toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ahenach, J.; Cool, P.; Vansant, E.F.; Lebedev, O.; van Landuyt, J. doi  openurl
  Title (up) Influence of water on the pillaring of montmorillonite with aminopropyltriethoxysilane Type A1 Journal article
  Year 1999 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 1 Issue Pages 3703-3708  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000081765300046 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 10 Open Access  
  Notes Approved Most recent IF: 4.123; 1999 IF: NA  
  Call Number UA @ lucian @ c:irua:28250 Serial 1660  
Permanent link to this record
 

 
Author Woods, G.S.; Kiflawi, I.; Luyten, W.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Infrared spectra of type laB diamonds Type A1 Journal article
  Year 1993 Publication Philosophical magazine letters Abbreviated Journal Phil Mag Lett  
  Volume 67 Issue 6 Pages 405-411  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is shown that the infrared absorption spectra of pure type IaB diamonds, namely those that on cursory examination show only a B one-phonon component and neither A nor D, and the complete absence of a B' localized-mode platelet absorption peak, may be divided into two subgroups. The defect content of specimens of one of these subgroups has been studied before and comprises slip dislocations and voidites in random homogeneous distributions unconnected with the transformation of platelets to dislocation loops. Electron microscopy of a specimen of the other subgroup, which may be recognized by the presence of weak additional one-phonon absorption near 1100 cm-1, shows a population of dislocation loops resulting from the complete transformation of a former platelet population, plus accompanying voidites. It is suggested that the extra absorption is caused by the dislocation loops. Observation of the way in which loops and voidites are distributed suggests that voidite production and platelet transformation may not, after all, be interlinked phenomena, but parallel independent processes both promoted by the same unknown conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1993LG43000007 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0839;1362-3036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.087 Times cited 5 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:6837 Serial 1663  
Permanent link to this record
 

 
Author Lebedev, N.; Stehno, M.; Rana, A.; Gauquelin, N.; Verbeeck, J.; Brinkman, A.; Aarts, J. url  doi
openurl 
  Title (up) Inhomogeneous superconductivity and quasilinear magnetoresistance at amorphous LaTiO₃/SrTiO₃ interfaces Type A1 Journal article
  Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 5 Pages 055001  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have studied the transport properties of LaTiO3/SrTiO3 (LTO/STO) heterostructures. In spite of 2D growth observed in reflection high energy electron diffraction, transmission electron microscopy images revealed that the samples tend to amorphize. Still, we observe that the structures are conducting, and some of them exhibit high conductance and/or superconductivity. We established that conductivity arises mainly on the STO side of the interface, and shows all the signs of the two-dimensional electron gas usually observed at interfaces between STO and LTO or LaAlO3, including the presence of two electron bands and tunability with a gate voltage. Analysis of magnetoresistance (MR) and superconductivity indicates the presence of spatial fluctuations of the electronic properties in our samples. That can explain the observed quasilinear out-of-plane MR, as well as various features of the in-plane MR and the observed superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000588209300001 Publication Date 2020-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 1 Open Access OpenAccess  
  Notes ; NL and JA gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). The authors thank J Jobst, S Smink, K Lahabi and G Koster for useful discussion. ; Approved Most recent IF: 2.7; 2020 IF: 2.649  
  Call Number UA @ admin @ c:irua:173679 Serial 6545  
Permanent link to this record
 

 
Author Roxana Vlad, V.; Bartolome, E.; Vilardell, M.; Calleja, A.; Meledin, A.; Obradors, X.; Puig, T.; Ricart, S.; Van Tendeloo, G.; Usoskin, A.; Lee, S.; Petrykin, V.; Molodyk, A. pdf  doi
openurl 
  Title (up) Inkjet printing multideposited YBCO on CGO/LMO/MgO/Y2O3/Al2O3/Hastelloy tape for 2G-coated conductors Type A1 Journal article
  Year 2018 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 28 Issue 4 Pages 6601805  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present the preparation of a new architecture of coated conductor by Inkjet printing of low fluorine YBa2Cu3O7-x (YBCO) on top of SuperOx tape: CGO/LMO/IBAD-MgO/Y2O3/Al-2 O-3/Hastelloy. A five-layered multideposited, 475-nm-thick YBCO film was structurally and magnetically characterized. A good texture was achieved using this combination of buffer layers, requiring only a 30-nm-thin ion-beam-assisted deposition (IBAD)-MgO layer. The LF-YBCO CC reaches self-field critical current density values of J(c)(GB) similar to NJ 15.9 MA/cm(2) (5 K), similar to 1.23 MA/cm(2) (77 K) corresponding to an I-c (77 K) = 58.4 A/cm-width. Inkjet printing offers a flexible and cost effective method for YBCO deposition, allowing patterning of structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000429010900001 Publication Date 2018-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.288 Times cited 2 Open Access Not_Open_Access  
  Notes ; This work was performed within the framework of the EUROTAPES Project FP7-NMP.2011.2.2-1 under Grant280432, funded by the EU. ICMAB research was financed by the Ministry of Economy and Competitiveness, and FEDER funds under Projects MAT2011-28874-C02-01, MAT2014-51778-C2-1-R, ENE2014-56109-C3-3-R, and Consolider Nanoselect CSD2007-00041, and by Generalitat de Catalunya (2009 SGR 770, 2015 SGR 753, and Xarmae). ICMAB acknowledges support from Severo Ochoa Program (MINECO) under Grant SEV-2015-0496. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150711 Serial 4971  
Permanent link to this record
 

