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Abstract: Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for
photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous
organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper
engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds,
tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present
study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates
by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts
[CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition.
After examining the influence of processing conditions on the material characteristics, the developed
systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts
for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The
obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting
performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a
different reaction mechanism. The related insights, provided by a multi-technique characterization,
may provide valuable guidelines for the implementation of active nanomaterials in environmental
remediation and sustainable solar-to-chemical energy conversion.

Keywords: graphitic carbon nitride; CoPi; CoO; CoFe2O4; phthalates; wastewater remediation;
oxygen evolution reaction

1. Introduction

Over the past decades, the ever-increasing industrialization and world population
growth have led to an unprecedented consumption of energy, mainly sustained by fossil
fuels and, in parallel, to numerous harmful environmental effects, among which is wa-
ter quality deterioration [1–7]. The latter is nowadays regarded as a global threat that
is negatively impacting natural ecosystems [8] and is precluding large-scale access to
clean water resources [9], whose safeguard is an urgent priority towards the wellbeing
of society. In fact, the demand for both sustainable energy and drinking quality water
is predicted to undergo a notable increase within 2050 [5,10]. Despite the fact that water
is a largely abundant natural resource, the most Earth-abundant reservoir (~97% of the
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total H2O) is salt water from oceans or seas, whereas clean freshwater available for human
consumption amounts to less than 1% [11], due to the daily discharge of several harmful
compounds [1–3,6]. Unfortunately, many of these pollutants (including pesticides, pharma-
ceuticals, and dyes) are recalcitrant organic species that cannot be efficiently degraded by
conventional treatments [1,6,11]. To this aim, a valuable alternative is offered by advanced
oxidation processes, enabling efficient H2O purification under ambient conditions thanks
to the generation of powerful oxidizing agents (i.e., hydroxyl radicals, •OH) [6,11], as in
the Fenton process [10–12]. These kinds of photoactivated processes, driven by n-type
active semiconductors such as TiO2 [12–15], are gaining a strategic importance for the
simultaneous production of green H2 and water purification, which are of remarkable
interest for real-world end-uses towards improved sustainability. As an alternative to
TiO2-based photoanodes, gCN, a Vis-light active semiconductor, offers various concomitant
advantages, including cost effectiveness, a negligible environmental impact, a favorable
chemical reactivity, and good stability in various environments [16]. These features, cou-
pled to the suitable band edge positions, have prompted its increasing investigation as an
H2O splitting photoanode [4,5,17–19], though its use as a (photo)electrocatalyst for water
decontamination has been less explored to date [20].

In the present work, we focused our attention on how relatively inefficient
(photo)electrocatalysts for the oxygen evolution reaction (OER), the bottleneck of wa-
ter splitting, can be, on the contrary, interesting platforms for •OH production in processes
aimed at the degradation of aqueous pollutants. Specifically, we show how gCN flakes
deposited by EPD on highly conductive and porous Ni foams can efficiently trigger OER
if coupled with suitable Co-containing cocatalysts (CoO, CoFe2O4, or CoPi) [21,22]. The
latter have been introduced in low amounts onto the pristine gCN by RF-sputtering or elec-
trodeposition. A thorough characterization by complementary analytical tools evidenced
that material OER performances were favorably boosted by the formation of suitable nano-
junctions, suppressing detrimental electron-hole recombination and the favorable CoPi
catalytic action [4,5,19,23]. Conversely, the use of bare gCN resulted in a more efficient
production of •OH radicals and an enhanced degradation of aqueous KHP, a recalcitrant
pollutant used as a standard benchmark [24,25] as confirmed by the “coumarin test” [14,26].
This aspect, i.e., the enhanced •OH radicals production over supported gCN flakes, which
has not been addressed in detail up to date, is a key issue for the eventual mineralization of
water soluble organic pollutants. In the following, after a multi-technique chemico-physical
investigation of the developed electrocatalyst materials, their functional performances
are presented and critically discussed as a function of the used synthesis and processing
conditions. This work provides a new paradigm for constructing advanced photocatalysts
for effective organic pollutant degradation and green energy conversion.

2. Materials and Methods
2.1. Material Preparation

In the present work, gCN-based systems were fabricated either in an Ar or air atmo-
sphere (hereafter indicated as gCNAr or gCNair, respectively). Specifically, gCN powders
(synthesized as described in the Supplementary Materials Section S1.1) were finely grinded
and subsequently used in EPD experiments. Accordingly, 40 mg of gCN and 10 mg of I2
were dispersed into a beaker containing 50 mL of acetone and the resulting mixture was
sonicated for 20 min. Then, a pre-cleaned [27] Ni foam substrate (cathode) and carbon
paper (anode), connected to a DC generator, were immersed in the resulting suspension at
a distance of 10 mm. For bare and functionalized gCNAr-based materials, experimental
parameters for the carbon nitride deposition (EPD conditions: 5 min/50 V) were optimized
according to our recently published work [19]. For gCNair-electrode materials, carbon ni-
tride EPD conditions were preliminarily adjusted, testing different deposition times (from
1 to 15 min) and applied potentials (from 10 to 50 V), and selecting the ones (1 min/10 V)
yielding the best photocurrents. Finally, the samples obtained from gCNAr and gCNair

powders were thermally treated in Ar (550 ◦C, 2.5 h) or in air (300 ◦C, 1 h), respectively.
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The functionalization of gCNAr-based samples with CoO or CoFe2O4 cocatalysts was
performed by RF-sputtering from Co (Alfa Aesar®, Ward Hill, MA, USA; purity = 99.95%)
or Co3O4-Fe2O3 targets (Neyco, Vanves, France; purity = 99.9%), using a custom-built, two-
electrode plasmochemical reactor (ν = 13.56 MHz) and with the previously reported experi-
mental settings [19]. The resulting materials were ultimately annealed in an Ar atmosphere
at 500 ◦C for 2.5 h. Conversely, gCNair-based electrodes were functionalized with CoPi by
electrodeposition. Experiments were carried out using an electrochemical workstation (Auto-
lab PGSTAT-204 potentiostat/galvanostat, Utrecht, The Netherlands) and a three-electrode
system composed of a Ni foam-supported material as the working electrode, a Pt coil as the
counter-electrode, and an Ag/AgCl reference electrode. CoPi deposition was carried out
from 0.5 mM CoCl2 aqueous solutions in 0.1 M potassium phosphate buffer (PBS, i.e., 0.1 M
K2HPO4 and KH2PO4, pH = 7.1), following a previously reported procedure [23], until the
highest OER current density was achieved (typically within 2–3 CV cycles). Figure S1 reports
the overall preparation procedure for gCN powders and the resulting Ni foam electrode
materials, along with the most relevant synthesis conditions.

2.2. Material Characterization
2.2.1. Characterization of gCN Powders

X-ray diffraction (XRD) measurements were performed using a Bruker (Karlsruhe, Ger-
many) AXS D8 Advance Plus diffractometer, equipped a CuKα X-ray source
(λ = 1.54051 Å). The average crystal size was estimated through the Scherrer equation.
Analyses were carried out at the PanLab facility (Department of Chemical Sciences, Padova
University) founded by the MIUR Dipartimento di Eccellenza grant “NExuS”. Fourier
transform-infrared (FT-IR) spectra were recorded in transmittance mode on KBr pellets by
means of a Thermo-Nicolet (Nicolet Instrument Corporation, WI, USA) Nexus 860 instru-
ment (resolution = 4 cm−1). UV-Vis diffuse reflectance spectra were recorded on a Cary 5E
(Varian, Palo Alto, CA, USA) spectrophotometer (spectral bandwidth = 1 nm), equipped
with an integration sphere. The evaluation of band gap (EG) values was performed using
the Tauc equation [f(R)hν]n vs. hν, where f(R) is the Kubelka–Munk function and R is the
measured reflectance, assuming indirect and allowed transitions (n = 1

2 ) [18,28,29].

