|
Record |
Links |
|
Author |
Sanz-Ortiz, M.N.; Sentosun, K.; Bals, S.; Liz-Marzan, L.M. |
|
|
Title |
Templated Growth of Surface Enhanced Raman Scattering -Active Branched Au Nanoparticles within Radial Mesoporous Silica Shells |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
ACS nano |
Abbreviated Journal |
Acs Nano |
|
|
Volume |
9 |
Issue |
9 |
Pages |
10489-10497 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Noble metal nanoparticles are widely used as probes or substrates for surface-enhanced Raman scattering (SERS), due to their characteristic plasmon resonances in the visible and NIR spectral ranges. Aiming at obtaining a versatile system with high SERS performance we developed the synthesis of quasi-monodisperse, non-aggregated gold nanoparticles protected by radial mesoporous silica shells. The radial channels of such shells were used as templates for the growth of gold tips branching from the cores, thereby improving the plasmonic performance of the particles while favoring the localization of analyte molecules at high electric field regions: close to the tips, inside the pores. The method, which allows control over tip length, was successfully applied to various gold nanoparticle shapes, leading to materials with highly efficient SERS performance. The obtained nanoparticles are stable in ethanol and water upon thermal consolidation and can be safely stored as a powder. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Wos |
000363915300105 |
Publication Date |
2015-09-15 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1936-0851;1936-086X; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
13.942 |
Times cited |
110 |
Open Access |
OpenAccess |
|
|
Notes |
This work has been funded by the European Research Council (ERC Advanced Grant 267867 Plasmaquo and Starting Grant Colouratom). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013 under grant agreement no. 312184, SACS). Help from Mert Kurttepeli is acknowledged. Pentatwinned nanorods and nanotriangles were synthesized by L. Scarabelli.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); |
Approved |
Most recent IF: 13.942; 2015 IF: 12.881 |
|
|
Call Number |
c:irua:129194 |
Serial |
3947 |
|
Permanent link to this record |