|
Record |
Links |
|
Author |
Ustarroz, J.; Ke, X.; Hubin, A.; Bals, S.; Terryn, H. |
|
|
Title |
New insights into the early stages of nanoparticle electrodeposition |
Type |
A1 Journal article |
|
Year |
2012 |
Publication |
The journal of physical chemistry: C : nanomaterials and interfaces |
Abbreviated Journal |
J Phys Chem C |
|
|
Volume |
116 |
Issue |
3 |
Pages |
2322-2329 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Electrodeposition is an increasingly important method to synthesize supported nanoparticles, yet the early stages of electrochemical nanoparticle formation are not perfectly understood. In this paper, the early stages of silver nanoparticle electrodeposition on carbon substrates have been studied by aberration-corrected TEM, using carbon-coated TEM grids as electrochemical electrodes. In this manner we have access to as-deposited nanoparticle size distribution and structural characterization at the atomic scale combined with electrochemical measurements, which represents a breakthrough in a full understanding of the nanoparticle electrodeposition mechanisms. Whereas classical models, based upon characterization at the nanoscale, assume that electrochemical growth is only driven by direct attachment, the results reported hereafter indicate that early nanoparticle growth is mostly driven by nanocluster surface movement and aggregation. Hence, we conclude that electrochemical nulceation and growth models should be revised and that an electrochemical aggregative growth mechanism should be considered in the early stages of nanoparticle electrodeposition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Washington, D.C. |
Editor |
|
|
|
Language |
|
Wos |
000299584400037 |
Publication Date |
2011-12-23 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1932-7447;1932-7455; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.536 |
Times cited |
104 |
Open Access |
|
|
|
Notes |
Fwo |
Approved |
Most recent IF: 4.536; 2012 IF: 4.814 |
|
|
Call Number |
UA @ lucian @ c:irua:96225 |
Serial |
2316 |
|
Permanent link to this record |