 
Author Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A.M.; Tarascon, J.-M. url  doi
openurl 
  Title (up) Insertion compounds and composites made by ball milling for advanced sodium-ion batteries Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue 7 Pages 10308  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)(2)F-3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P'2-Na-1[Fe0.5Mn0.5]O-2 and C/'Na3+xV2(PO4)(2)F-3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369021400002 Publication Date 2016-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 104 Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:131599 Serial 4197  
Permanent link to this record
 

 
Author Li, Y.; Tan, H.; Lebedev, O.; Verbeeck, J.; Biermans, E.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title (up) Insight into the growth of multiple branched MnOOH nanorods Type A1 Journal article
  Year 2010 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 10 Issue 7 Pages 2969-2976  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Multiple branched manganese oxide hydroxide (MnOOH) nanorods prepared by a hydrothermal process were extensively studied by transmission electron microscopy (TEM). A model of the branch formation is proposed together with a study of the interface structure. The sword-like tip plays a crucial role for the nanorods to form different shapes. Importantly, the branching occurs at an angle of around either 57 degrees or 123 degrees. Specifically, a (111) twin plane can only be formed at the interface with a 123 degrees angle. The interfaces formed with a 57 degrees angle usually contain edge dislocations. Electron energy loss spectroscopy (EELS) demonstrates that the whole crystal has a uniform chemical composition. Interestingly, an epitaxial growth of Mn3O4 at the radial surface was also observed under electron beam irradiation; this is because of the rough purification of the products. The proposed mechanism is expected to shed light on the branched/dendrite nanostructure growth and to provide opportunities for further novel nanomaterial structure growth and design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000279422700027 Publication Date 2010-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 41 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 4.055; 2010 IF: 4.390  
  Call Number UA @ lucian @ c:irua:83886UA @ admin @ c:irua:83886 Serial 1672  
Permanent link to this record
 

 
Author Saveleva, V.A.; Wang, L.; Kasian, O.; Batuk, M.; Hadermann, J.; Gallet, J.-j.; Bournel, F.; Alonso-Vante, N.; Ozouf, G.; Beauger, C.; Mayrhofer, K.J.J.; Cherevko, S.; Gago, A.S.; Friedrich, K.A.; Zafeiratos, S.; Savinova, E.R. url  doi
openurl 
  Title (up) Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 10 Issue 4 Pages 2508-2516  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The use of high amounts of iridium in industrial proton exchange membrane water electrolysers (PEMWE) could hinder their widespread use for the decarbonisation of society with hydrogen. Non-thermally oxidised Ir nanoparticles supported on antimony-doped tin oxide (SnO2:Sb, ATO) aerogel allow decreasing the use of the precious metal by more than 70 %, while enhancing the electro-catalytic activity and stability. To date the origin of these benefits remains unknown. Here we present clear evidence on the mechanisms that lead to the enhancement of the electrochemical properties of the catalyst. Operando near ambient pressure X-ray photoelectron spectroscopy on membrane electrode assemblies reveals a low degree of Ir oxidation, attributed to the oxygen spill-over from Ir to SnO2:Sb. Furthermore, the formation of highly unstable Ir(III) species is mitigated, while the decrease of Ir dissolution in Ir/SnO2:Sb is confirmed by inductively coupled plasma mass spectrometry (ICP-MS). The mechanisms that lead to the high activity and stability of Ir catalyst supported on SnO2:Sb aerogel for PEMWE are thus unveiled.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516887400011 Publication Date 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access OpenAccess  
  Notes The research leading to these results has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) for Fuel Cell and Hydrogen Joint Technology (FCH JU) Initiative under Grant No. 621237 (INSIDE). In addition, A.S.G. and C.B. thank the European Union’s Horizon 2020 research and innovation programme for funding the project PRETZEL under grant agreement No 779478 and it is supported by FCH JU. Solvay is acknowledged for providing Aquivion membrane and ionomer. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number EMAT @ emat @c:irua:167147 Serial 6341  
Permanent link to this record
 

 
Author Benedoue, S.; Benedet, M.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Seraglia, R.; Pagot, G.; Rizzi, G.A.; Balzano, V.; Gavioli, L.; Noto, V.D.; Barreca, D.; Maccato, C. url  doi
openurl 
  Title (up) Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams Type A1 Journal article
  Year 2023 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 13 Issue 6 Pages 1035  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000960297000001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access OpenAccess  
  Notes The present work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO—NANOMAT, INSTM21PDBARMAC—ATENA) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717—ESTEEM3. The FWO-Hercules fund G0H4316N ‘Direct electron detector for soft matter TEM’ is also acknowledged. Many thanks are also due to Dr. Riccardo Lorenzin for his support to experimental activities.; esteem3reported; esteem3TA Approved Most recent IF: 5.3; 2023 IF: 3.553  
  Call Number EMAT @ emat @c:irua:196115 Serial 7378  
Permanent link to this record
 

