|
Record |
Links |
|
Author |
Arslan Irmak, E.; Liu, P.; Bals, S.; Van Aert, S. |
|
|
Title |
3D Atomic Structure of Supported Metallic Nanoparticles Estimated from 2D ADF STEM Images: A Combination of Atom – Counting and a Local Minima Search Algorithm |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Small methods |
Abbreviated Journal |
Small Methods |
|
|
Volume |
|
Issue |
|
Pages |
2101150 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Determining the three-dimensional (3D) atomic structure of nanoparticles (NPs) is critical to understand their structure-dependent properties. It is hereby important to perform such analyses under conditions relevant for the envisioned application. Here, we investigate the 3D structure of supported Au NPs at high temperature, which is of importance to understand their behavior during catalytic reactions. To overcome limitations related to conventional high-resolution electron tomography at high temperature, 3D characterization of NPs with atomic resolution has been performed by applying atom-counting using atomic resolution annular darkfield scanning transmission electron microscopy (ADF STEM) images followed by structural relaxation. However, at high temperatures, thermal displacements, which affect the ADF STEM intensities, should be taken into account. Moreover, it is very likely that the structure of a NP investigated at elevated temperature deviates from a ground state configuration, which is difficult to determine using purely computational energy minimization approaches. In this paper, we therefore propose an optimized approach using an iterative local minima search algorithm followed by molecular dynamics (MD) structural relaxation of candidate structures associated with each local minimum. In this manner, it becomes possible to investigate the 3D atomic structure of supported NPs, which may deviate from their ground state configuration. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000716511600001 |
Publication Date |
2021-11-10 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2366-9608 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
|
Times cited |
12 |
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0267.18N, G.0502.18N, G.0346.21N).; sygmaSB; esteem3jra; esteem3reported |
Approved |
Most recent IF: NA |
|
|
Call Number |
EMAT @ emat @c:irua:183289 |
Serial |
6820 |
|
Permanent link to this record |