toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Conings, B.; Babayigit, A.; Klug, M. T.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J. T.-W.; Verbeeck, J.; Boyen, H.-G. url  doi
openurl 
  Title A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families Type A1 Journal article
  Year 2016 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 28 Issue 28 Pages 10701-10709  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A robust and expedient gas quenching method is developed for the solution deposition of hybrid perovskite thin films. The method offers a reliable standard practice for the fabrication of a non-exhaustive variety of perovskites exhibiting excellent film morphology and commensurate high performance in both regular and inverted structured solar cell architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392728200014 Publication Date 2016-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-4095 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited (up) 95 Open Access  
  Notes This work was financially supported by BOF (Hasselt University) and the Research Fund Flanders (FWO). B.C. is a postdoctoral research fellow of the FWO. A.B. is financially supported by Imec and FWO. M.T.K. acknowledges funding from the EPSRC project EP/M024881/1 “Organic-inorganic Perovskite Hybrid Tandem Solar Cells”. S.B. is a VINNMER Fellow and Marie Skłodowska-Curie Fellow. J.V. and N.G. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors thank Johnny Baccus and Jan Mertens for technical support.; ECASJO_; Approved Most recent IF: 19.791; 2016 IF: NA  
  Call Number EMAT @ emat @ c:irua:138597 Serial 4318  
Permanent link to this record
 

 
Author Zheng, Y.-R.; Vernieres, J.; Wang, Z.; Zhang, K.; Hochfilzer, D.; Krempl, K.; Liao, T.-W.; Presel, F.; Altantzis, T.; Fatermans, J.; Scott, S.B.; Secher, N.M.; Moon, C.; Liu, P.; Bals, S.; Van Aert, S.; Cao, A.; Anand, M.; Nørskov, J.K.; Kibsgaard, J.; Chorkendorff, I. url  doi
openurl 
  Title Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts Type A1 Journal article
  Year 2021 Publication Nature Energy Abbreviated Journal Nat Energy  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Development of low-cost and high-performance oxygen evolution reaction catalysts is key to implementing polymer electrolyte membrane water electrolyzers for hydrogen production. Iridium-based oxides are the state-of-the-art acidic oxygen evolution reactio catalysts but still suffer from inadequate activity and stability, and iridium's scarcity motivates the discovery of catalysts with lower iridium loadings. Here we report a mass-selected iridium-tantalum oxide catalyst prepared by a magnetron-based cluster source with considerably reduced noble-metal loadings beyond a commercial IrO2 catalyst. A sensitive electrochemistry/mass-spectrometry instrument coupled with isotope labelling was employed to investigate the oxygen production rate under dynamic operating conditions to account for the occurrence of side reactions and quantify the number of surface active sites. Iridium-tantalum oxide nanoparticles smaller than 2 nm exhibit a mass activity of 1.2 ± 0.5 kA “g” _“Ir” ^“-1” and a turnover frequency of 2.3 ± 0.9 s-1 at 320 mV overpotential, which are two and four times higher than those of mass-selected IrO2, respectively. Density functional theory calculations reveal that special iridium coordinations and the lowered aqueous decomposition free energy might be responsible for the enhanced performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728458000001 Publication Date 2021-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2058-7546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 95 Open Access OpenAccess  
  Notes Y.-R.Z. and Z.W acknowledge funding from the Toyota Research Institute. This project has received funding from VILLUM FONDEN (grant no. 9455) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grants no. 741860-CLUNATRA, no. 815128−REALNANO and no. 770887−PICOMETRICS). S.B. and S.V.A. acknowledge funding from the Research Foundation Flanders (FWO, G026718N and G050218N). T.A. acknowledges the University of Antwerp Research Fund (BOF). STEM measurements were supported by the European Union's Horizon 2020 Research Infrastructure-Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3.; sygmaSB Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:184794 Serial 6903  
Permanent link to this record
 

 
Author Teodorescu, V.; Nistor, L.; Bender, H.; Steegen, A.; Lauwers, A.; Maex, K.; van Landuyt, J. pdf  doi
openurl 
  Title In situ transmission electron microscopy study of Ni silicide phases formed on (001) Si active lines Type A1 Journal article
  Year 2001 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 90 Issue 1 Pages 167-174  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The formation of Ni silicides is studied by transmission electron microscopy during in situ heating experiments of 12 nm Ni layers on blanket silicon, or in patterned structures covered with a thin chemical oxide. It is shown that the first phase formed is the NiSi2 which grows epitaxially in pyramidal crystals. The formation of NiSi occurs quite abruptly around 400 degreesC when a monosilicide layer covers the disilicide grains and the silicon in between. The NiSi phase remains stable up to 800 degreesC, at which temperature the layer finally fully transforms to NiSi2. The monosilicide grains show different epitaxial relationships with the Si substrate. Ni2Si is never observed. (C) 2001 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000169361100023 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited (up) 97 Open Access  
  Notes Approved Most recent IF: 2.068; 2001 IF: 2.128  
  Call Number UA @ lucian @ c:irua:102855 Serial 1587  
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D. pdf  doi
openurl 
  Title Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi Type A1 Journal article
  Year 2005 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 53 Issue 4 Pages 1041-1049  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000226774500014 Publication Date 2004-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited (up) 97 Open Access  
  Notes Approved Most recent IF: 5.301; 2005 IF: 3.430  
  Call Number UA @ lucian @ c:irua:55686 Serial 2750  
Permanent link to this record
 