 
Author Barreca, D.; Gri, F.; Gasparotto, A.; Altantzis, T.; Gombac, V.; Fornasiero, P.; Maccato, C. url  doi
openurl 
  Title (up) Insights into the Plasma-Assisted Fabrication and Nanoscopic Investigation of Tailored MnO2Nanomaterials Type A1 Journal Article
  Year 2018 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 57 Issue 23 Pages 14564-14573  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Among transition metal oxides, MnO2 is of considerable importance for various technological end-uses,from heterogeneous catalysis to gas sensing, owing to its

structural flexibility and unique properties at the nanoscale. In this work, we demonstrate the successful fabrication of supported MnO2 nanomaterials by a catalyst-free, plasmaassisted process starting from a fluorinated manganese(II)

molecular source in Ar/O2 plasmas. A thorough multitechnique characterization aimed at the systematic investigation of material structure, chemical composition, and

morphology revealed the formation of F-doped, oxygendeficient, MnO2-based nanomaterials, with a fluorine content tunable as a function of growth temperature (TG). Whereas phase-pure β-MnO2 was obtained for 100 °C ≤ TG ≤ 300 °C, the formation of mixed phase MnO2 + Mn2O3 nanosystems took place at 400 °C. In addition, the system nano-organization could be finely tailored, resulting in a controllable evolution from wheat-ear columnar arrays to high aspect ratio pointed-tip nanorod assemblies. Concomitantly, magnetic force microscopy analyses suggested the formation of spin domains with features dependent on material morphology. Preliminary tests in Vislight activated photocatalytic degradation of rhodamine B aqueous solutions pave the way to possible applications of the target materials in wastewater purification.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452344400016 Publication Date 2018-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access Not_Open_Access  
  Notes The present work was financially supported by Padova University DOR 2016−2018 and P-DiSC #03BIRD2016- UNIPD projects. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO). Thanks are also due to Prof. Sara Bals (EMAT, University of Antwerp, Belgium) and to Dr. Giorgio Carraro (Department of Chemical Sciences, Padova University, Italy) for valuable support and experimental assistance. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:156245 Serial 5147  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Bontempi, E.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Depero, L.E.; Van Tendeloo, G.; Barreca, D. pdf  doi
openurl 
  Title (up) Insights on growth and nanoscopic investigation of uncommon iron oxide polymorphs Type A1 Journal article
  Year 2013 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume Issue 31 Pages 5454-5461  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Si(100)-supported Fe2O3 nanomaterials were developed by a chemical vapor deposition (CVD) approach. The syntheses, which were performed at temperatures between 400 and 550 °C, selectively yielded the scarcely studied β- and ϵ-Fe2O3 polymorphs under O2 or O2 + H2O reaction environments, respectively. Correspondingly, the observed morphology underwent a progressive evolution from interconnected nanopyramids to vertically aligned nanorods. The present study aims to provide novel insights into Fe2O3 nano-organization by a systematic investigation of the system structure/morphology and of their interrelations with growth conditions. In particular, for the first time, the β- and ϵ-Fe2O3 preparation process has been accompanied by a thorough multitechnique investigation, which, beyond X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM), is carried out by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), scanning TEM electron energy-loss spectroscopy (STEM-EELS), and high-angle annular dark-field STEM (HAADF-STEM). Remarkably, the target materials showed a high structural and compositional homogeneity throughout the whole thickness of the nanodeposit. In particular, spatially resolved EELS chemical maps through the spectrum imaging (SI) technique enabled us to gain important information on the local Fe coordination, which is of crucial importance in determining the system reactivity. The described preparation method is in fact a powerful tool to simultaneously tailor phase composition and morphology of iron(III) oxide nanomaterials, the potential applications of which include photocatalysis, magnetic devices, gas sensors, and anodes for Li-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330567000009 Publication Date 2013-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 18 Open Access  
  Notes Fwo; Countatoms Approved Most recent IF: 2.444; 2013 IF: 2.965  
  Call Number UA @ lucian @ c:irua:110946 Serial 1676  
Permanent link to this record
 

 
Author Li, H.; Bender, H.; Conard, T.; Maex, K.; Gutakovskii, A.; van Landuyt, J.; Froyen, L. pdf  doi
openurl 
  Title (up) Interaction of a Ti-capped Co thin film with Si3N4 Type A1 Journal article
  Year 2000 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 77 Issue 26 Pages 4307-4309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The reaction of a Ti (8 nm) capped Co film (15 nm) with a Si3N4 layer (150 nm) is studied after rapid thermal annealing at 660 degreesC for 120 s in a N-2 ambient. X-ray photoelectron spectroscopy, transmission electron microscopy, electron energy-loss spectroscopy, and Auger electron spectroscopy are used to study the reaction products. Combining the results of the different analyses yields a layer stack consisting of: TiO2/TiO/unreacted Co/(Ti,Co)(2)N/Co2Si, followed by amorphous Si3N4. The reaction mechanisms are discussed. Conclusions concerning the risk for degradation of nitride spacers in advanced devices are drawn. (C) 2000 American Institute of Physics. [S0003-6951(00)05248-7].  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000166120500021 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 3 Open Access  
  Notes Approved Most recent IF: 3.411; 2000 IF: 3.906  
  Call Number UA @ lucian @ c:irua:104225 Serial 1683  
Permanent link to this record
 

 
Author Li, C.-F.; Zhao, K.; Liao, X.; Hu, Z.-Y.; Zhang, L.; Zhao, Y.; Mu, S.; Li, Y.; Li, Y.; Van Tendeloo, G.; Sun, C. pdf  url
doi  openurl
  Title (up) Interface cation migration kinetics induced oxygen release heterogeneity in layered lithium cathodes Type A1 Journal article
  Year 2021 Publication Energy Storage Materials Abbreviated Journal  
  Volume 36 Issue Pages 115-122  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The irreversible release of the lattice oxygen in layered cathodes is one of the major degradation mechanisms of lithium ion batteries, which accounts for a number of battery failures including the voltage/capacity fade, loss of cation ions and detachment of the primary particles, etc. Oxygen release is generally attributed to the stepwise thermodynamic controlled phase transitions from the layered to spinel and rock salt phases. Here, we report a strong kinetic effect from the mobility of cation ions, whose migration barrier can be significantly modulated by the phase epitaxy at the degrading interface. It ends up with a clear oxygen release heterogeneity and completely different reaction pathways between the thin and thick areas, as well as the interparticle valence boundaries, both of which widely exist in the mainstream cathode design with the secondary agglomerates. This work unveils the origin of the heterogenous oxygen release in the layered cathodes. It also sheds light on the rational design of cathode materials with enhanced oxygen stability by suppressing the cation migration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620584300009 Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176654 Serial 6730  
Permanent link to this record
 