2.2.2. Characterization of Electrode Materials

X-ray photoelectron spectroscopy (XPS) analyses were performed on a multiscan
system (Omicron, ScientaOmicron, Uppsala, Sweden) using a Mg X-ray source (1253.6 eV)
and a Phoibos 100 SPECS (SPECS, Berlin, Germany) analyzer. The binding energy values
were corrected for charging phenomena by assigning a position of 284.8 eV to the adven-
titious C1s component [30]. After a Shirley-type background subtraction, curve fitting
was carried out by the XPSpeak (Version 4.1) software [31], using Gaussian-Lorentzian
sum functions. Atomic percentages (at.%) were calculated by peak area integration. Field
emission scanning electron microscopy (FE-SEM) analyses were performed by collecting
in-lens and backscattered electron signals using a Zeiss (Oberkochen, Germany) SUPRA
40VP instrument at primary beam acceleration voltages of 10–20 kV. Energy dispersive
X-ray spectroscopy (EDXS) maps were acquired with an INCA x-act PentaFET Precision
spectrometer. The analysis of electrode materials by transmission electron microscopy
(TEM) required sample preparation using a ThermoFisher Scientific (Waltham, MA, USA)
Helios Nanolab 650 dual-beam focused ion beam instrument. A Pt protection layer was
deposited in order to avoid material damage, and the obtained sample foils were thinned to
a thickness < 50 nm. Electron diffraction, EDXS, high-resolution scanning TEM (HRSTEM),
electron energy loss spectroscopy (EELS), and image simulation were employed for a
detailed characterization. The electron diffraction and EDXS analyses were performed
on a ThermoFisher Scientific Osiris microscope equipped with a Super-X windowless
EDX detector system, operated at 200 kV. High-resolution EELS spectra were acquired
using a state-of-the-art double-corrected and monochromated ThermoFisher Scientific Titan
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80–300 microscope operated at 120 kV. Further details are reported in the Supplementary
Materials (Section S1.2).

2.3. Functional Tests

OER electrochemical tests were carried out both in the dark and under irradiation,
using an Autolab three-electrode workstation (PGSTAT204 potentiostat/galvanostat), with
the prepared samples and a Pt coil serving as a working electrode and counter-electrode.
An Hg/HgO electrode, typically employed in alkaline media, was selected as the reference.
The electrolyte was a 0.1 M KOH (pH = 12.9) aqueous solution. The working electrode was
exposed to a white light LED source (intensity ≈ 150 mW/cm2). For pollutant degradation,
the cell was filled with 50 mL of aqueous solution containing 1 mM KHP and 0.1 M KOH.
Then, Ni foam-supported samples were tested as (photo)anodes under constant stirring
at a fixed bias voltage of 1.5 V vs. the reversible hydrogen electrode (RHE). Hereafter,
all potentials are expressed with respect to RHE. At regular time intervals, aliquots of
the KHP solution were collected and the residual pollutant content was measured by
flow injection analysis combined with electrospray mass spectrometry (FIA-ESI/MS) [32].
For each sample, FIA-ESI/MS measurements were carried out three times, revealing
a <3% deviation among repeated experiments. FIA-ESI/MS analyses were performed
with a LCQFleet ion trap instrument (ThermoFisher Scientific), operating in negative ion
mode, coupled with a Surveyor LC Pump Plus (ThermoFisher Scientific). The entrance
capillary temperature, ion source temperature, and voltage were set to 275 ◦C, 300 ◦C, and
4 kV, respectively. The initial KHP solutions were diluted 10 times with H2O/acetonitrile
(50/50, v/v) with 0.1% of formic acid. The resulting solutions (25 µL) were injected into the
mass spectrometer, using a mixture of H2O/acetonitrile (80/20, v/v) with 0.1% formic acid
as eluent (flow rate = 0.3 µL/min). To ensure reproducibility and reliability of the obtained
results, each degradation experiment was repeated twice.

The “coumarin test” was used to probe •OH radical production by monitoring the for-
mation of photoluminescent 7-hydroxy-coumarin [14,26,33]. Although such method does
not allow for an absolute quantitation of •OH radicals, it is a highly sensitive and valuable
tool for the determination of relative activities between different photocatalysts [33]. To this
aim, electrochemical experiments were carried out under illumination on a 1 mM coumarin
solution in 0.1 M PBS, using the above-described cell and experimental conditions. Fluo-
rescence spectra were collected in the 342–700 nm wavelength range using an FLS 1000
fluorimeter (Edinburgh Instruments, Livingston, United Kingdom). The following settings
were used: excitation wavelength/bandwidth = 332/1.5 nm; emission bandwidth = 2.5 nm;
optical path = 1 cm. Measurements were also carried out on Ni foam-supported materials
using the same instrument, with an excitation wavelength of 410 nm.