 
Author Pramanik, G.; Humpolickova, J.; Valenta, J.; Kundu, P.; Bals, S.; Bour, P.; Dracinsky, M.; Cigler, P. url  doi
openurl 
  Title Gold nanoclusters with bright near-infrared photoluminescence Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 10 Pages 3792-3798  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The increase in nonradiative pathways with decreasing emission energy reduces the luminescence quantum yield (QY) of near-infrared photoluminescent (NIR PL) metal nanoclusters. Efficient surface ligand chemistry can significantly improve the luminescence QY of NIR PL metal nanoclusters. In contrast to the widely reported but modestly effective thiolate ligand-to-metal core charge transfer, we show that metal-to-ligand charge transfer (MLCT) can be used to greatly enhance the luminescence QY of NIR PL gold nanoclusters (AuNCs). We synthesized water-soluble and colloidally stable NIR PL AuNCs with unprecedentedly high QY (similar to 25%) upon introduction of triphenylphosphonium moieties into the surface capping layer. By using a combination of spectroscopic and theoretical methods, we provide evidence for gold core-to-ligand charge transfer occurring in AuNCs. We envision that this work can stimulate the development of these unusually bright AuNCs for promising optoelectronic, bioimaging, and other applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000426148500026 Publication Date 2018-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited (up) 97 Open Access OpenAccess  
  Notes ; The authors acknowledge support from the GACR project Nr. 18-12533S. J. V. acknowledges funding from the Ministry of Education, Youth and Sports of the Czech Republic via the V4+Japan project No. 8F15001 (cofinanced by the International Visegrad Fund). P. B. acknowledges GACR project No. 16-05935S and Ministry of Education, Youth and Sports of the Czech Republic project No. LTC17012. ; Approved Most recent IF: 7.367  
  Call Number UA @ lucian @ c:irua:149901UA @ admin @ c:irua:149901 Serial 4935  
Permanent link to this record
 

 
Author Smolders, S.; Willhammar, T.; Krajnc, A.; Şentosun, K.; Wharmby, M.T.; Lomachenko, K.A.; Bals, S.; Mali, G.; Roeffaers, M.B.J.; De Vos, D.E.; Bueken, B. pdf  doi
openurl 
  Title A titanium(IV)-based metal-organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst Type A1 Journal article
  Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 58 Issue 58 Pages 9160-9165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract While titanium-based metal-organic frameworks (MOFs) have been widely studied for their (photo) catalytic potential, only a few Ti-IV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK-47 is now presented, the first Ti carboxylate MOF based on sheets of (TiO6)-O-IV octahedra, which can be synthesized with a range of different linkers. COK-47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X-ray total scattering, EXAFS, and solid-state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476691200034 Publication Date 2019-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited (up) 97 Open Access Not_Open_Access  
  Notes ; S.S., B.B., and D.E.D.V. gratefully acknowledge the FWO for funding (Aspirant grant, postdoctoral grant, project funding). T.W. acknowledges a grant from the Swedish research council (VR, 2014-06948). He acknowledges financial support from the Knut and Alice Wallenberg Foundation through the project grant 3DEM-NATUR (no. 2012.0112) as well as for purchasing the TEMs. A.K. and G.M. acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0021 and project No. N1-0079). We thank beamline I15-1 (XPDF), Diamond Light Source, for collection of X-ray total scattering data as part of the in-house research program (M.T.W.). A. Venier and O. Mathon are kindly acknowledged for the help during the XAS experiment at BM23 beamline of ESRF. We thank C. Lamberti and L. Braglia for providing the reference EXAFS spectrum of anatase. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:161932 Serial 5382  
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B.; van Speybroeck, V.; Waroquier, M. pdf  url
doi  openurl
  Title Electronic structure and band gap of zinc spinel oxides beyond LDA : ZnAl2O4, ZnGa2O4 and ZnIn2O4 Type A1 Journal article
  Year 2011 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 13 Issue 6 Pages 063002-063002,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We examine the electronic structure of the family of ternary zinc spinel oxides ZnX2O4 (X=Al, Ga and In). The band gap of ZnAl2O4 calculated using density functional theory (DFT) is 4.25 eV and is overestimated compared with the experimental value of 3.83.9 eV. The DFT band gap of ZnGa2O4 is 2.82 eV and is underestimated compared with the experimental value of 4.45.0 eV. Since DFT typically underestimates the band gap in the oxide system, the experimental measurements for ZnAl2O4 probably require a correction. We use two first-principles techniques capable of describing accurately the excited states of semiconductors, namely the GW approximation and the modified BeckeJohnson (MBJ) potential approximation, to calculate the band gap of ZnX2O4. The GW and MBJ band gaps are in good agreement with each other. In the case of ZnAl2O4, the predicted band gap values are >6 eV, i.e. ~2 eV larger than the only reported experimental value. We expect future experimental work to confirm our results. Our calculations of the electron effective masses and the second band gap indicate that these compounds are very good candidates to act as transparent conducting host materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000292137500002 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited (up) 98 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.786; 2011 IF: 4.177  
  Call Number UA @ lucian @ c:irua:89555 Serial 1008  
Permanent link to this record
 

