiner dan een nanometer), kunnen de fysische eigenschappen al drastisch beïnvloeden. Daarom is een betrouwbare kwantificering van de atomaire structuur van kritisch belang om de evolutie naar materiaalontwerp mogelijk te maken en inzicht te verwerven in de relatie tussen de fysische eigenschappen en de structuur van nanomaterialen. Daarnaast kan de atomaire structuur van nanomaterialen ook veranderen in de loop van de tijd ten gevolge van verschillende fysische processen. Het onderzoek dat in deze thesis gepresenteerd wordt, maakt het mogelijk om de dynamische structuurveranderingen van nanomaterialen betrouwbaar te kwantificeren op atomaire schaal door gebruik te maken van raster transmissie elektronenmicroscopie (STEM). Ik heb dit gerealiseerd door methodes te ontwikkelen waarmee ik het aantal atomen “achter elkaar” kan tellen in elke atoomkolom van een nanomateriaal, en dit op basis van beelden opgenomen met een elektronenmicroscoop. Een belangrijk verschil met telmethodes voor de analyse van een enkel beeld is het schatten van de kans dat een atoomkolom atomen zal verliezen of bijkrijgen van het ene naar het andere beeld in de tijdreeks. Deze kwantitatieve methode kan het ontrafelen van de tijdsafhankelijke structuur-eigenschappen relatie van een nanomateriaal mogelijk maken, wat uiteindelijk kan leiden tot efficiënter design en productie van nanomaterialen voor innovatieve toepassingen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179514 Serial 6870  
Permanent link to this record
 

 
Author Jannis, D. url  openurl
  Title Novel detection schemes for transmission electron microscopy Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume (down) Issue Pages iv, 208 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Electron microscopy is an excellent tool which provides resolution down to the atomic scale with up to pm precision in locating atoms. The characterization of materials in these length scales is of utmost importance to answer questions in biology, chemistry and material science. The successful implementation of aberration-corrected microscopes made atomic resolution imaging relatively easy, this could give the impression that the development of novel electron microscopy techniques would stagnate and only the application of these instruments as giant magnifying tools would continue. This is of course not true and a multitude of problems still exist in electron microscopy. Two of such issues are discussed below. One of the biggest problems in electron microscopy is the presence of beam damage which occurs due the fact that the highly energetic incoming electrons have sufficient kinetic energy to change the structure of the material. The amount of damage induced depends on the dose, hence minimizing this dose during an experiment is beneficial. This minimizing of the total dose comes at the expense of more noise due to the counting nature of the electrons. For this reason, the implementation of four dimensional scanning transmission electron microscopy (4D STEM) experiments has reduced the total dose needed per acquisition. However, the current cameras used to measure the diffraction patterns are still two orders of magnitude slower than to the conventional STEM methods. Improving the acquisition speed would make the 4D STEM technique more feasible and is of utmost importance for the beam sensitive materials since less dose is used during the acquisition. In TEM there is not only the possibility to perform imaging experiments but also spectroscopic measurements. There are two frequently used methods: electron energy-loss spectroscopy (EELS) and energy dispersive x-ray spectroscopy (EDX). EELS measures the energy-loss spectrum of the incoming electron which gives information on the available excitations in the material providing elemental sensitivity. In EDX, the characteristic x-rays, arising from the decay of an atom which is initially excited due to the incoming electrons, are detected providing similar elemental analysis. Both methods are able to provide comparable elemental information where in certain circumstances one outperforms the other. However, both methods have a detection limit of approximately 100-1000 ppm which is not sufficient for some materials. In this thesis, two novel techniques which can make significant progress for the two problems discussed above.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182404 Serial 6872  
Permanent link to this record
 

 
Author Liang, Q.; Yang, D.; Xia, F.; Bai, H.; Peng, H.; Yu, R.; Yan, Y.; He, D.; Cao, S.; Van Tendeloo, G.; Li, G.; Zhang, Q.; Tang, X.; Wu, J. pdf  doi
openurl 
  Title Phase-transformation-induced giant deformation in thermoelectric Ag₂Se semiconductor Type A1 Journal article
  Year 2021 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume (down) Issue Pages 2106938  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In most semiconducting metal chalcogenides, a large deformation is usually accompanied by a phase transformation, while the deformation mechanism remains largely unexplored. Herein, a phase-transformation-induced deformation in Ag2Se is investigated by in situ transmission electron microscopy, and a new ordered high-temperature phase (named as alpha '-Ag2Se) is identified. The Se-Se bonds are folded when the Ag+-ion vacancies are ordered and become stretched when these vacancies are disordered. Such a stretch/fold of the Se-Se bonds enables a fast and large deformation occurring during the phase transition. Meanwhile, the different Se-Se bonding states in alpha-, alpha '-, beta-Ag2Se phases lead to the formation of a large number of nanoslabs and the high concentration of dislocations at the interface, which flexibly accommodate the strain caused by the phase transformation. This study reveals the atomic mechanism of the deformation in Ag2Se inorganic semiconductors during the phase transition, which also provides inspiration for understanding the phase transition process in other functional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695142800001 Publication Date 2021-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:181527 Serial 6879  
Permanent link to this record
 

 
Author Penders, A.; Konstantinovic, M.J.; Van Renterghem, W.; Bosch, R.W.; Schryvers, D. url  doi
openurl 
  Title TEM investigation of SCC crack tips in high Si stainless steel tapered specimens Type A1 Journal article
  Year 2021 Publication Corrosion Engineering Science And Technology Abbreviated Journal Corros Eng Sci Techn  
  Volume (down) Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The stress corrosion cracking (SCC) mechanism is investigated in high Si duplex stainless steel in a simulated PWR environment based on TEM analysis of FIB-extracted SCC crack tips. The microstructural investigation in the near vicinity of SCC crack tips illustrates a strain-rate dependence in SCC mechanisms. Detailed analysis of the crack tip morphology, that includes crack tip oxidation and surrounding deformation field, indicates the existence of an interplay between corrosion- and deformation-driven failure as a function of the strain rate. Slow strain-rate crack tips exhibit a narrow cleavage failure which can be linked to the film-induced failure mechanism, while rounded shaped crack tips for faster strain rates could be related to the strain-induced failure. As a result, two nominal strain-rate-dependent failure regimes dominated either by corrosion or deformation-driven cracking mechanisms can be distinguished.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695956400001 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-422x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.879 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.879  
  Call Number UA @ admin @ c:irua:181533 Serial 6892  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: