|
Record |
Links |
|
Author |
Boschker, H.; Huijben, M.; Vailinois, A.; Verbeeck, J.; Van Aert, S.; Luysberg, M.; Bals, S.; Van Tendeloo, G.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G. |
|
|
Title |
Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics |
Type |
A1 Journal article |
|
Year |
2011 |
Publication |
Journal of physics: D: applied physics |
Abbreviated Journal |
J Phys D Appl Phys |
|
|
Volume |
44 |
Issue |
20 |
Pages |
205001-205001,9 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
In this paper, an overview of the fabrication and properties of high-quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high-quality LSMO film combines a smooth surface morphology with a large magnetization and a small residual resistivity, while avoiding precipitates and surface segregation. In the literature, typically only a few of these issues are adressed. We therefore present a thorough characterization of our films, which were grown by pulsed laser deposition. The films were characterized with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, magnetization and transport measurements, x-ray photoelectron spectroscopy and scanning transmission electron microscopy. The films have a saturation magnetization of 4.0 µB/Mn, a Curie temperature of 350 K and a residual resistivity of 60 µΩ cm. These results indicate that high-quality films, combining both large magnetization and small residual resistivity, were realized. A comparison between different samples presented in the literature shows that focussing on a single property is insufficient for the optimization of the deposition process. For high-quality films, all properties have to be adressed. For LSMO devices, the thin-film quality is crucial for the device performance. Therefore, this research is important for the application of LSMO in devices. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
London |
Editor |
|
|
|
Language |
|
Wos |
000290150900001 |
Publication Date |
2011-04-29 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-3727;1361-6463; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.588 |
Times cited |
99 |
Open Access |
|
|
|
Notes |
This research was financially supported by the Dutch Science Foundation, by NanoNed, a nanotechnology program of the Dutch Ministry of Economic Affairs, and by the NanOxide program of the European Science Foundation. This work is supported in part by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. |
Approved |
Most recent IF: 2.588; 2011 IF: 2.544 |
|
|
Call Number |
UA @ lucian @ c:irua:89557UA @ admin @ c:irua:89557 |
Serial |
2491 |
|
Permanent link to this record |