 
Author Ding, J.F.; Lebedev, O.I.; Turner, S.; Tian, Y.F.; Hu, W.J.; Seo, J.W.; Panagopoulos, C.; Prellier, W.; Van Tendeloo, G.; Wu, T. doi  openurl
  Title Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 5 Pages 054428-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The magnetic properties of manganite bilayers composed of G-type antiferromagnetic (AFM) SrMnO3 and double-exchange ferromagnetic (FM) La0.7Sr0.3MnO3 are studied. A spin-glass state is observed as a result of competing magnetic orders and spin frustration at the La0.7Sr0.3MnO3/SrMnO3 interface. The dependence of the irreversible temperature on the cooling magnetic field follows the Almeida-Thouless line. Although an ideal G-type AFM SrMnO3 is featured with a compensated spin configuration, the bilayers exhibit exchange bias below the spin glass freezing temperature, which is much lower than the Néel temperature of SMO, indicating that the exchange bias is strongly correlated with the spin glass state. The results indicate that the spin frustration that originates from the competition between the AFM super-exchange and the FM double-exchange interactions can induce a strong magnetic anisotropy at the La0.7Sr0.3MnO3/SrMnO3 interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315271200002 Publication Date 2013-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 98 Open Access  
  Notes FWO; COUNTATOMS; Hercules Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107349 Serial 1696  
Permanent link to this record
 

 
Author Vlasov, I.I.; Barnard, A.S.; Ralchenko, V.G.; Lebedev, O.I.; Kanzyuba, M.V.; Saveliev, A.V.; Konov, V.I.; Goovaerts, E. pdf  doi
openurl 
  Title Nanodiamond photoemitters based on strong narrow-band luminescence from silicon-vacancy defects Type A1 Journal article
  Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 21 Issue 7 Pages 808-812  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Nanostructured and organic optical and electronic materials (NANOrOPT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000263737800012 Publication Date 2008-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited (up) 98 Open Access  
  Notes Approved Most recent IF: 19.791; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:74513 Serial 2253  
Permanent link to this record
 

 
Author Boschker, H.; Huijben, M.; Vailinois, A.; Verbeeck, J.; Van Aert, S.; Luysberg, M.; Bals, S.; Van Tendeloo, G.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G. pdf  doi
openurl 
  Title Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics Type A1 Journal article
  Year 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 44 Issue 20 Pages 205001-205001,9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper, an overview of the fabrication and properties of high-quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high-quality LSMO film combines a smooth surface morphology with a large magnetization and a small residual resistivity, while avoiding precipitates and surface segregation. In the literature, typically only a few of these issues are adressed. We therefore present a thorough characterization of our films, which were grown by pulsed laser deposition. The films were characterized with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, magnetization and transport measurements, x-ray photoelectron spectroscopy and scanning transmission electron microscopy. The films have a saturation magnetization of 4.0 µB/Mn, a Curie temperature of 350 K and a residual resistivity of 60 µΩ cm. These results indicate that high-quality films, combining both large magnetization and small residual resistivity, were realized. A comparison between different samples presented in the literature shows that focussing on a single property is insufficient for the optimization of the deposition process. For high-quality films, all properties have to be adressed. For LSMO devices, the thin-film quality is crucial for the device performance. Therefore, this research is important for the application of LSMO in devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000290150900001 Publication Date 2011-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited (up) 99 Open Access  
  Notes This research was financially supported by the Dutch Science Foundation, by NanoNed, a nanotechnology program of the Dutch Ministry of Economic Affairs, and by the NanOxide program of the European Science Foundation. This work is supported in part by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. Approved Most recent IF: 2.588; 2011 IF: 2.544  
  Call Number UA @ lucian @ c:irua:89557UA @ admin @ c:irua:89557 Serial 2491  
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Shenderova, O.; Vlasov, I.I.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy Type A1 Journal article
  Year 2009 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 19 Issue 13 Pages 2116-2124  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Size, morphology, and nitrogen impurity location, all of which are all thought to be related to the luminescent properties of detonation nanodiamonds, are determined in several detonation nanodiamond samples using a combination of transmission electron microscopy techniques. Results obtained from annealed and cleaned detonation nanodiamond samples are compared to results from conventionally purified detonation nanodiamond. Detailed electron energy loss spectroscopy combined with model-based quantification provides direct evidence for the sp3 like embedding of nitrogen impurities into the diamond cores of all the studied nanodiamond samples. Simultaneously, the structure and morphology of the cleaned detonation nanodiamond particles are studied using high resolution transmission electron microscopy. The results show that the size and morphology of detonation nanodiamonds can be modified by temperature treatment and that by applying a special cleaning procedure after temperature treatment, nanodiamond particles with clean facets almost free from sp2 carbon can be prepared. These clean facets are clear evidence that nanodiamond cores are not necessarily in coexistence with a graphitic shell of non-diamond carbon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000268297800012 Publication Date 2009-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited (up) 100 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 12.124; 2009 IF: 6.990  
  Call Number UA @ lucian @ c:irua:78261UA @ admin @ c:irua:78261 Serial 674  
Permanent link to this record
 

 
Author Esken, D.; Zhang, X.; Lebedev, O.I.; Schröder, F.; Fischer, R.A. doi  openurl
  Title Pd@MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metalorganic palladium precursors for loading with Pd nanoparticles Type A1 Journal article
  Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 19 Issue 9 Pages 1314-1319  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The limitations of the loading of the porous metalorganic framework [Zn4O(bdc)3] (bdc = benzene-1,4-dicarboxylate; MOF-5 or IRMOF-1) with Pd nanoparticles was investigated. First, the volatile organometallic precursor [Pd(5-C5H5)(3-C3H5)] was employed to get the inclusion compound [Pd(5-C5H5)(3-C3H5)]x@MOF-5 via gas-phase infiltration at 10-3 mbar. A loading of four molecules of [Pd(5-C5H5)(3-C3H5)] per formula unit of MOF-5 (x = 4) can be reached (35 wt.% Pd). Second, the metalorganic precursor [Pd(acac)2] (acac = 2,4-pentanedionate) was used and the inclusion materials [Pd(acac)2]x@MOF-5 of different Pd loadings were obtained by incipient wetness infiltration. However, the maximum loading was lower as compared with the former case with about two precursor molecules per formula unit of MOF-5. Both loading routes are suitable for the synthesis of Pd nanoparticles inside the porous host matrix. Homogeneously distributed nanoparticles with diameter of 2.4(±0.2) nm can be achieved by photolysis of the inclusion compounds [Pd(5-C5H5)(3-C3H5)]x@MOF-5 (x 4), while the hydrogenolysis of [Pd(acac)2]x@MOF-5 (x 2) leads to a mixture of small particles inside the network (< 3 nm) and large Pd agglomerates (40 nm) on the outer surface of the MOF-5 specimens. The pure Pdx@MOF-5 materials proved to be stable under hydrogen pressure (2 bar) at 150 °C over many hours. Neither hydrogenation of the bdc linkers nor particle growth was observed. The new composite materials were characterized by 1H/13C-MAS-NMR, powder XRD, ICP-AES, FT-IR, N2 sorption measurements and high resolution TEM. Raising the Pd loading of a representative sample Pd4@MOF-5 (35 wt.% Pd) by using [Pd(5-C5H5)(3-C3H5)] as precursor in a second cycle of gas-phase infiltration and photolysis was accompanied by the collapse of the long-range crystalline order of the MOF.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000263450300015 Publication Date 2009-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 100 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:76318 Serial 2565  
Permanent link to this record
 

 
Author Gonzalez-Rubio, G.; Kumar, V.; Llombart, P.; Diaz-Nunez, P.; Bladt, E.; Altantzis, T.; Bals, S.; Pena-Rodriguez, O.; Noya, E.G.; MacDowell, L.G.; Guerrero-Martinez, A.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 13 Pages 4424-4435  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract One of the major difficulties hindering the widespread application of colloidal anisotropic plasmonic nanoparticles is the limited robustness and reproducibility of multistep synthetic methods. We demonstrate herein that the reproducibility and reliability of colloidal gold nanorod (AuNR) synthesis can be greatly improved by disconnecting the symmetry-breaking event from the seeded growth process. We have used a modified silver-assisted seeded growth method in the presence of the surfactant hexadecyltrimethylammonium bromide and n-decanol as a co-surfactant to prepare small AuNRs in high yield, which were then used as seeds for the growth of high quality AuNR colloids. Whereas the use of n-decanol provides a more-rigid micellar system, the growth on anisotropic seeds avoids sources of irreproducibility during the symmetry breaking step, yielding uniform AuNR colloids with narrow plasmon bands, ranging from 600 to 1270 nm, and allowing the fine-tuning of the final dimensions. This method provides a robust route for the preparation of high quality AuNR colloids with tunable morphology, size, and optical response in a reproducible and scalable manner.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466052900067 Publication Date 2019-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited (up) 100 Open Access OpenAccess  
  Notes ; This work has been funded by the Spanish MINECO (grant nos. FIS2017-89361-C3-2-P and MAT2017-86659-R), the Madrid Regional Government (grant no. P2018/NMT-4389) and the Complutense University of Madrid (grant no. PR75/18-21616). Funding is acknowledged from the European Commission (grant no. EUSMI 731019). G.G.-R. acknowledges receipt of FPI Fellowship from the Spanish MINECO. E.B. and T.A. acknowledge postdoctoral grants from the Research Foundation Flanders (FWO). The authors are indebted to Profs. Justin Gooding, Watson Loh, Nicholas Kotov, Deqing Zhang, Mihaela Delcea, Maurizio Prato, and Krishna Ganesh, for providing milli-Q water samples. ; Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:160417 Serial 5246  
Permanent link to this record
 