 
Author O'Sullivan, M.; Hadermann, J.; Dyer, M.S.; Turner, S.; Alaria, J.; Manning, T.D.; Abakumov, A.M.; Claridge, J.B.; Rosseinsky, M.J. pdf  doi
openurl 
  Title (up) Interface control by chemical and dimensional matching in an oxide heterostructure Type A1 Journal article
  Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 8 Issue 8 Pages 347-353  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Interfaces between different materials underpin both new scientific phenomena, such as the emergent behaviour at oxide interfaces, and key technologies, such as that of the transistor. Control of the interfaces between materials with the same crystal structures but different chemical compositions is possible in many materials classes, but less progress has been made for oxide materials with different crystal structures. We show that dynamical self-organization during growth can create a coherent interface between the perovskite and fluorite oxide structures, which are based on different structural motifs, if an appropriate choice of cations is made to enable this restructuring. The integration of calculation with experimental observation reveals that the interface differs from both the bulk components and identifies the chemical bonding requirements to connect distinct oxide structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372505500013 Publication Date 2016-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 28 Open Access  
  Notes Approved Most recent IF: 25.87  
  Call Number UA @ lucian @ c:irua:133189 Serial 4199  
Permanent link to this record
 

 
Author Gehrke, K.; Moshnyaga, V.; Samwer, K.; Lebedev, O.I.; Verbeeck, J.; Kirilenko, D.; Van Tendeloo, G. url  doi
openurl 
  Title (up) Interface controlled electronic variations in correlated heterostructures Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 11 Pages 113101,1-113101,4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An interface modification of (LaCa)MnO3-BaTiO3 superlattices was found to massively influence magnetic and magnetotransport properties. Moreover it determines the crystal structure of the manganite layers, changing it from orthorhombic (Pnma) for the conventional superlattice (cSL), to rhombohedral (R3̅ c) for the modified one (mSL). While the cSL shows extremely nonlinear ac transport, the mSL is an electrically homogeneous material. The observations go beyond an oversimplified picture of dead interface layers and evidence the importance of electronic correlations at perovskite interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281643200001 Publication Date 2010-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes This work was supported by DFG via SFB 602, TPA2. Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84249UA @ admin @ c:irua:84249 Serial 1691  
Permanent link to this record
 

 
Author Do, M.T.; Gauquelin, N.; Nguyen, M.D.; Blom, F.; Verbeeck, J.; Koster, G.; Houwman, E.P.; Rijnders, G. url  doi
openurl 
  Title (up) Interface degradation and field screening mechanism behind bipolar-cycling fatigue in ferroelectric capacitors Type A1 Journal article
  Year 2021 Publication Apl Materials Abbreviated Journal Apl Mater  
  Volume 9 Issue 2 Pages 021113  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Polarization fatigue, i.e., the loss of polarization of ferroelectric capacitors upon field cycling, has been widely discussed as an interface related effect. However, mechanism(s) behind the development of fatigue have not been fully identified. Here, we study the fatigue mechanisms in Pt/PbZr0.52Ti0.48O3/SrRuO3 (Pt/PZT/SRO) capacitors in which all layers are fabricated by pulsed laser deposition without breaking the vacuum. With scanning transmission electron microscopy, we observed that in the fatigued capacitor, the Pt/PZT interface becomes structurally degraded, forming a 5 nm-10 nm thick non-ferroelectric layer of crystalline ZrO2 and diffused Pt grains. We then found that the fatigued capacitors can regain the full initial polarization switching if the externally applied field is increased to at least 10 times the switching field of the pristine capacitor. These findings suggest that polarization fatigue is driven by a two-step mechanism. First, the transient depolarization field that repeatedly appears during the domain switching under field cycling causes decomposition of the metal/ferroelectric interface, resulting in a non-ferroelectric degraded layer. Second, this interfacial non-ferroelectric layer screens the external applied field causing an increase in the coercive field beyond the usually applied maximum field and consequently suppresses the polarization switching in the cycled capacitor. Our work clearly confirms the key role of the electrode/ferroelectric interface in the endurance of ferroelectric-based devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000630052100006 Publication Date 2021-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 5 Open Access OpenAccess  
  Notes This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek through Grant No. F62.3.15559. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. N.G. and J.V. acknowledge funding from the GOA project “Solarpaint” of the University of Antwerp. This work has also received funding from the European Union's Horizon 2020 research and innovation program under Grant No. 823717-ESTEEM3. We acknowledge D. Chezganov for his useful insights. Approved Most recent IF: 4.335  
  Call Number UA @ admin @ c:irua:177663 Serial 6783  
Permanent link to this record
 