3. Results and Discussion

As already mentioned, gCN powders were synthesized by the thermal condensation
of melamine at 550 ◦C for 4 h either in Ar (gCNAr) or in air (gCNair), to investigate the
influence of processing conditions on the properties and performances of the resulting Ni
foam-supported samples.

The XRD patterns of the gCN powders synthesized in Ar and air are compared in
Figure 1a. In both cases, the reflections at ≈13.2◦ and ≈27.3◦ were attributed to the packing
of tri-s-triazine units in the (100) crystallographic plane, and to the interplanar (002) stacking
of gCN sheets, respectively [17,34,35]. The broad and weak peaks at ≈44◦ and ≈57◦ can
be ascribed to gCN (300) and (004) planes [35]. The corresponding mean nanocrystal sizes
were directly affected by the used reaction atmosphere (Figure 1a, inset).
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Figure 1. (a) XRD patterns of gCNAr and gCNair powders. The average gCN crystallite sizes along
the [100] and [002] directions are reported in the inset. (b) Corresponding FT-IR spectra.

The FT-IR spectra of gCNAr and gCNair powders (Figure 1b) displayed similar features,
with a multi-component band in the region of 1200–1650 cm−1 due to typical stretching
modes of aromatic heptazine (C6N7) heterocycles, along with the characteristic heptazine
breathing mode at 808 cm−1 [17,34,36]. The broad band in the 2900–3500 cm−1 range
resulted from stretching vibrations of the –OH groups at the edges of carbon nitride
sheets [36,37] and of uncondensed –NHx groups (x = 1, 2), whose presence was also
responsible for the N–H deformation mode at 885 cm−1 [17–19,36]. The presence of such
moieties was confirmed by XPS data (see below). The analysis of gCN powders by UV-
Vis diffuse reflectance spectroscopy evidenced a relatively steep edge at λ ≈ 500 nm
(Figure S2a), due to interband electronic transitions [38,39]. Tauc plot analyses yielded EG
values of ≈2.6 eV for both gCNair and gCNAr (Figure S2b) [17,19].

Both kinds of powders were subsequently used as precursors for EPD on the Ni
foams of gCN systems, which were eventually functionalized with CoO and CoFe2O4
(via RF-sputtering), or CoPi (via electrodeposition). Figure 2 reports representative SEM
images for samples gCNair and gCNair–CoPi, along with EDXS elemental maps for the latter
sample. As can be observed, µm-sized gCN particles with a flake-like morphology were
uniformly dispersed over the Ni foam, yet leaving uncovered some substrate regions. For
gCNair–CoPi, EDXS maps for carbon and nitrogen highlighted the discontinuous deposit
nature. Nonetheless, the O and P signals overlapped with the gCN ones, thus indicating
that CoPi deposition preferentially took place over carbon nitride grains rather than on the
uncovered Ni foam regions. Although cobalt could not be revealed by EDXS, its presence
was clearly confirmed by XPS analyses (see below and the Supplementary Materials).

As far as gCNAr-containing samples are concerned, a lower Ni foam coverage was
revealed (Figure S3). In the case of functionalized specimens, the presence of ultra-dispersed
CoO or CoFe2O4 nanoparticles (samples gCNAr–CoO and gCNAr–CoFe2O4, respectively)
was clearly revealed by high resolution TEM analyses. More specifically, the former
specimen contained spherical aggregates with a size smaller than 10 nm. The d-spacings and
high angle annular dark-field high resolution scanning TEM (HAADF-HRSTEM) results
(Figure 3a) were in line with the occurrence of cubic CoO. This conclusion was confirmed
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not only by the matching between experimental and simulated HRSTEM images (Figure 3a),
but even by the electronic structure analysis of the target nanoparticles. EELS measurements
revealed indeed a good agreement between the experimental Co L2,3 (Figure 3b) and O K
(Figure S4a) edges and those of a CoO reference, thus allowing for the exclusion of Co3O4
presence. For specimen gCNAr–CoFe2O4, TEM analysis on the observed nanoparticles
highlighted the formation of spinel-type CoFe2O4 aggregates (Figure 3c). Even in this case,
a good agreement was observed between experimental and simulated HRSTEM images,
and the formation of phase-pure CoFe2O4 was confirmed by the EELS spectra of Co L2,3,
Fe L2,3, and O K edges (Figure 3d and Supplementary Figure S4b).
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gCNair–CoPi recorded on the electron image in (e) are also reported.
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(c,d). ‘S’ marks the simulated HRSTEM images.

The surface chemical composition and elemental chemical states were investigated by
XPS. Survey spectra (Figure S5) displayed the presence of C and N photopeaks and, for
gCNAr–CoO and gCNAr–CoFe2O4 specimens, even the presence of Co or Co and Fe signals.
The occurrence of Ni peaks indicated an incomplete coverage of the underlying Ni foam.
The quantitative analyses (see data in the caption for Figure S5) suggested the occurrence
of nitrogen-deficient systems. As observed in Figure 5a, Supplementary Figures S6 and
S7a, the C1s photopeak could be fitted by three components (see also Figure 5b): a, due to
adventitious contamination (BE = 284.8 eV) [40,41]; b, related to C atoms in uncondensed
C–NHx (x = 1, 2) groups on carbon nitride ring edges (BE = 286.2 eV) [42,43]; c, due to C in
N-C=N moieties (BE = 288.2 eV) [28,40,43,44]. The weight of component b underwent an
appreciable increase upon going from bare gCNAr, to gCNAr–CoO, up to gCNAr–CoFe2O4
(Figure 5c). These data suggested an enhancement of defects related to the presence
of amino groups, resulting from gCNAr bombardment during RF-sputtering processes,
according to the order gCNAr < gCNAr–CoO < gCNAr–CoFe2O4. Recent reports have
demonstrated that the presence of surface defects in electrode materials can effectively tune
the electronic structure and charge density, and thus improve the redox reactivity [45,46].
In particular, the above-mentioned N defects can beneficially suppress charge carriers
recombination, boosting the ultimate material photoactivity [42,47] (see also below). These
conclusions were in line with the N1s peak fitting results (see Figures S7b and S8 and
related comments).

For both gCNAr–CoO and gCNAr–CoFe2O4 samples, the Co2p photopeak (Figure 5d)
presented well-developed shake-up structures on the high BE side of the main compo-
nents, indicating the occurrence of Co(II) centers [28,30,48]. In fact, for gCN–CoO, the
BE positions [BE(Co2p3/2) = 781.1 eV; spin-orbit separation (SOS) = 15.7 eV] were in line
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with previously reported data for CoO [28,29]. In the case of gCNAr–CoFe2O4, Co2p3/2
BE was slightly higher (781.3 eV), in agreement with the data pertaining to CoFe2O4 sys-
tems [36,49]. The formation of the latter oxide, confirmed by TEM and related analyses (see
above), was also supported by the Fe2p peak features (Figure 5e; BE(Fe2p3/2) = 710.6 eV;
SOS = 13.3 eV) [36,49,50]. In the case of gCNair–CoPi, the Co2p spectral features were
in accordance with the literature data for CoPi systems (Figure S7c) [51]. O1s spectra are
reported in the Supplementary Materials (see Figure S9 and pertaining observations).

Figure 4a,b display linear sweep voltammetry scans collected on the target specimens,
where the current increase at potentials > 1.5 V vs. RHE corresponds to the OER. As can be
observed, for Ar-treated samples (Figure 4a) the difference between light and dark currents
was relatively small (0.1–0.4 mA/cm2 at E > 1.6 V). This result was related to a high and
uneven carbon nitride loading onto Ni foams, negatively affecting the system conductivity
and producing a modest light response. This phenomenon, in turn, could be ascribed to the
potential delay caused by the resistance–capacitance couple in series, particularly evident
at high scan rates [52]. In a different way, gCNair and gCNair–CoPi, containing a lower
gCN amount (Figure 4b), yielded much higher photocurrent densities (1.0–2.5 mA/cm2 at
E > 1.6 V), due to a more uniform gCN flakes distribution.
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Figure 4. Linear sweep voltammetry scans collected in 0.1 M KOH solution on (a) Ar-treated and (b)
air-treated supported samples. Continuous and dotted curves have been collected under irradiation
and in the dark, respectively. For each sample set, bare Ni foams (NiF) scans are also reported.

It is worth highlighting that both Ar- and air-treated samples revealed a remarkable
current density improvement upon gCN functionalization, with either CoO, CoFe2O4,
or CoPi. The anodic peaks between 1.35 and 1.5 V correspond to the MO → MO(OH)
reaction usually occurring on the surface of Ni and Co oxide nanoparticles [27]. The higher
peak intensity for NiFAr and gCNAr in comparison to the homologous gCNair and NiFair

samples could be attributed to an enhanced Ni oxidation, related, in turn, to a less uniform
substrate coverage by gCN in the case of Ar-treated samples. The resulting systems were
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tested as (photo)electrocatalysts for the purification of aqueous solutions containing KHP, a
recalcitrant pollutant, whose decomposition is obtained in the presence of •OH radicals [54].
Preliminary degradation tests were carried out to assess the electrochemical performances
of gCNAr–CoO and gCNAr–CoFe2O4 both in the dark and under irradiation (Figure S10).
As can be observed, the specimens yielded a ~50% decrease in the KHP concentration after
1 h, while longer times did not result in further significant variations. Such a result suggests
that the decrease in KHP concentration vs. time was mainly due to KHP adsorption
on gCN flakes via π–π interactions [55]. A slight additional decrease for longer times,
especially under illumination, was observed for gCNAr–CoFe2O4. This result was also in
line with indications provided by the “coumarin test” (see below, Figure 7a), revealing
that only a modest •OH production took place in the case of gCNAr–CoO, whereas for
gCNAr–CoFe2O4, •OH formation was enhanced.
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Figure 5. XPS characterization of gCNAr deposits on Ni foams before and after functionalization
with CoO and CoFe2O4 via RF-sputtering. (a) C1s photoelectron peaks for gCNAr–CoO and gCNAr–
CoFe2O4. (b) Sketch of gCN structure [53], in which non-equivalent C sites are marked. Color codes
as in panel (a). (c) Percentage contribution of the b component to the overall C1s photopeak for the
target specimens. Calculation was performed excluding the adventitious component a. (d) Co2p and
(e) Fe2p signals for gCNAr–CoO and gCNAr–CoFe2O4. In (d), stars (*) indicate shake-up peaks.

Based on the higher gCNair and gCNair–CoPi photoresponses (Figure 4), such specimens
were subsequently tested in light-activated KHP degradation, analyzing the process kinetics
by FIA-ESI/MS. Whereas the sample gCNair promoted a significant and continuous decrease
in the KHP concentration as a function of time, gCNair–CoPi was almost completely inactive
(Figure 6a). Interestingly, the electrochemical performances of gCNair towards KHP degrada-
tion were preserved upon repeating the same experiment after three months, highlighting a
good material stability. The experimental trend in Figure 6b, in agreement with a pseudo-first
order kinetics [56], could be fitted with either a single or a double exponential function. The
obtainment of a better match with experimental results in the latter case (see the corresponding
χ2 value in Figure 6b) indicates that two distinct processes, i.e., adsorption and decomposition,
take place simultaneously on the material surface.
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Figure 6. (a) KHP degradation tests carried out on gCNair and gCNair–CoPi. KHP residual content
was determined from the m/z = 165 hydrogen phthalate peak area as follows: AreaSX/AreaSM × 100,
where SM = mother solution; S0 = solution after adsorption/desorption equilibrium in the absence
of external bias; SX = solution after testing each specimen under irradiation for X hours (X = 1÷5).
For sample gCNair, experiment 2 (red curve) was performed three months after experiment 1 (green
plot). (b) Average of the two plots reported in (a) for sample gCNair and fit of the corresponding
experimental results both with a single or double exponential function.

The different behaviors of gCNair and gCNair–CoPi, apparently unexpected since an
opposite activity trend was detected in the OER (Figure 4), can be explained considering
that organic pollutant degradation is directly dependent on •OH production and does not
involve the four-electron mechanism of OER. In alkaline media, the OER process involves in
fact the adsorption of hydroxyl ions on the catalyst active sites. Subsequently, hydroxyl ions
are oxidized to hydroxyl radicals that are hence deprotonated and oxidized again, yielding
surface-adsorbed oxygens. If two of such species are close enough, they can finally react
together to produce an O2 molecule [57]. In a different way, KHP degradation is mostly
dependent on the anodic production of •OH radicals, whose formation takes place on the
catalyst surface when electrogenerated holes react with adsorbed H2O/OH− species [2,57].
The attack of •OH radicals to KHP typically involves the initial hydroxylation of the
aromatic ring and/or decarboxylation of its side chains with the formation of several
hydroxybenzoic acids and benzene diols. Then, the aromatic ring is opened and the
formation of several low molecular weight carboxylic acids takes place, followed by further
oxidation steps, finally yielding to CO2 and H2O [54,58,59].

To attain a deeper insight into the above processes, photoluminescence experiments
with coumarin solutions were carried out to probe the formation of the luminescent
7-hydroxy-coumarin, occurring in the presence of hydroxyl radicals [14,26]. Such tests
clearly revealed a significant production of •OH radicals only for the sample gCNair,
whereas a negligible photoluminescence was detected for gCNair–CoPi (Figure 7a), in good
agreement with the relative KHP degradation trends of Figure 6a. How should this result
be interpreted?

As reported by Ehrmaier et al. [60], the production of •OH radicals on the gCN surface
under illumination occurs on heptazine ring units. Heptazine photoexcitation to the lowest
π–π* singlet yields the formation of an electron-hole pair (Figure 7b). The generated hole
can subsequently oxidize a water molecule attached to heptazine via a hydrogen bond.
The subsequent electron transfer from water to heptazine is followed by the release of the
hydrogen-bonded proton, resulting in the final formation of heptazinyl and •OH radicals.
This mechanism can experience appreciable variations in the presence of surface trap
states for holes (Figure 7b, lower part), as Co(II) centers in the Co-containing cocatalysts,
whose occurrence appreciably reduces the effective hydroxyl radical content. We believe
that photogenerated holes are trapped on Co centers so that the mechanism occurring on
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CoPi nanoparticles is activated, while the oxidation of OH− ions on heptazine units is
depressed. In fact, solid-state luminescence spectra collected on the samples gCNair and
gCNair–CoPi (Figure 8) revealed that CoPi introduction completely modified the charge
transport dynamics on the gCN surface, producing a strong luminescence quenching
attributable to Co(II) trap states.
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Figure 7. (a) Luminescence spectra obtained from 1 mM coumarin solution in 0.1 M phosphate buffer
after 1, 2, or 3 h of photoelectrochemical work under illumination. Curves corresponding to bare Ni
foam are also displayed. The luminescence peak at 390 nm is due to coumarin emission [14]. The
increased emission at ~450 nm for gCNair indicates an appreciably higher production of 7-hydroxy-
coumarin for this specimen. (b) Sketch of the mechanism for the production of •OH radicals on gCN
surface [60]. The upper and lower parts of the image sketch are processes taking place in the absence
and in the presence of trap states [Co(II) centers], respectively.
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Figure 8. Solid-state luminescence spectra collected on samples gCNair and gCNair–CoPi. The
spectrum for the bare Ni foam is also reported for comparison.

4. Conclusions

In this study, gCN flakes were grown on Ni foam substrates by EPD under differ-
ent conditions, and eventually functionalized with low amounts of highly dispersed CoO,
CoFe2O4, or CoPi cocatalysts. Preliminary water splitting experiments revealed that OER
performances of the developed systems were improved by gCN functionalization with the
above Co-containing species. In a different way, when the same materials were tested as
photoelectrocatalysts for KHP degradation, the most active system turned out to be bare gCN,
free from any cocatalyst. This apparently surprising behavior was traced back to the different
reaction mechanisms involved in water splitting or KHP degradation. In particular, for bare
gCN as such, the enhanced generation of •OH radicals (very limited, on the contrary, for
systems functionalized with Co-based cocatalysts) efficiently triggered the target pollutant
degradation, as demonstrated by means of complementary characterization studies.

The applicative potential of the present work is highlighted by the fact that these
electrodes can be easily prepared even with much larger dimensions, and can be easily
recovered for subsequent recycling at variance with powdered gCN photocatalysts. In
perspective, the outcomes of our research activities yield a promising prospect for the design
and engineering of active nanomaterials featuring tailored properties for solar-to-chemical
energy conversion and environmental remediation.
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