 
Author Holden, T.; Habermeier, H.-U.; Cristiani, G.; Golnik, A.; Boris, A.; Pimenov, A.; Humlicek, J.; Lebedev, O.I.; Van Tendeloo, G.; Keimer, B.; Bernhard, C. doi  openurl
  Title Proximity induced metal-insulator transition in YBa2Cu3O7/La2/3Ca1/3MnO3 superlattices Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 69 Issue 6 Pages 064505,1-064505,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The far-infrared dielectric response of superlattices (SL) composed of superconducting YBa2Cu3O7 (YBCO) and ferromagnetic La0.67Ca0.33MnO3 (LCMO) has been investigated by ellipsometry. A drastic decrease of the free-carrier response is observed which involves an unusually large length scale of d(crit)approximate to20 nm in YBCO and d(crit)approximate to10 nm in LCMO. A corresponding suppression of metallicity is not observed in SL's where LCMO is replaced by the paramagnetic metal LaNiO3. Our data suggest that either a long-range charge transfer from the YBCO to the LCMO layers or alternatively a strong coupling of the charge carriers to the different and competitive kind of magnetic correlations in the LCMO and YBCO layers is at the heart of the observed metal-insulator transition. The low free-carrier response observed in the far-infrared dielectric response of the magnetic superconductor RuSr2GdCu2O8 is possibly related to this effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000220092100066 Publication Date 2004-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 101 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:54743 Serial 2734  
Permanent link to this record
 

 
Author Gonzalez-Rubio, G.; Gonzalez-Izquierdo, J.; Banares, L.; Tardajos, G.; Rivera, A.; Altantzis, T.; Bals, S.; Pena-Rodriguez, O.; Guerrero-Martinez, A.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods Type A1 Journal article
  Year 2015 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 15 Issue 15 Pages 8282-8288  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Directed assembly of gold nanorods through the use of dithiolated molecular linkers is one of the most efficient methodologies for the morphologically controlled tip-to-tip assembly of this type of anisotropic nanocrystals. However, in a direct analogy to molecular polymerization synthesis, this process is characterized by difficulties in chain-growth control over nanoparticle oligomers. In particular, it is nearly impossible to favor the formation of one type of oligomer, making the methodology hard to use for actual applications in nanoplasmonics. We propose here a light-controlled synthetic procedure that allows obtaining selected plasmonic oligomers in high yield and with reaction times in the scale of minutes by irradiation with low fluence near-infrared (NIR) femtosecond laser pulses. Selective inhibition of the formation of gold nanorod n-mers (trimers) with a longitudinal localized surface plasmon in resonance with a 800 nm Ti:sapphire laser, allowed efficient trapping of the (n – 1)-mers (dimers) by hot spot mediated photothermal decomposition of the interparticle molecular linkers. Laser irradiation at higher energies produced near-field enhancement at the interparticle gaps, which is large enough to melt gold nanorod tips, offering a new pathway toward tip-to-tip welding of gold nanorod oligomers with a plasmonic response at the NIR. Thorough optical and electron microscopy characterization indicates that plasmonic oligomers can be selectively trapped and welded, which has been analyzed in terms of a model that predicts with reasonable accuracy the relative concentrations of the main plasmonic species.  
  Address Ikerbasque, Basque Foundation for Science , 48013 Bilbao, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000366339600075 Publication Date 2015-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited (up) 101 Open Access OpenAccess  
  Notes This work has been funded by the Spanish MINECO (MAT2012-38541, MAT2013-46101-R, MAT2014-59678-R and CTQ2012-37404-C02-01). A.G.-M. and G.G.-R., respectively, acknowledge receipt of Ramón y Cajal and FPI Fellowships from the Spanish MINECO. O.P.-R. is grateful with Moncloa Campus of International Excellence (UCMUPM) for the PICATA postdoctoral fellowship. The facilities provided by the Center for Ultrafast Lasers at Complutense University of Madrid are gratefully acknowledged. S.B. acknowledges funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant 335078 COLOURATOMS.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592  
  Call Number c:irua:129686 Serial 3976  
Permanent link to this record
 

 
Author Cheng, K.; Leys, M.; Degroote, S.; van Daele, B.; Boeykens, S.; Derluyn, J.; Germain, M.; Van Tendeloo, G.; Engelen, J.; Borghs, G. doi  openurl
  Title Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers Type A1 Journal article
  Year 2006 Publication Journal of electronic materials Abbreviated Journal J Electron Mater  
  Volume 35 Issue 4 Pages 592-598  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Boston, Mass. Editor  
  Language Wos 000237101800016 Publication Date 2007-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0361-5235;1543-186X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.579 Times cited (up) 102 Open Access  
  Notes Approved Most recent IF: 1.579; 2006 IF: 1.504  
  Call Number UA @ lucian @ c:irua:58238 Serial 1223  
Permanent link to this record
 