 
Author Hudry, D.; De Backer, A.; Popescu, R.; Busko, D.; Howard, I.A.; Bals, S.; Zhang, Y.; Pedrazo‐Tardajos, A.; Van Aert, S.; Gerthsen, D.; Altantzis, T.; Richards, B.S. pdf  url
doi  openurl
  Title (up) Interface Pattern Engineering in Core‐Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties Type A1 Journal article
  Year 2021 Publication Small Abbreviated Journal Small  
  Volume Issue Pages 2104441  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000710758000001 Publication Date 2021-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 17 Open Access OpenAccess  
  Notes The authors would like to acknowledge the financial support provided by the Helmholtz Recruitment Initiative Fellowship (B.S.R.) and the Helmholtz Association's Research Field Energy (Materials and Technologies for the Energy Transition program, Topic 1 Photovoltaics and Wind Energy). The authors would like to thank the Karlsruhe Nano Micro Facility (KNMF) for STEM access. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (Grant agreement no. 770887 PICOMETRICS to S.V.A. and Grant agreement no. 815128 REALNANO to S.B.). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Projects no. G.0502.18N, G.0267.18N, and a postdoctoral grant to A.D.B. T.A. acknowledges funding from the University of Antwerp Research fund (BOF). This project had received funding (EUSMI proposal #E181100205) from the European Union's Horizon 2020 Research and Innovation Programme under Grant agreement no 731019 (EUSMI). D.H. would like to thank “CGFigures” for helpful tutorials on 3D graphics with Blender.; sygmaSB Approved Most recent IF: 8.643  
  Call Number EMAT @ emat @c:irua:183285 Serial 6817  
Permanent link to this record
 

 
Author Shapoval, O.; Huehn, S.; Verbeeck, J.; Jungbauer, M.; Belenchuk, A.; Moshnyaga, V. pdf  doi
openurl 
  Title (up) Interface-controlled magnetism and transport of ultrathin manganite films Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 17 Pages 17c711-3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report ferromagnetic, T-C = 240 K, and metallic, T-MI = 250 K, behaviors of a three unit cell thick interface engineered lanthanum manganite film, grown by metalorganic aerosol deposition technique on SrTiO3(100) substrates. Atomically resolved electron microscopy and chemical analysis show that ultrathin manganite films start to grow with La-O layer on a strongly Mn/Ti-intermixed interface, engineered by an additional deposition of 2 u.c. of Sr-Mn-O. Such interface engineering results in a hole-doped manganite layer and stabilizes ferromagnetism and metallic conductivity down to the thickness of d = 3 u.c. The films with d = 8 u.c. demonstrate a bulk-like transport behavior with T-MI similar to T-C = 310 – 330 K. (C) 2013 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000319292800195 Publication Date 2013-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes Ifox; Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109009UA @ admin @ c:irua:109009 Serial 1692  
Permanent link to this record
 

 
Author Tian, H.; Verbeeck, J.; Brück, S.; Paul, M.; Kufer, D.; Sing, M.; Claessen, R.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Interface-induced modulation of charge and polarization in thin film Fe3O4 Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 3 Pages 461-465  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Charge and polarization modulations in Fe3O4 are controlled by taking advantage of interfacial strain effects. The feasibility of oxidation state control by strain modification is demonstrated and it is shown that this approach offers a stable configuration at room temperature. Direct evidence of how a local strain field changes the atomic coordination and introduces atomic displacements leading to polarization of Fe ions is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000334289300011 Publication Date 2013-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 15 Open Access  
  Notes Vortex; FWO; Countatoms; Hercules ECASJO_; Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:112419UA @ admin @ c:irua:112419 Serial 1694  
Permanent link to this record
 

 
Author Rivas-Murias, B.; Testa-Anta, M.; Skorikov, A.S.; Comesana-Hermo, M.; Bals, S.; Salgueirino, V. pdf  url
doi  openurl
  Title (up) Interfaceless exchange bias in CoFe₂O₄ nanocrystals Type A1 Journal article
  Year 2023 Publication Nano letters Abbreviated Journal  
  Volume 23 Issue 5 Pages 1688-1695  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxidized cobalt ferrite nanocrystals with a modified distribution of the magnetic cations in their spinel structure give place to an unusual exchange-coupled system with a double reversal of the magnetization, exchange bias, and increased coercivity, but without the presence of a clear physical interface that delimits two well-differentiated magnetic phases. More specifically, the partial oxidation of cobalt cations and the formation of Fe vacancies at the surface region entail the formation of a cobalt-rich mixed ferrite spinel, which is strongly pinned by the ferrimagnetic background from the cobalt ferrite lattice. This particular configuration of exchange-biased magnetic behavior, involving two different magnetic phases but without the occurrence of a crystallographically coherent interface, revolu-tionizes the established concept of exchange bias phenomenology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000940892000001 Publication Date 2023-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 4 Open Access OpenAccess  
  Notes M.T.-A. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovaci?n under grant FJC2021- 046680-I. S.B. acknowledges funding from the European Research Council under the European Union?s Horizon 2020 research and innovation program (ERC Consolidator Grant N o 815128 REALNANO) . V.S. acknowledges the financial support from the Spanish Ministerio de Ciencia e Innovaci?n under project PID2020-119242-I00 and from the European Union under project H2020-MSCA-RISE-2019 PEPSA-MATE (project number 872233) . Approved Most recent IF: 10.8; 2023 IF: 12.712  
  Call Number UA @ admin @ c:irua:195186 Serial 7315  
Permanent link to this record
 

 
Author Boyat, X.; Ballat-Durand, D.; Marteau, J.; Bouvier, S.; Favergeon, J.; Orekhov, A.; Schryvers, D. pdf  doi
openurl 
  Title (up) Interfacial characteristics and cohesion mechanisms of linear friction welded dissimilar titanium alloys: Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) and Ti–6Al–2Sn–4Zr–2Mo (Ti6242) Type A1 Journal article
  Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 158 Issue Pages 109942  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A detailed microstructural examination endeavoring to understand the interfacial phenomena yielding to cohesion

in solid-state assembling processes was performed. This study focuses on the transition zone of a dissimilar

titanium alloy joint obtained by Linear Friction Welding (LFW) the β-metastable Ti17 to the near-α

Ti6242. The transition zone delimitating both alloys is characterized by a sharp microstructure change from

acicular HCP (Hexagonal Close-Packed) α′ martensitic laths in the Ti6242 to equiaxed BCC β (Body-Centered

Cubic) subgrains in the Ti17; these α′ plates were shown to precipitate within prior-β subgrains remarkably more

rotated than the ones formed in the Ti17. Both α′ and β microstructures were found to be intermingled within

transitional subgrains demarcating a limited gradient from one chemical composition to the other. These peculiar

interfacial grains revealed that the cohesive mechanisms between the rubbing surfaces occurred in the

single-phase β domain under severe strain and high-temperature conditions. During the hot deformation process,

the mutual migration of the crystalline interfaces from one material to another assisted by a continuous dynamic

recrystallization process was identified as the main adhesive mechanism at the junction zone. The latter led to

successful cohesion between the rubbing surfaces. Once the reciprocating motion stopped, fast cooling caused

both materials to experience either a βlean→α′ or βlean→βmetastable transformation in the interfacial zone depending

on their local chemical composition. The limited process time and the subsequent hindered chemical

homogenization at the transition zone led to retaining the so-called intermingled α’/βm subgrains constituting

the border between both Ti-alloys.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503314000018 Publication Date 2019-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited Open Access  
  Notes The authors gratefully acknowledge the financial support of the French National Research Agency (ANR) through the OPTIMUM ANR- 14-CE27-0017 project. The authors would also like to thank the Hautsde- France Region and the European Regional Development Fund (ERDF) 2014/2020 for the co-funding of this work. The authors would also like to thank ACB for providing LFW samples as well as Airbus for their technical support. Approved Most recent IF: 2.714  
  Call Number EMAT @ emat @c:irua:165084 Serial 5441  
Permanent link to this record
 

 
Author Do, M.T.; Gauquelin, N.; Nguyen, M.D.; Wang, J.; Verbeeck, J.; Blom, F.; Koster, G.; Houwman, E.P.; Rijnders, G. pdf  url
doi  openurl
  Title (up) Interfacial dielectric layer as an origin of polarization fatigue in ferroelectric capacitors Type A1 Journal article
  Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 10 Issue 1 Pages 7310  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Origins of polarization fatigue in ferroelectric capacitors under electric field cycling still remain unclear. Here, we experimentally identify origins of polarization fatigue in ferroelectric PbZr0.52Ti0.48O3 (PZT) thin-film capacitors by investigating their fatigue behaviours and interface structures. The PZT layers are epitaxially grown on SrRuO3-buffered SrTiO3 substrates by a pulsed laser deposition (PLD), and the capacitor top-electrodes are various, including SrRuO3 (SRO) made by in-situ PLD, Pt by in-situ PLD (Pt-inPLD) and ex-situ sputtering (Pt-sputtered). We found that fatigue behaviour of the capacitor is directly related to the top-electrode/PZT interface structure. The Pt-sputtered/PZT/SRO capacitor has a thin defective layer at the top interface and shows early fatigue while the Pt-inPLD/PZT/SRO and SRO/PZT/SRO capacitor have clean top-interfaces and show much more fatigue resistance. The defective dielectric layer at the Pt-sputtered/PZT interface mainly contains carbon contaminants, which form during the capacitor ex-situ fabrication. Removal of this dielectric layer significantly delays the fatigue onset. Our results clearly indicate that dielectric layer at ferroelectric capacitor interfaces is the main origin of polarization fatigue, as previously proposed in the charge injection model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000559953800003 Publication Date 2020-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 18 Open Access OpenAccess  
  Notes ; The authors acknowledge the financial support of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek through Grant No. F62.3.15559. ; Approved Most recent IF: 4.6; 2020 IF: 4.259  
  Call Number EMAT @ emat @c:irua:169865 Serial 6374  
Permanent link to this record
 

 
Author Sun, C.; Liao, X.; Peng, H.; Zhang, C.; Van Tendeloo, G.; Zhao, Y.; Wu, J. url  doi
openurl 
  Title (up) Interfacial gliding-driven lattice oxygen release in layered cathodes Type A1 Journal article
  Year 2022 Publication Cell reports physical science Abbreviated Journal  
  Volume 3 Issue 1 Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The oxygen release of layered cathodes causes many battery failures, but the underlying mechanism in an actual working cathode is still elusive as it involves secondary agglomerates that introduce complicated boundary structures. Here, we report a general structure instability on the mismatch boundaries driven by interfacial gliding-it introduces a shear stress causing a distortion of the metal-oxygen octahedra framework that reduces its kinetic stability. The migration of cations and diffusion of oxygen vacancies continue to degrade the whole particle from the boundary to the interior, followed by the formation of nano-sized cracks on the fast-degrading interfaces. This work reveals a robust chemical and mechanical interplay on the oxygen release inherent to the intergranular boundaries of layered cathodes. It also suggests that radially patterned columnar grains with low-angle planar boundaries would be an efficient approach to mitigate the boundary oxygen release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000745659500012 Publication Date 2021-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:186420 Serial 6961  
Permanent link to this record
 

