|
Abstract |
It is shown that the infrared absorption spectra of pure type IaB diamonds, namely those that on cursory examination show only a B one-phonon component and neither A nor D, and the complete absence of a B' localized-mode platelet absorption peak, may be divided into two subgroups. The defect content of specimens of one of these subgroups has been studied before and comprises slip dislocations and voidites in random homogeneous distributions unconnected with the transformation of platelets to dislocation loops. Electron microscopy of a specimen of the other subgroup, which may be recognized by the presence of weak additional one-phonon absorption near 1100 cm-1, shows a population of dislocation loops resulting from the complete transformation of a former platelet population, plus accompanying voidites. It is suggested that the extra absorption is caused by the dislocation loops. Observation of the way in which loops and voidites are distributed suggests that voidite production and platelet transformation may not, after all, be interlinked phenomena, but parallel independent processes both promoted by the same unknown conditions. |
|