 
Author Shabalovskaya, S.A.; Tian, H.; Anderegg, J.W.; Schryvers, D.U.; Carroll, W.U.; van Humbeeck, J. pdf  doi
openurl 
  Title The influence of surface oxides on the distribution and release of nickel from Nitinol wires Type A1 Journal article
  Year 2009 Publication Biomaterials Abbreviated Journal Biomaterials  
  Volume 30 Issue 4 Pages 468-477  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The patterns of Ni release from Nitinol vary depending on the type of material (NiTi alloys with low or no processing versus commercial wires or sheets). A thick TiO2 layer generated on the wire surface during processing is often considered as a reliable barrier against Ni release. The present study of Nitinol wires with surface oxides resulting from production was conducted to identify the sources of Ni release and its distribution in the surface sublayers. The chemistry and topography of the surfaces of Nitinol wires drawn using different techniques were studied with XPS and SEM. The distribution of Ni into surface depth and the surface oxide thickness were evaluated using Auger spectroscopy, TEM with FIB and ELNES. Ni release was estimated using either ICPA or AAS. Potentiodynamic potential polarization of selected wires was performed in as-received state with no strain and in treated strained samples. Wire samples in the as-received state showed low breakdown potentials (200 mV); the improved corrosion resistance of these wires after treatment was not affected by strain. It is shown how processing techniques affect surface topography, chemistry and also Ni release. Nitinol wires with the thickest surface oxide TiO2 (up to 720 nm) showed the highest Ni release, attributed to the presence of particles of essentially pure Ni whose number and size increased while approaching the interface between the surface and the bulk. The biological implications of high and lasting Ni release are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Guildford Editor  
  Language Wos 000262065500006 Publication Date 2008-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-9612; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.402 Times cited (up) 102 Open Access  
  Notes Fwo; G.0465.05 Approved Most recent IF: 8.402; 2009 IF: 7.365  
  Call Number UA @ lucian @ c:irua:72320 Serial 1641  
Permanent link to this record
 

 
Author Misko, V.R.; Fomin, V.M.; Devreese, J.T.; Moshchalkov, V.V. url  doi
openurl 
  Title Stable vortex-antivortex molecules in mesoscopic superconducting triangles Type A1 Journal article
  Year 2003 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 90 Issue Pages 147003,1-4  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000182320100043 Publication Date 2003-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited (up) 103 Open Access  
  Notes Approved Most recent IF: 8.462; 2003 IF: 7.035  
  Call Number UA @ lucian @ c:irua:44281 Serial 3146  
Permanent link to this record
 

 
Author Ustarroz, J.; Ke, X.; Hubin, A.; Bals, S.; Terryn, H. pdf  doi
openurl 
  Title New insights into the early stages of nanoparticle electrodeposition Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 3 Pages 2322-2329  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electrodeposition is an increasingly important method to synthesize supported nanoparticles, yet the early stages of electrochemical nanoparticle formation are not perfectly understood. In this paper, the early stages of silver nanoparticle electrodeposition on carbon substrates have been studied by aberration-corrected TEM, using carbon-coated TEM grids as electrochemical electrodes. In this manner we have access to as-deposited nanoparticle size distribution and structural characterization at the atomic scale combined with electrochemical measurements, which represents a breakthrough in a full understanding of the nanoparticle electrodeposition mechanisms. Whereas classical models, based upon characterization at the nanoscale, assume that electrochemical growth is only driven by direct attachment, the results reported hereafter indicate that early nanoparticle growth is mostly driven by nanocluster surface movement and aggregation. Hence, we conclude that electrochemical nulceation and growth models should be revised and that an electrochemical aggregative growth mechanism should be considered in the early stages of nanoparticle electrodeposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000299584400037 Publication Date 2011-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 104 Open Access  
  Notes Fwo Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:96225 Serial 2316  
Permanent link to this record
 

 
Author Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A.M.; Tarascon, J.-M. url  doi
openurl 
  Title Insertion compounds and composites made by ball milling for advanced sodium-ion batteries Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue 7 Pages 10308  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)(2)F-3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P'2-Na-1[Fe0.5Mn0.5]O-2 and C/'Na3+xV2(PO4)(2)F-3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369021400002 Publication Date 2016-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited (up) 104 Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:131599 Serial 4197  
Permanent link to this record
 

 
Author Shenderova, O.; Koscheev, A.; Zaripov, N.; Petrov, I.; Skryabin, Y.; Detkov, P.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Surface chemistry and properties of ozone-purified detonation nanodiamonds Type A1 Journal article
  Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue 20 Pages 9827-9837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanodiamond from ozone purification (NDO) demonstrates very distinctive properties within the class of detonation nanodiamonds, namely very high acidity and high colloidal stability in a broad pH range. To understand the origin of these unusual properties of NDO, the nature of the surface functional groups formed during detonation soot oxidation by ozone needs to be revealed. In this work, thermal desorption mass spectrometry (TDMS) and IR spectroscopy were used for the identification of surface groups and it was concluded that carboxylic anhydride groups prevail on the NDO surface. On the basis of the temperature profiles of the desorbed volatile products and their mass balance, it is hypothesized that decomposition of carboxylic anhydride groups from NDO during heating proceeds by two different mechanisms. Other distinctive features of NDO in comparison with air-treated nanodiamond are also reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000290652200001 Publication Date 2011-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 105 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number UA @ lucian @ c:irua:89556 Serial 3394  
Permanent link to this record
 