 
Author Tessier, M.D.; Baquero, E.A.; Dupont, D.; Grigel, V.; Bladt, E.; Bals, S.; Coppel, Y.; Hens, Z.; Nayral, C.; Delpech, F. url  doi
openurl 
  Title (up) Interfacial oxidation and photoluminescence of InP-Based core/shell quantum dots Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 30 Pages 6877-6883  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Indium phosphide colloidal quantum dots (QDs) are emerging as an efficient cadmium-free alternative for optoelectronic applications. Recently, syntheses based on easy-to-implement aminophosphine precursors have been developed. We show by solid-state nuclear magnetic resonance spectroscopy that this new approach allows oxide-free indium phosphide core or core/shell quantum dots to be made. Importantly, the oxide-free core/shell interface does not help in achieving higher luminescence efficiencies. We demonstrate that in the case of InP/ZnS and InP/ZnSe QDs, a more pronounced oxidation concurs with a higher photoluminescence efficiency. This study suggests that a II-VI shell on a III-V core generates an interface prone to defects. The most efficient InP/ZnS or InP/ZnSe QDs are therefore made with an oxide buffer layer between the core and the shell: it passivates these interface defects but also results in a somewhat broader emission line width.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000447237800031 Publication Date 2018-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 74 Open Access OpenAccess  
  Notes ; The authors thank L. Biadala and C. Delerue for fruitful discussion. Z.H. acknowledges support by the European Commission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656), by Research Foundation Flanders (Project 17006602), and by Ghent University (GOA No. 01G01513). Z.H., M.D.T., and D.D. acknowledge the Strategisch Initiatief Materialen in Vlaanderen of Agentschap Innoveren en Ondernemen (SIM VLAIO), vzw (SBO-QDOCCO, ICON-QUALIDI). This work was supported by the Universite Paul Sabatier, the Region Midi-Pyrenees, the CNRS, the Institut National des Sciences Appliquees of Toulouse, and the Agence Nationale pour la Recherche (Project ANR-13-IS10-0004-01). E.A.B. is grateful to Marie Curie Actions and Campus France for a PRESTIGE postdoc fellowship (FP7 /2007-2013) under REA Grant Agreement PCOFUND-GA-2013-609102. E.B. acknowledges financial support from Research Foundation Flanders (FWO). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:154732UA @ admin @ c:irua:154732 Serial 5109  
Permanent link to this record
 

 
Author Ding, J.F.; Lebedev, O.I.; Turner, S.; Tian, Y.F.; Hu, W.J.; Seo, J.W.; Panagopoulos, C.; Prellier, W.; Van Tendeloo, G.; Wu, T. doi  openurl
  Title (up) Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 5 Pages 054428-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The magnetic properties of manganite bilayers composed of G-type antiferromagnetic (AFM) SrMnO3 and double-exchange ferromagnetic (FM) La0.7Sr0.3MnO3 are studied. A spin-glass state is observed as a result of competing magnetic orders and spin frustration at the La0.7Sr0.3MnO3/SrMnO3 interface. The dependence of the irreversible temperature on the cooling magnetic field follows the Almeida-Thouless line. Although an ideal G-type AFM SrMnO3 is featured with a compensated spin configuration, the bilayers exhibit exchange bias below the spin glass freezing temperature, which is much lower than the Néel temperature of SMO, indicating that the exchange bias is strongly correlated with the spin glass state. The results indicate that the spin frustration that originates from the competition between the AFM super-exchange and the FM double-exchange interactions can induce a strong magnetic anisotropy at the La0.7Sr0.3MnO3/SrMnO3 interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315271200002 Publication Date 2013-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 98 Open Access  
  Notes FWO; COUNTATOMS; Hercules Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107349 Serial 1696  
Permanent link to this record
 

 
Author Colin D. Judge, Nicolas Gauquelin, Lori Walters, Mike Wright, James I. Cole, James Madden, Gianluigi A. Botton, Malcolm Griffiths pdf  doi
openurl 
  Title (up) Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen Type A1 Journal Article
  Year 2015 Publication Journal of Nuclear Materials Abbreviated Journal  
  Volume 457 Issue 457 Pages 165-172  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract In recent years, it has been observed that Inconel X-750 spacers in CANDU reactors exhibits lower ductility with reduced load carrying capacity following irradiation in a reactor environment. The fracture behaviour of ex-service material was also found to be entirely intergranular at high doses. The thermalized flux spectrum in a CANDU reactor leads to transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n, α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Microstructural examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix–precipitate interfaces. Helium bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips provide information that is consistent with crack propagation along grain boundaries due to the presence of He bubbles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349169100022 Publication Date 2014-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 29 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4540  
Permanent link to this record
 

 
Author Lu, J.; Roeffaers, M.B.J.; Bartholomeeusen, E.; Sels, B.F.; Schryvers, D. doi  openurl
  Title (up) Intergrowth of components and ramps in coffin-shaped ZSM-5 zeolite crystals unraveled by focused ion beam-assisted transmission electron microscopy Type A1 Journal article
  Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 20 Issue 1 Pages 42-49  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Scanning electron microscopy, focused ion beam (FIB), and transmission electron microscopy are combined to study the intergrowth of 90 degrees rotational components and of ramps in coffin-shaped ZSM-5 crystals. The 90 degrees rotational boundaries with local zig-zag features between different intergrowth components are observed in the main part of crystal. Also a new kind of displacement boundary is described. At the displacement boundary there is a shift of the unit cells along the boundary without a change in orientation. Based on lamellae prepared with FIB from different positions of the ramps and crystal, the orientation relationships between ramps and the main part of the crystal are studied and the three-dimensional morphology and growth mechanism of the ramp are illustrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos 000335378400006 Publication Date 2013-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 7 Open Access  
  Notes Approved Most recent IF: 1.891; 2014 IF: 1.877  
  Call Number UA @ lucian @ c:irua:117688 Serial 1697  
Permanent link to this record
 

 
Author Molina, L.; Egoavil, R.; Turner, S.; Thersleff, T.; Verbeeck, J.; Holzapfel, B.; Eibl, O.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Interlayer structure in YBCO-coated conductors prepared by chemical solution deposition Type A1 Journal article
  Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 26 Issue 7 Pages 075016-75018  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The functionality of YBa2Cu3O7−δ (YBCO)-coated conductor technology depends on the reliability and microstructural properties of a given tape or wire architecture. Particularly, the interface to the metal tape is of interest since it determines the adhesion, mechanical stability of the film and thermal contact of the film to the substrate. A trifluoroacetate (TFA)metal organic deposition (MOD) prepared YBCO film deposited on a chemical solution-derived buffer layer architecture based on CeO2/La2Zr2O7 and grown on a flexible Ni5 at.%W substrate with a {100}⟨001⟩ biaxial texture was investigated. The YBCO film had a thickness was 440 nm and a jc of 1.02 MA cm−2 was determined at 77 K and zero external field. We present a sub-nanoscale analysis of a fully processed solution-derived YBCO-coated conductor by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS). For the first time, structural and chemical analysis of the valence has been carried out on the sub-nm scale. Intermixing of Ni, La, Ce, O and Ba takes place at these interfaces and gives rise to nanometer-sized interlayers which are a by-product of the sequential annealing process. Two distinct interfacial regions were analyzed in detail: (i) the YBCO/CeO2/La2Zr2O7 region (10 nm interlayer) and (ii) the La2Zr2O7/Ni5 at.%W substrate interface region (20 nm NiO). This is of particular significance for the functionality of these YBCO-coated conductor architectures grown by chemical solution deposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000319973800024 Publication Date 2013-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 11 Open Access  
  Notes vortex; Countatoms; Fwo; Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.878; 2013 IF: 2.796  
  Call Number UA @ lucian @ c:irua:108704UA @ admin @ c:irua:108704 Serial 1698  
Permanent link to this record
 

 
Author Lu, J.; Bartholomeeusen, E.; Sels, B.F.; Schryvers, D. pdf  url
doi  openurl
  Title (up) Internal architecture of coffin-shaped ZSM-5 zeolite crystals with hourglass contrast unravelled by focused ion beam-assisted transmission electron microscopy: INTERNAL ARCHITECTURE OF COFFIN-SHAPED Type A1 Journal article
  Year 2017 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford  
  Volume 265 Issue 265 Pages 27-33  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Optical microscopy, focused ion beam and transmission electron microscopy are combined to study the internal architecture in a coffin-shaped ZSM-5 crystal showing an hourglass contrast in optical microscopy. Based on parallel lamellas from different positions in the crystal, the orientation relationships between the intergrowth components of the crystal are studied and the internal architecture and growth mechanism are illustrated. The crystal is found to contain two pyramid-like components aside from a central component. Both pyramid-like components are rotated by 90 degrees along the common c-axis and with respect to the central component while the interfaces between the components show local zig-zag feature, the latter indicating variations in relative growth velocity of the two components. The pyramid-like intergrowth components are larger and come closer to one another in the middle of the crystal than at the edges, but they do not connect. A model of multisite nucleation and growth of 90 degrees intergrowth components is proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392487400004 Publication Date 2016-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited 4 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0603.10N ; Approved Most recent IF: 1.692  
  Call Number EMAT @ emat @ c:irua:141015 Serial 4437  
Permanent link to this record
 

 
Author Schryvers, D.; Goessens, C.; Safran, G.; Toth, L. pdf  doi
openurl 
  Title (up) Internal calibration technique for HREM studies of nanoscale particles Type A1 Journal article
  Year 1993 Publication Microscopy research and technique T2 – JOINT MEETING OF DUTCH SOC FOR ELECTRON MICROSCOPY / BELGIAN SOC FOR, ELECTRON MICROSCOPY / BELGIAN SOC FOR CELL BIOLOGY, DEC 10-11, 1992, ANTWERP, BELGIUM Abbreviated Journal Microsc Res Techniq  
  Volume 25 Issue 2 Pages 185-186  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1993LB60700015 Publication Date 2005-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1059-910X;1097-0029; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.154 Times cited 1 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:104488 Serial 1700  
Permanent link to this record
 

 
Author Berends, A.C.; van der Stam, W.; Hofmann, J.P.; Bladt, E.; Meeldijk, J.D.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title (up) Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 30 Pages 2400-2413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract ZnS shelling of I-III-VI(2 )nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 degrees C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2 ) and high reaction temperatures (210 degrees C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000430023700027 Publication Date 2018-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 85 Open Access OpenAccess  
  Notes ; Annelies van der Bok is gratefully acknowledged for performing the ICP measurements. A.C.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. ECHO.712.014.001. S.B. and E.B. acknowledge financial support from European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:150772UA @ admin @ c:irua:150772 Serial 4972  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: