
Electronic structure and band gap of zinc spinel oxides beyond LDA: ZnAl2O4, ZnGa2O4 and

ZnIn2O4

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 New J. Phys. 13 063002

(http://iopscience.iop.org/1367-2630/13/6/063002)

Download details:

IP Address: 146.175.13.243

The article was downloaded on 16/06/2011 at 14:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/13/6
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Electronic structure and band gap of zinc spinel
oxides beyond LDA: ZnAl2O4, ZnGa2O4 and ZnIn2O4

H Dixit1,4, N Tandon2, S Cottenier3, R Saniz1, D Lamoen1,
B Partoens1, V Van Speybroeck3 and M Waroquier3

1 CMT-group and EMAT, Departement Fysica, Universiteit Antwerpen
Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
2 Instituut voor Kern- en Stralingsfysica, K U Leuven Celestijnenlaan 200D,
B-3001 Leuven, Belgium
3 Center for Molecular Modeling, Ghent University Technologiepark 903,
9052 Zwijnaarde, Belgium
E-mail: Hemant.Dixit@ua.ac.be

New Journal of Physics 13 (2011) 063002 (11pp)
Received 15 February 2011
Published 1 June 2011
Online at http://www.njp.org/
doi:10.1088/1367-2630/13/6/063002

Abstract. We examine the electronic structure of the family of ternary
zinc spinel oxides ZnX2O4 (X = Al, Ga and In). The band gap of ZnAl2O4

calculated using density functional theory (DFT) is 4.25 eV and is overestimated
compared with the experimental value of 3.8–3.9 eV. The DFT band gap of
ZnGa2O4 is 2.82 eV and is underestimated compared with the experimental
value of 4.4–5.0 eV. Since DFT typically underestimates the band gap in the
oxide system, the experimental measurements for ZnAl2O4 probably require
a correction. We use two first-principles techniques capable of describing
accurately the excited states of semiconductors, namely the GW approximation
and the modified Becke–Johnson (MBJ) potential approximation, to calculate
the band gap of ZnX2O4. The GW and MBJ band gaps are in good agreement
with each other. In the case of ZnAl2O4, the predicted band gap values are
>6 eV, i.e. ∼2 eV larger than the only reported experimental value. We expect
future experimental work to confirm our results. Our calculations of the electron
effective masses and the second band gap indicate that these compounds are very
good candidates to act as transparent conducting host materials.
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1. Introduction

Zinc alluminate (ZnAl2O4) and zinc gallate (ZnGa2O4) are wide-band-gap semiconductors
with the reported band gaps of 3.8–3.9 and 4.4–5.0 eV, respectively [1]. These wide-band-
gap structures are useful in photoelectronic and optical applications and are being studied as
candidate materials for reflective optical coatings in aerospace applications [2, 3]. Because of
their wide band gap, they have attracted much interest as possible transparent conducting oxide
(TCO) materials [4, 5]. For effective material design for this purpose, a sound knowledge of
the electronic properties of these materials is essential. The structural properties and electronic
structure of these materials have been studied previously [5–7] within the framework of standard
density functional theory (DFT) [8, 9]. But these studies were hampered by the well-known
problem that within that framework the band gap of semiconductors and insulators is severely
underestimated [10]. Indeed, although the structural parameters obtained within DFT are in
fairly good agreement with experiment, the band gaps are not so. For instance, the calculated
DFT band gap of ZnGa2O4 is 2.79 eV [6], an underestimation of 42% with respect to the
experimental value. Interestingly, in the case of ZnAl2O4, the DFT band gap is found to be
4.11 eV [6], which is roughly 5% higher than the experimental value. This is in stark contrast
to the common trend and has led Sampath [6] to indicate that since the band gaps in [1] were
derived from reflectance measurements of powder samples, a correction due to the particle-size
dependence of light scattering may be necessary. Thus, the exact band gap value of ZnAl2O4 is
at present an open question.

Fortunately, at present there are first-principles techniques that have been demonstrated
to be able to describe accurately the electronic structure of semiconductors and insulators. As
examples first we mention the GW approximation [10] and thereafter the recently proposed
modified Becke–Johnson (MBJ) potential [11, 12] approximation. Here we apply these methods
to study systematically the series ZnX2O4, where X = Al, Ga and In are successively heavier
elements from group III of the periodic table. We focus not only on predicting the real value
of the fundamental band gap in these materials, but also on other key properties in TCOs, such
as the second band gap (between the two lowest conduction bands) and the electron effective
mass.
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The GW method is a Green’s function technique that involves the ejection or injection
of electrons. It links the N -particle system with the (N ± 1)-particle system. In this way, the
GW approximation offers a strong physical basis to correlate the band energies obtained using
Green’s function with the experimental band gap measured using photoemission spectroscopy.
Band gaps calculated by GW are observed to be much closer to the experimental values than
are DFT band gaps [13]. The MBJ exchange correlation potential proposed recently by Tran
and Blaha [11, 12] is a parameterized functional that recovers the local density approximation
(LDA) as a limiting case. The number of parameters that were tuned by applying this method
to a test set is small (only two). MBJ calculations require barely more computation time than
do regular LDA calculations, and provide band gaps that are observed to be very similar to
GW band gaps [11]. The GW band gaps are calculated on top of the DFT band structure at the
0 point, using a pseudopotential (PP) and a plane wave basis set. Note that we use the non-
self-consistent or ‘single-shot’ approximation [10]. The MBJ calculations are performed with
an all-electron method using an augmented plane wave + local orbital (APW + lo) basis set.

Transition metal oxides can be particularly challenging for first-principles calculations and
this is the case for the GW method as well. Indeed, while there is ample evidence that the non-
self-consistent GW approximation works well in combination with PPs and a plane wave basis
set within DFT–LDA [14], it has been observed that it can underestimate band gaps in transition
metal oxides if no special care is taken. The exchange part of the self-energy operator within
the GW approximation is inadequately treated if only cation d-states are included as valence
states [15]. Therefore, a ‘standard’ PP with only semi-core d-states is not suitable for calculating
a GW band gap in transition metal oxides. For ZnO, we have found before that the 20-electron
cation PP is essential for an adequate treatment of the exchange part of the self-energy within
the GW approximation [16]. In this work, we also address the question of whether the complete
n = 3(4) shell must be included in the Ga(In) PP to obtain accurate GW results. Thus, in this
paper we present the non-self-consistent GW band gap calculated with two sets of PPs. Firstly,
with the ‘standard’ PP containing the semi-core states (3d10, 4s2 for Zn, 3d10, 4s2, 4p1 for Ga and
4d10, 5s2, 5p1 for In) and then with the entire n = 3(4) shell treated as valence (3s2, 3p6, 3d10,
4s2 for Zn; 3s2, 3p6, 3d10, 4s2, 4p1 for Ga and 4s2, 4p6, 4d10, 5s2, 5p1 for In). We discuss how
these different PPs affect the structural properties as well as the GW band gap. The accuracy of
these PPs is examined by comparison with the all-electron calculations with LDA and the MBJ
potential.

2. Computational details

2.1. Pseudopotentials (PPs)

We use two sets of ab initio norm-conserving PPs for Zn, Ga and In as defined below.
(a) The ‘standard’ Zn12+, Ga13+ and In13+ PPs in which the semi-core 3d(4d) state is treated

as valence. The inclusion of the wide d-orbital is necessary for a correct description of the
structural properties by DFT for group-IIB and -IIIA elements. Hereafter this set of PPs will be
referred to as PP1.

(b) The Zn20+, Ga21+ and In21+ PPs generated with the entire n = 3(4) shell as valence. Since
the exchange energy contribution to the self-energy operator depends on the spatial overlap of
atomic orbitals, the ‘s’ and ‘p’ states are also included in the valence for an adequate treatment
of the self-energy. It should be noted that we do not construct our Zn20+, Ga21+ and In21+ PPs for
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the neutral zinc and gallium (indium) atoms, but rather for the ion with the 4s(5s) and 4p(5p)
states unoccupied. The cut-off radius for the Zn and Ga atoms is chosen to be 0.43 Å for 3s, 3p
and 3d orbitals and 1.38 Å for 4s and 4p orbitals. For the In atom, we choose a cut-off radius
of 0.52 Å for 4s, 4p and 4d orbitals and 1.2 Å for 4s and 4p orbitals. These values for the
cut-off radius show the smallest transferability error for ionic configurations of Zn/Ga/In
(neutral, +1 and +2), at the cost of an increased plane wave cut-off. We have used 90 Ha as the
cut-off energy for plane waves, when Zn20+/Ga21+/In21+ PP is used. The PP becomes harder with
the inclusion of localized core orbitals in the valence. These PPs are generated with the OPIUM
code (http://opium.sourceforge.net/index.html) according to the Troullier–Martins method [17]
with Perdew–Zunger LDA [18]. Hereafter this set of PPs will be referred to as PP2.

2.2. Density-functional theory (DFT), GW and modified Becke–Johnson (MBJ)

The electronic structure and the quasiparticle (GW) correction to the band gap at the 0 point
have been calculated using the plane wave PP code abinit [19–21]. For the electronic structure
the plane wave cut-off is chosen using the total energy convergence criterion of 2 × 10−2 eV.
The atomic positions and structural parameters have been optimized by calculating the
Hellmann–Feynman forces. The stresses are minimized with the criterion of 2 × 10−5 eV Å−3.
We choose a 4 × 4 × 4 Monkhorst–Pack [22] k-point mesh, which yields 10 k-points in the
irreducible Brillouin zone.

The parameters used within abinit to calculate the self-energy are optimized with a
convergence criterion of 0.01 eV for the band gap at 0. We have found that for both the screening
and the self-energy calculation, 600 bands are sufficient to converge the GW band gap. The
dielectric matrix is calculated with the plasmon-pole model [10] and is used to calculate the
screening.

All-electron calculations with the APW + lo method were performed using the wien2k
code [25, 26]. In this method, the wave functions are expanded in spherical harmonics inside
non-overlapping atomic spheres of radius RMT and in plane waves in the remaining space of
the unit cell (the interstitial region). The radii for the muffin tin spheres were taken as large as
possible without overlap between the spheres: RZn

MT = 2.0, RAl
MT = 1.9, RGa

MT = 2.0, RIn
MT = 2.3

and RO
MT = 1.6. The maximum ` for the expansion of the wave function in spherical harmonics

inside the spheres was taken to be `max = 10. The charge density was Fourier expanded up
to Gmax = 16 Ry. Atomic positions were relaxed until the forces were below 0.5 mRy au−1. The
plane wave expansion of the wave function in the interstitial region was truncated at Kmax = 4.7.
A converged k-mesh of 16 k-points in the irreducible part of the Brillouin zone was used.

3. Result and discussion

3.1. Structural properties and electronic band structure using DFT

ZnX2O4 (X = Al, Ga and In) adopt the normal spinel structure (space group Fd-3m). They are
characterized by the lattice parameter a and an internal parameter u. The Zn atoms are located
at the Wyckoff positions 8a (1/8, 1/8, 1/8) tetrahedral sites, whereas Al, Ga or In atoms are
located at the 16d (1/2, 1/2, 1/2) octahedral sites and the O atoms at 32e (u, u, u) of the face-
centered cubic structure. It has been shown by experiment [23] as well as theory [24] that for
these compounds (ZnAl2O4 and ZnGa2O4), the normal spinel structure is more favorable than
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Table 1. The optimized lattice constant (in Å) and the internal coordinate (u) of
three spinel compounds, calculated using either PP (PP1 and PP2; see text) or an
all-electron method.

Compound PP1 PP2 All-electron method Experiment [23]

ZnAl2O4 7.9893 7.9849 8.0464 8.086
u 0.2642 0.2647 0.2638 0.2636

ZnGa2O4 8.2644 8.3284 8.2693 8.33
u 0.2611 0.2611 0.2612 0.2617

ZnIn2O4 8.8420 8.8790 8.9297 –
u 0.2553 0.2556 0.2558 –

the inverse spinel structure, where the tetrahedral sites are occupied by the X atoms and the
octahedral sites are occupied by equal numbers of Zn and O atoms. We therefore consider only
the normal spinel structure in this work. The structural properties are summarized in table 1,
which shows the optimized lattice constant and ‘u’ parameter for both sets of PPs and for an
all-electron calculation, in all cases with plain LDA. For comparison the experimental values
are also listed. Experimental data are not available for ZnIn2O4. Lattice constants and internal
parameters for both PPs are in good agreement with the corresponding all-electron data and
all calculated values are in good agreement with experiment, apart from the usual over-binding
behavior of LDA. The small differences between the results obtained by the two PPs and by the
all-electron calculations suggest that our newly generated Zn20+/Ga21+/In21+ PP (PP2) is of an
acceptable accuracy.

The electronic structure and projected density of states (PDOS) for ZnX2O4 (X = Al, Ga
and In) oxides, calculated using DFT/LDA, are shown in figure 1. ZnAl2O4 is direct band gap
material with both the valence band maximum and the conduction band minimum at 0, while
ZnGa2O4 and ZnIn2O4 have an indirect band gap, as the valence band maximum is along the
0–K direction (see inset). The PDOS shows a significant p–d hybridization between the Zn-d
and O-p orbitals. This is one of the reasons why the DFT–LDA band gap of ZnGa2O4 is strongly
underestimated compared to the experimental value as shown in table 2. The calculated band gap
at the 0 point is 2.82 eV in comparison with the experimental value of 4.4–5.0 eV. The PDOS for
ZnAl2O4 also shows p–d hybridization; however, the calculated band gap of 4.25 eV overshoots
the experimental value of 3.8–3.9 eV. It is well known that DFT typically underestimates the
band gap, as mentioned above, but it does so even more in the case of p–d hybridized systems.
Thus the apparent band gap overestimation by DFT–LDA in the case of ZnAl2O4 is anomalous.
Previous theoretical calculations on LDA level [5–7] found results similar to ours and have
suggested that the experimental results require revision. In the case of ZnIn2O4, the DFT–LDA
band gap is found to be 1.71 eV. No experimental information is available for comparison, as
this material has not been synthesized experimentally.

The electron effective mass is listed in table 3 for ZnX2O4. The effective mass is calculated
along the [111] direction, and it compares well to the known TCO materials such as ZnO
(0.23 m0) and In2O3:Sn (0.30 m0). The effective mass with MBJ is larger than LDA, as also
observed by Kim et al [27]. Another key property of a good TCO is a large second band gap
between the two lowest conduction bands. The larger value of the second band gap lowers the
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Figure 1. LDA (PP2) results on the electronic band structure and PDOS for
(a) ZnAl2O4 (b) ZnGa2O4 and (c) ZnIn2O4 spinels.

Table 2. The DFT–LDA, all-electron, GW and MBJ band gap (Eg) at 0,
calculated with the optimized lattice constant (in eV).

Compound EPP1
g EPP2

g EAPW+lo
g EPP1+GW

g EPP2+GW
g EMBJ

g EExpt.
g

ZnAl2O4 4.26 4.25 4.11 5.88 6.55 6.18 3.80–3.90
ZnGa2O4 2.63 2.82 2.53 3.88 4.57 4.71 4.40–5.00
ZnIn2O4 1.22 1.71 1.12 1.77 3.27 3.51 –

plasma frequency and results in reduced optical absorption [28]. We find that the second band
gap (E2

g) is 3.08 eV for ZnAl2O4, 3.10 eV for ZnGa2O4 and 3.13 eV for ZnIn2O4 with LDA.
This shows that the ZnX2O4 spinels can be n-type conducting and remain transparent over the
visible spectrum, making them attractive host materials for TCO.
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Table 3. The electron effective mass (in units of free electron mass m0),
calculated along the [111] direction.

Compound m∗
e (PP1) m∗

e (APW + lo) m∗
e (MBJ)

ZnAl2O4 0.37 0.35 0.44
ZnGa2O4 0.23 0.25 0.35
ZnGa2O4 0.17 0.22 0.34

To predict the band gap values accurately and to describe the conduction bands, we
performed a calculation of the excited states using the GW approximation as well as the MBJ
potential. Our findings are reported in the following sections.

3.2. GW and MBJ band gaps

We first calculate the quasiparticle correction to the band gap using the GW approximation.
The Kohn–Sham(KS)-DFT band structure calculated with a norm-conserving PP serves as a
starting point for the ab initio excited state calculation. The self-energy operator is calculated
as 6 = iGW , where G is the one-particle Green function and W is the screened Coulomb
interaction. The quasiparticle equation

[T + Vext(r) + VH(r)]9i(r) +
∫

dr ′6(r, r′
; εi

qp)9i(r′) = εi
qp9i(r′) (1)

is then solved to obtain the quasiparticle energies ε
qp
i and the wave functions 9i . In the above

expression, T is the kinetic energy operator and Vext and VH are the external potential and the
Hartree potential, respectively. In practice, both the G and W operators are constructed within
the quasiparticle approximation by using the KS wave functions 9i and energies εi obtained by
DFT calculations. In this work, the self-energy is calculated with the now well-known non-self-
consistent G0W0 approximation [10], where G0 is the electron Green function corresponding to
the DFT eigenvalues and eigenfunctions

G0(r, r′
; ε) = lim

δ→0+
6i

9i(r)9∗

i (r′)

ε − [εi + iδsgn(Ef − εi)]
, (2)

and W0 is the dynamically screened Coulomb interaction

W0(r, r′
; ε) =

∫
dr ′′ε−1(r, r′′

; ε)ν(r′′, r′). (3)

Here Ef is the Fermi energy, ν is the bare Coulomb interaction and ε−1 is the inverse dielectric
matrix.

In the following, we present the quasiparticle band gaps obtained with the two sets of
PPs (PP1 and PP2) for Zn, Ga and In (table 2). We discuss ZnGa2O4 first. The band gap with
plain LDA is about 2.6 eV, with minor influences due to the type of PP or the use of an all-
electron method. This gap is 2 eV below the experimental value. When the GW method is
used for the standard PP (PP1), the resulting band gap is 1.2 eV larger. This is considerably
closer to experiment, but still almost 1 eV too small. If, however, we use the Zn20+ and Ga21+

PP (PP2), we obtain a band gap of 4.57 eV, which agrees nicely with the experimental value.
Hence, we confirm that similar to ZnO [16], the Zn20+ and Ga21+ PP (PP2) is essential for an
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Figure 2. DFT–LDA, all-electron, GW and MBJ band gap of ZnX2O4 (X = Al,
Ga and In) in spinel oxides.

adequate treatment of the self-energy. The MBJ band gap is similar to the GW (PP2) band gap.
To elucidate the contribution of the Ga21+ PP to the self-energy, we now provide an interesting
comparison. We have also calculated the GW band gap of ZnGa2O4 using a combination of
Zn20+ and Ga13+ PP. The calculated GW band gap is 4.39 eV and the quasiparticle correction to
the band gap is 1.54 eV, which is lower than 1.74 eV when the Zn20+ and Ga21+ PP is used. This
confirms that PP2 should be used for both the cations, Zn and Ga.

For ZnAl2O4, the situation is somewhat different. As mentioned in section 3.1, the LDA
band gap is larger than the experimental value, which is an anomalous situation. LDA is known
to provide band gaps that are considerably too small for oxides. Indeed, applying GW with the
standard PP (PP1) gives a 1.6 eV increase in the band gap. Using the Zn20+ and Al3+ PP (PP2)
increases the band gap further by yet another 0.7 eV. The final value of 6.55 eV is somewhat
larger than the MBJ value of 6.18 eV, and either of both is more than 2 eV larger than the reported
experimental value. This strongly suggests that the experimental value is indeed incorrect, and
a re-measurement is suggested.

ZnIn2O4 shows qualitatively similar behavior: using GW with the standard PP increases
the band gap, whereas using PP2 rather than PP1 gives an additional increase. In contrast to the
previous two compounds, the second step introduces the larger change. This is consistent with
the observation that even at the LDA level the introduction of PP2 increased the band gap by
0.5 eV. The MBJ band gap is again similar to the GW+PP2 value.

As table 2 shows, the MBJ band gaps fall within a range of at most 7% from the GW band
gaps (PP2). This is fair agreement considering the large difference with the plain LDA band
gaps. Possible reasons for the GW–MBJ differences are the following: (a) the fact that both
band gaps are determined at the equilibrium lattice parameter as predicted by the corresponding
code (abinit/wien2k) at LDA level (table 1), (b) the direct influence of the PP on the band gap
and (c) the fact that the GW band gaps are non-self-consistent values.

The band gap evolution in ZnX2O4 when X moves down the group (X = Al, Ga, In) is
shown in figure 2. The DFT, GW and MBJ results show a similar trend. The band gap decreases
with heavier cation substitution in the ZnX2O4 spinel oxide. Al has no d-states, while both Ga
and In possess filled shallow core d-states that lie mainly around −12 eV in the valence band.
However, note, from the PDOS shown in the insets of figure 1, that these d-states are also
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Table 4. Reaction energies of ZnX2O4 (X = Al, Ga and In) spinel oxide.

Reaction Reaction energy (eV)

ZnO + Al2O3 → ZnAl2O4 −0.83
ZnO + Ga2O3 → ZnGa2O4 −0.90
ZnO + In2O3 → ZnIn2O4 +0.53

Table 5. Average bond lengths (Å) for the X-containing distorted oxygen
octahedron in the spinel-type ZnX2O4 and the corundum-type X2O3. The data
for the spinels stem from the calculations in this work. The corundum data are
experimental values from [29–31].

Bond ZnX2O4 X2O3

Al Ga In Al Ga In

X–O 1.88 1.89 2.17 1.92 2.00 2.16
O–O 2.66 2.68 3.07 2.68 2.80 3.03

present in the region −5 to 0 eV in the valence band. This indicates that these d-states increase
the coupling with the O-2p levels. Therefore, we suggest that the fundamental electronic band
gap decreases through enhanced p–d coupling below the valence band while moving from Al
to Ga. Since the In-d orbitals have larger spatial extension compared with the Ga-d orbital, the
band gap decreases further when Ga is replaced by In.

3.3. Formation enthalpy

Experimentally the ZnIn2O4 spinel structure has not been observed and thus there are no
experimental reports on the band gap of ZnIn2O4. To examine the stability of ZnX2O4 spinel
oxides, we calculate the enthalpy of the following reaction with standard PP (PP1) at the LDA
level:

ZnO + X2O3 → ZnX2O4.

The enthalpy of the reaction is obtained by taking the difference between the total energies of
the systems constituting the reaction. ZnO (wurtzite), α-Al2O3 (corundum), β-Ga2O3 and In2O3

(bixbyite) are all well-known compounds. The total energy of these compounds is calculated
at optimized lattice parameters. The calculated enthalpy of this reaction is listed in table 4.
The calculated enthalpies are −0.83 and −0.90 eV for ZnAl2O4 and ZnGa2O4, respectively,
indicating that these spinel structures are stable. However, for ZnIn2O4 the reaction enthalpy is
+0.53 eV, indicating that the formation of the ZnIn2O4 spinel structure is thermodynamically
unfavorable. This appears to be correlated with the crystal geometry as explained below. The
building block of the spinel structure is a distorted oxygen octahedron that contains one atom of
element X. Table 5 shows how the average O–O distance and O–X distance for this octahedron
depend on X: the bond lengths are almost identical for X = Al and X = Ga and increase by
more than 10% for X = In. A similar octahedron appears in the corundum structure. The
corresponding average bond lengths are given as well: there is a 5% increase when Al is replaced
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by Ga and a more than 10% increase when Al is replaced by In. The latter agrees with the
spinel case. The difference between corundum and spinel lies in the small bond lengths for the
ZnGa2O4 spinel. Apparently such small bond lengths cannot be maintained for ZnIn2O4, which
renders this crystal unstable.

4. Conclusions

We calculate the quasiparticle band gap with two sets of PPs for Zn, Ga and In. The quasiparticle
corrections for ZnX2O4 (X = Al, Ga and In) are presented. Our results show that the Zn20+,
Ga21+ and Ga21+ PPs are essential to calculate the GW band gap. The calculated GW and
MBJ band gaps for ZnGa2O4 are 4.57 and 4.71 eV, respectively. These band gap values agree
well with the reported experimental values of 4.40–5.00 eV. The predicted GW and MBJ
band gap for ZnAl2O4 are 6.55 and 6.18 eV, respectively. It will be of great interest to see
if future experimental work confirms these values. The DFT (PP and all-electron), GW and
MBJ band gaps for ZnX2O4 all show a similar trend: a band gap decrease upon substitution
by a heavier cation. The MBJ band gaps are in agreement with the GW counterparts for these
compounds, which corroborates the claim that MBJ provides accurate band gaps for only a small
computational effort. The calculated formation enthalpy for the ZnX2O4 spinel oxide structure
indicates that ZnAl2O4 and ZnGa2O4 are stable. However, the formation of the ZnIn2O4 spinel
structure is unlikely, which is consistent with the fact that experimentally the ZnIn2O4 spinel
structure has not been observed.
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