 
Author Liu, J.; Jin, J.; Deng, Z.; Huang, S.Z.; Hu, Z.Y.; Wang, L.; Wang, C.; Chen, L.H.; Li, Y.; Van Tendeloo, G.; Su, B.L.; doi  openurl
  Title Tailoring CuO nanostructures for enhanced photocatalytic property Type A1 Journal article
  Year 2012 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 384 Issue Pages 1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on one-pot synthesis of various morphologies of CuO nanostructures. PEG200 as a structure directing reagent under the synergism of alkalinity by hydrothermal method has been employed to tailor the morphology of CuO nanostructures. The CuO products have been characterized by XRD, SEM, and TEM. The morphologies of the CuO nanostructures can be tuned from 10 (nanoseeds, nanoribbons) to 2D (nanoleaves) and to 3D (shuttle-like, shrimp-like, and nanoflowers) by changing the volume of PEG200 and the alkalinity in the reaction system. At neutral and relatively low alkalinity (OH-/Cu2+ <= 3), the addition of PEG200 can strongly influence the morphologies of the CuO nanostructures. At high alkalinity (OH/Cu2+ >= 4), PEG200 has no influence on the morphology of the CuO nanostructure. The different morphologies of the CuO nanostructures have been used for the photodecomposition of the pollutant rhodamine B (RhB) in water. The photocatalytic activity has been correlated with the different nanostructures of CuO. The 10 CuO nanoribbons exhibit the best performance on the RhB photodecomposition because of the exposed high surface energy {-121} crystal plane. The photocatalytic results show that the high energy surface planes of the CuO nanostructures mostly affect the photocatalytic activity rather than the morphology of the CuO nanostructures. Our synthesis method also shows it is possible to control the morphologies of nanostructures in a simple way. (C) 2012 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308337700001 Publication Date 2012-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited (up) 105 Open Access  
  Notes Approved Most recent IF: 4.233; 2012 IF: 3.172  
  Call Number UA @ lucian @ c:irua:101796 Serial 3468  
Permanent link to this record
 

 
Author Van Aert, S.; de Backer, A.; Martinez, G.T.; Goris, B.; Bals, S.; Van Tendeloo, G.; Rosenauer, A. url  doi
openurl 
  Title Procedure to count atoms with trustworthy single-atom sensitivity Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 6 Pages 064107-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report a method to reliably count the number of atoms from high-angle annular dark field scanning transmission electron microscopy images. A model-based analysis of the experimental images is used to measure scattering cross sections at the atomic level. The high sensitivity of these measurements in combination with a thorough statistical analysis enables us to count atoms with single-atom sensitivity. The validity of the results is confirmed by means of detailed image simulations. We will show that the method can be applied to nanocrystals of arbitrary shape, size, and atom type without the need for a priori knowledge about the atomic structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315144700006 Publication Date 2013-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 106 Open Access  
  Notes FWO; 262348 ESMI; 312483 ESTEEM2;246791 COUNTATOMS; Hercules 3; esteem2_jra2 Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:105674 Serial 2718  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D. pdf  url
doi  openurl
  Title Advanced electron microscopy for advanced materials Type A1 Journal article
  Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 42 Pages 5655-5675  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310602200001 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited (up) 107 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70  
Permanent link to this record
 

 
Author Obradors, X.; Puig, T.; Pomar, A.; Sandiumenge, F.; Piñol, S.; Mestres, N.; Castaño, O.; Coll, M.; Cavallaro, A.; Palau, A.; Gázquez, J.; González, J.C.; Gutiérrez, J.; Romá, N.; Ricart, S.; Moretó, J.M.; Rossell, M.D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Chemical solution deposition: a path towards low cost coated conductors Type A1 Journal article
  Year 2004 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 17 Issue 8 Pages 1055-1064  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000223574000022 Publication Date 2004-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited (up) 107 Open Access  
  Notes Approved Most recent IF: 2.878; 2004 IF: 1.556  
  Call Number UA @ lucian @ c:irua:54870 Serial 350  
Permanent link to this record
 

 
Author Stevens, W.J.J.; Lebeau, K.; Mertens, M.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. doi  openurl
  Title Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials Type A1 Journal article
  Year 2006 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 110 Issue 18 Pages 9183-9187  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000237451300042 Publication Date 2006-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited (up) 109 Open Access  
  Notes Approved Most recent IF: 3.177; 2006 IF: 4.115  
  Call Number UA @ lucian @ c:irua:58264 Serial 1738  
Permanent link to this record
 

 
Author Zheng, G.; Chen, Z.; Sentosun, K.; Pérez-Juste, I.; Bals, S.; Liz-Marzán, L.M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Hong, M. pdf  url
doi  openurl
  Title Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures Type A1 Journal article
  Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 9 Issue 9 Pages 16645-16651  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Shape control in metal-organic frameworks still remains a challenge. We propose a strategy based on the capping agent modulator method to control the shape of ZIF-8 nanocrystals. This approach requires the use of a surfactant, cetyltrimethylammonium bromide (CTAB), and a second capping agent, tris(hydroxymethyl)aminomethane (TRIS), to obtain ZIF-8 nanocrystals with morphology control in aqueous media. Semiempirical computational simulations suggest that both shape-inducing agents adsorb onto different surface facets of ZIF-8, thereby slowing down their crystal growth rates. While CTAB molecules preferentially adsorb onto the {100} facets, leading to ZIF-8 particles with cubic morphology, TRIS preferentially stabilizes the {111} facets, inducing the formation of octahedral crystals. Interestingly, the presence of both capping agents leads to nanocrystals with irregular shapes and higher index facets, such as hexapods and burr puzzles. Additionally, the combination of ZIF-8 nanocrystals with other materials is expected to impart additional properties due to the hybrid nature of the resulting nanocomposites. In the present case, the presence of CTAB and TRIS molecules as capping agents facilitates the synthesis of metal nanoparticle@ZIF-8 nanocomposites, due to synergistic effects which could be of use in a number of applications such as catalysis, gas sensing and storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414960900015 Publication Date 2017-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited (up) 109 Open Access OpenAccess  
  Notes This work was supported by the Ministerio de Economía y Competitividad (MINECO, Spain), under the Grants MAT2013- 45168-R and MAT2016-77809-R. This study was also funded by the Xunta de Galicia/FEDER (ED431C 2016-048). We are grateful to the financial support from National Natural Science Foundation of China (21671010), Guangdong Science and Technology Program (2013A061401002), and Shenzhen Strategic Emerging Industries (KQCX2015032709315529, CXZZ20140419131807788). Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:145827UA @ admin @ c:irua:145827 Serial 4705  
Permanent link to this record
 

 
Author Figuerola, A.; Franchini, I.R.; Fiore, A.; Mastria, R.; Falqui, A.; Bertoni, G.; Bals, S.; Van Tendeloo, G.; Kudera, S.; Cingolani, R.; Manna, L. pdf  doi
openurl 
  Title End-to-end assembly of shape-controlled nanocrystals via a nanowelding approach mediated by gold domains Type A1 Journal article
  Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 21 Issue 5 Pages 550-554  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Welding nanocrystals for assembly: The welding of Au domains grown on the tips of shape-controlled cadmium chalcogenide colloidal nanocrystals is used as a strategy for their assembly. Iodine-induced coagulation of selectively grown Au domains leads to assemblies such as flowerlike structures based on bullet-shaped nanocrystals, linear and cross-linked chains of nanorods, and globular networks with tetrapods as building blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000263371800005 Publication Date 2008-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited (up) 110 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 19.791; 2009 IF: 8.379  
  Call Number UA @ lucian @ c:irua:75960 Serial 1037  
Permanent link to this record
 

 
Author Sanz-Ortiz, M.N.; Sentosun, K.; Bals, S.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Templated Growth of Surface Enhanced Raman Scattering -Active Branched Au Nanoparticles within Radial Mesoporous Silica Shells Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 10489-10497  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Noble metal nanoparticles are widely used as probes or substrates for surface-enhanced Raman scattering (SERS), due to their characteristic plasmon resonances in the visible and NIR spectral ranges. Aiming at obtaining a versatile system with high SERS performance we developed the synthesis of quasi-monodisperse, non-aggregated gold nanoparticles protected by radial mesoporous silica shells. The radial channels of such shells were used as templates for the growth of gold tips branching from the cores, thereby improving the plasmonic performance of the particles while favoring the localization of analyte molecules at high electric field regions: close to the tips, inside the pores. The method, which allows control over tip length, was successfully applied to various gold nanoparticle shapes, leading to materials with highly efficient SERS performance. The obtained nanoparticles are stable in ethanol and water upon thermal consolidation and can be safely stored as a powder.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000363915300105 Publication Date 2015-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited (up) 110 Open Access OpenAccess  
  Notes This work has been funded by the European Research Council (ERC Advanced Grant 267867 Plasmaquo and Starting Grant Colouratom). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013 under grant agreement no. 312184, SACS). Help from Mert Kurttepeli is acknowledged. Pentatwinned nanorods and nanotriangles were synthesized by L. Scarabelli.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:129194 Serial 3947  
Permanent link to this record
 

 
Author Delville, R.; Malard, B.; Pilch, J.; Schryvers, D. pdf  doi
openurl 
  Title Microstructure changes during non-conventional heat treatment of thin NiTi wires by pulsed electric current studied by transmission electron microscopy Type A1 Journal article
  Year 2010 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 58 Issue 13 Pages 4503-4515  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy, electrical resistivity measurements and mechanical testing were employed to investigate the evolution of microstructure and functional superelastic properties of 0.1 mm diameter as-drawn NiTi wires subjected to a non-conventional heat treatment by controlled electric pulse currents. This method enables a better control of the recovery and recrystallization processes taking place during the heat treatment and accordingly a better control on the final microstructure. Using a stepwise approach of millisecond pulse annealing, it is shown how the microstructure evolves from a severely deformed state with no functional properties to an optimal nanograined microstructure (2050 nm) that is partially recovered through polygonization and partially recrystallized and that has the best functional properties. Such a microstructure is highly resistant against dislocation slip upon cycling, while microstructures annealed for longer times and showing mostly recrystallized grains were prone to dislocation slip, particularly as the grain size exceeds 200 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000279787100020 Publication Date 2010-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited (up) 110 Open Access  
  Notes Multimat; FWO IAA Approved Most recent IF: 5.301; 2010 IF: 3.791  
  Call Number UA @ lucian @ c:irua:83279 Serial 2062  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: