|
Record |
Links |
|
Author |
Albrecht, W.; Arslan Irmak, E.; Altantzis, T.; Pedrazo‐Tardajos, A.; Skorikov, A.; Deng, T.‐S.; van der Hoeven, J.E.S.; van Blaaderen, A.; Van Aert, S.; Bals, S. |
|
|
Title |
3D Atomic‐Scale Dynamics of Laser‐Light‐Induced Restructuring of Nanoparticles Unraveled by Electron Tomography |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Advanced Materials |
Abbreviated Journal |
Adv Mater |
|
|
Volume |
|
Issue |
|
Pages |
2100972 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT) |
|
|
Abstract |
Understanding light–matter interactions in nanomaterials is crucial for
optoelectronic, photonic, and plasmonic applications. Specifically, metal
nanoparticles (NPs) strongly interact with light and can undergo shape
transformations, fragmentation and ablation upon (pulsed) laser excitation.
Despite being vital for technological applications, experimental insight into
the underlying atomistic processes is still lacking due to the complexity of
such measurements. Herein, atomic resolution electron tomography is performed
on the same mesoporous-silica-coated gold nanorod, before and after
femtosecond laser irradiation, to assess the missing information. Combined
with molecular dynamics (MD) simulations based on the experimentally
determined 3D atomic-scale morphology, the complex atomistic rearrangements,
causing shape deformations and defect generation, are unraveled.
These rearrangements are simultaneously driven by surface diffusion, facet
restructuring, and strain formation, and are influenced by subtleties in the
atomic distribution at the surface. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000671662000001 |
Publication Date |
2021-07-11 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0935-9648 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
19.791 |
Times cited |
8 |
Open Access |
OpenAccess |
|
|
Notes |
W.A. and E.A.I. contributed equally to this work. The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128 – REALNANO and No. 770887 – PICOMETRICS), the European Union’s Seventh Framework Programme (ERC Advanced Grant No. 291667 – HierarSACol), and the European Commission (EUSMI). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in the Horizon2020 program (Grant 797153, SOPMEN). T.-S.D. acknowledges financial support from the National Science Foundation of China (NSFC, Grant No. 61905056). The authors also acknowledge financial support by the Research Foundation Flanders (FWO Grant G.0267.18N).; sygmaSB |
Approved |
Most recent IF: 19.791 |
|
|
Call Number |
EMAT @ emat @c:irua:179781 |
Serial |
6805 |
|
Permanent link to this record |