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Stable Vortex-Antivortex Molecules in Mesoscopic Superconducting Triangles
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A thermodynamically stable vortex-antivortex pattern has been revealed in equilateral mesoscopic
type I superconducting triangles, contrary to type II superconductors where similar patterns are
unstable. The stable vortex-antivortex ‘“molecule” appears due to the interplay between two factors:
a repulsive vortex-antivortex interaction in type I superconductors and the vortex confinement in the

mesoscopic triangle.

DOI: 10.1103/PhysRevLett.90.147003

Symmetrically confined vortex matter in superconduc-
tors, superfluids, and Bose-Einstein condensates offers
unique possibilities to study the interplay between the
C, symmetry of the magnetic field and the discrete
symmetry of the boundary conditions. Superconduc-
tivity in mesoscopic equilateral triangles, squares, etc.,
in the presence of a magnetic field nucleates by conserv-
ing the imposed symmetry (C;, C4) of the boundary
conditions [1] and the applied vorticity. In an equilateral
triangle, for example, in an applied magnetic field H
generating two flux quanta, 2®,, superconductivity ap-
pears as the Csz-symmetric combination 3®,-®P, (denoted
as “3-1”) of three vortices and one antivortex in the
center. These symmetry-induced antivortices can be
important not only for superconductors but also for sym-
metrically confined superfluids and Bose-Einstein con-
densates. Since the order parameter patterns reported in
Refs. [1] have been obtained in the framework of the
linearized Ginzburg-Landau (GL) theory, this approach
is valid only close to the nucleation line T,.(H). Can these
novel symmetry-induced vortex-antivortex patterns then
survive deep in the superconducting state? Several at-
tempts have already been made to answer this crucial
question. In the limit of an extreme type II superconduc-
tor (k >> 1), it has been shown that a configuration of one
antivortex in the center and four vortices on the diagonals
of the square is unstable away from the phase boundary
[2,3]. Such a vortex state is very sensitive to any distortion
of the symmetry and can easily be destroyed by a small
defect set to the system [4]. Recently, the symmetry-
induced solution with an antivortex has been found [5]
in a thin-film superconducting square, in a broader region
of the phase diagram than that in Refs. [1]. Possible
scenarios of penetration of a vortex into a mesoscopic
superconducting triangle with increasing magnetic field
have been studied in Ref. [6]. While a single vortex enters
the triangle through a midpoint of one side, a symmetric
(“3-2”’) combination of three vortices and one antivortex
with vorticity L,, = —2 turns out to be energetically
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favorable when the vortices are close to the center of
the triangle [6].

The previous inferences on vortex-antivortex states in
mesoscopic structures seem to give us no hope to find
stable vortex-antivortex configurations deeper in the
superconducting state, considering them just as the fea-
tures appearing in materials with x> 1 at T.(H)
together with superconductivity. Here we propose the
new solution demonstrating the stability of the vortex-
antivortex patterns. This solution is based on the simple
conjecture made by one of the authors (V.V. M. [7]): the
main source of the vortex-antivortex pattern instability,
namely, vortex-antivortex attraction, can be removed by
taking—instead of type II—type I superconductors,
where vortex-antivortex interaction becomes repulsive.
Indeed, when passing through the dual point k = 1/+/2,
the vortex-vortex interaction changes the sign [8—10] and
becomes attractive at k < 1/\/5 At the same time,
the vortex-antivortex interaction becomes repulsive.
Therefore, one can expect that presence of antivortices,
together with confinement of vortices and antivortices due
to a potential barrier at the boundaries, can stabilize
novel vortex-antivortex patterns in a mesoscopic sample
of type I superconductor Optimizing the geometry and
the sizes of mesoscopic samples, one can therefore fulfill
the conditions necessary for the existence of stable vor-
tex-antivortex configurations. For instance, the presence
of sharp corners is known [11-14] to lead to a strongly
inhomogeneous distribution of the superconducting order
parameter in a mesoscopic sample. Enhanced supercon-
ducting condensate density at the corners prevents vorti-
ces from leaving the sample. Together with the sign
inversion of the vortex-antivortex interaction, this can
stabilize novel vortex-antivortex configurations.

To verify these intuitive considerations, we investigate
a mesoscopic prism of a type I superconductor with a
cross section in the shape of an equilateral triangle
(denoted “triangle’”) placed in applied magnetic field.
The triangle is a proper candidate to search for stable
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vortex-antivortex configurations because (i) among con-
vex simply connected figures, it has the highest enhance-
ment factor of the critical magnetic field, and (ii) a
vortex-antivortex configuration with the lowest total vor-
ticity is expected to be stable, namely, the combination
consisting of three vortices (L3, = 3) and one antivortex
with vorticity L,, = —1 (3-1 combination, or 3v + lav
molecule). (It is important to note that these vortex states
are essentially beyond the model used in Ref. [15], which
allows only giant-vortex states centered at the axis of an
infinitely long cylinder.) The side of the triangle (a =
1 um) is taken to be larger than & and A. In our calcu-
lations, the used values of the GL parameters are typical
for such metals as Pb (type I): £ = 82 nm, A = 39 nm,
k = 0.48; and Nb (type II): £ = 39 nm, A = 50 nm, k =
1.28 [16]. In this Letter, the prism is mainly supposed to
be infinitely long in the z direction. We also discuss a long
finite-height prism. In the limit of thin-film samples, k¢t
increases [3,6,13,14], and triangles behave as type II
superconductors.

In the description of the superconducting properties of
mesoscopic triangles, we rely upon the GL equations for
the order parameter ¥ and the vector potential A of the
magnetic field H = rotA [16-18]. In the dimensionless
form, when keeping the temperature dependence explic-
itly, the GL equations are

(v apy - (1- 1 )-We]=0.

T,
AN =2V — gV HAE. @)

The imposed boundary condition is
n- (_lv - A)lplboundary =0. 3)

Topological characteristics of solutions of the GL equa-
tions are determined by (anti)vortex core lines. One
revolution along any closed path around such a line
changes the phase of the order parameter by 277L, where
L is the winding number (vorticity) of a vortex or anti-
vortex. The GL Egs. (1) and (2) with the boundary con-
ditions are solved numerically, using the finite-difference
method, on a square mesh with the density of 200 nodes
per side of the triangle. The iteration procedure provides a
high accuracy of calculation: the relative error for
[i(x, y)|? is less than 1074, i.e., at least 1 order of magni-
tude lower than the minimal nonzero values of |i(x, y)|?
shown in figures in the present Letter.

In order to study stability of the solutions, the calcu-
lations are performed for various values of the GL pa-
rameter « and for various temperatures. Specific values
of magnetic field are chosen to provide states with
total vorticity L = 2 and possess a lower free energy
than other states with L = 0, 1, 3 etc. States with total
vorticity L = 2 can be represented by two possible con-
figurations: (i) two vortices in the form of a multivortex or
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a giant-vortex state; (ii) the symmetric 3-1 combination.
(Symmetric combinations with a larger number of vorti-
ces and antivortices such as “6-4,” “9-7,” etc., possess a
higher free energy than the 3-1 combination.)

According to our calculations, it is the 3-1 combination
that minimizes the free energy in case of a type I super-
conductor, if appropriate material and external parame-
ters are provided. In Fig. 1, the free energy for the 3-1
combination is shown as a function of the distance d,,
counted from the center of the triangle along the bisectors
to vortices, for «=0.7, T/T.=0.92, and H, =
0.72H.(0), where H_.(0) is the thermodynamical critical
field [16,18] at zero temperature. There are three minima
of the free energy as a function of d,,. The first minimum,
which is at —1.29£(0) from the center of the triangle,
corresponds to a configuration when vortices are situated
between the center of the triangle and the midpoints of
the sides of the triangle. This is a saddle point for the free
energy as a function of the coordinates (x, y) in the plane
of the triangle, and the state is unstable. The second
minimum is reached when all the vortices are in the
center of the triangle, and the vortex-antivortex combi-
nation degenerates to a giant vortex L,, = 2. This local
minimum represents a metastable state.

The absolute minimum is reached when three vortices
are situated between the center and the apexes of the
triangle at 1.76£(0) from the antivortex in the center
(Fig. 1). This vortex-antivortex molecule is thermody-
namically stable. Tts stability can be understood in
the following way. Let us analyze the distribution of
the squared modulus of the order parameter |i/(x, y)|?
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FIG. 1 (color). The free energy F, — F, [measured in

H?%(0)/4] as a function of the distance d, from the center
of a mesoscopic type I superconducting triangle for the 3-1
combination, or 3v + lav molecule, at T/T. = 0.92, H, =
0.72H,(0), for k = 0.7, £(0) = 82 nm. In the inset, the distri-
bution of the squared modulus of the order parameter |¢(x, y)|?
is shown, which corresponds to the stable vortex-antivortex
molecule.
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corresponding to the above stable vortex-antivortex mol-
ecule (inset of Fig. 1). Four zeros of |¢/(x, y)|*> correspond
to three vortices and one antivortex. The function
|(x, y)|> reaches its maximum value in the corners.
These “islands” of the superconducting phase in the
corners prohibit vortices, which are repelled by the anti-
vortex in the center, from leaving the triangle through the
corners. Thus, vortices, being confined in a mesoscopic
type I superconducting triangle and interacting with an
antivortex, form a stable vortex-antivortex molecule. The
stability of the vortex-antivortex molecule has been
verified by analyzing the free energies of rotated and
distorted molecules and of other symmetric and nonsym-
metric vortex patterns with the total vorticity L = 2.

The obtained vortex-antivortex pattern remains stable
in some range of temperatures, far away from 7,.. The
molecule evolves continuously when moving towards the
nucleation line T.(H), as shown in Fig. 2. At low temper-
atures (T /T, = 0.90), the free energy landscape (in the xy
plane) is quite complicated, with saddle points and local
minima competiting with the main minimum, which
determines the stable molecule. For higher temperatures,
the main minimum remains the only one. Simultaneously
with the simplification of the free-energy landscape, the
minimum related to the 3-1 combination moves away
from the center of the triangle (cf. curves for T/T,. =
0.94 and T/T, = 0.96). With increasing temperature, the
superconducting phase in the apex regions, which
“squeezes”’ the molecule, is suppressed and the vortices
being repelled by the antivortex in the center are shifted
closer to the corners.

It is worth noting that for our type I sample a strongly
enhanced nucleation field appears due to the confinement
of the superconducting condensate in the mesoscopic
triangle. In fact, this provides the “‘soft” scenario for
the nucleation of the order parameter, like in bulk
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FIG. 2 (color). The free energy F;— F, [measured in
H?(0)/4] as a function of d, for the 3-1 combination in a
mesoscopic type I superconducting triangle, for « = 0.7
[£(0) = 82 nm], Hy = 0.72H_(0), and various temperatures.
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type II superconductors. Indeed, in a mesoscopic triangle
the enhancement factor n = H;/H. is in general
higher than its value for the surface superconductivity,
H./H, = 1.695 [16,18], and could increase consider-
ably near the corners [12,14,19]. Therefore, there exists
a certain region of values of x < 1/+/2, for which H?,
remains to be higher than H,. The results of the free-
energy calculations are shown in Fig. 3, for various values
of k close to the dual point k = 1/+/2. The vortex-anti-
vortex molecule occurs to be stable for k < 1/+/2 (the
curve for k = 0.7 in Fig. 3). For higher values of «, the
symmetric molecule degenerates to a giant-vortex state in
the center of the triangle. On the contrary, for decreasing
values of «, the molecule first rotates in such a way that
vortices occur to be near the midpoints of the sides of the
triangle (the curve for k = 0.6 in Fig. 3), and then, for
lower values of «, they are pushed out from the sample.
For small « vortices do not penetrate the sample at all
because the condition H); > H, does not fulfill, and
superconductivity nucleates abruptly as in bulk type I
samples.

The necessary conditions to stabilize vortex-antivortex
patterns can be easier satisfied for samples finite in the z
direction. In the case of a prism of finite-height 4, mag-
netic field can penetrate the sample through the bases and
form vortices. For a long finite-height prism, 7 > A,
magnetic field is partially expelled from the sample.
This effect can be taken into account using an approach,
which involves a simulation region [6,19,20]. Our calcu-
lations show that it is enough to choose a prism with a
square cross section in the xy plane with the side 3a as
a simulation region, which provides for the magnetic
field at its boundaries equal to the applied field Hy,. Inside
the simulation region, the total magnetic flux through
its cross section in the xy plane is, obviously, the
same [19,20]. For long finite-height prisms, the
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FIG. 3 (color). The free energy F,;— F, [measured in
H?(0)/47] as a function of d, for the 3-1 combination in
mesoscopic type I and type II superconducting triangles, at
T/T. = 0.96, Hy, = 0.48H.(0), for various values of «.
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FIG. 4 (color). Typical distributions of |i(x, y)|> in meso-
scopic type II superconducting triangles (Nb), for the states
with the total vorticity L = 2: a giant vortex state (a); a stable
multivortex state (b), at T/T, = 0.96, Hy = 0.32H.(0).

free-energy calculations result [21] in curves similar to
that plotted in Fig. 1 for an infinitely long prism. In the
limit of a thin-film sample, 2 < A, magnetic field pene-
trates the sample with no distortion. In this limit, the
vortex-antivortex molecule appears to be stable for a
wider ‘“window” of the values of parameter « [22].
A finite height of a sample together with the field
effects appears to be favorable for the stabilization of
the vortex-antivortex patterns in mesoscopic supercon-
ducting triangles.

Stable vortex-antivortex patterns are qualitatively dif-
ferent in case of a type II superconducting triangle. The
free-energy calculations for the 3-1 combination show
that the lowest minimum is reached when all the vortices
are in the center of the triangle, i.e., the giant vortex
with vorticity L,, = 2 is energetically more favorable
in a type II superconducting triangle than the vortex-
antivortex molecule. However, the equilibrium is reached
for another vortex state, which does not possess the
symmetry of the sample, namely, for a state of two
vortices situated at two different bisectors of the triangle
(cf. Ref. [3]). Typical distributions of |¢/(x, y)|? are plotted
in Fig. 4 for the giant vortex with vorticity L,, = 2
[Fig. 4(a)] and for the stable two-vortex state in a
type II superconducting triangle [Fig. 4(b)].

In conclusion, we have found deep in the superconduct-
ing state a thermodynamically stable vortex-antivortex
configuration for a mesoscopic type I superconducting
triangle, although until now it has been thought
that vortex-antivortex patterns are unstable and they
can manifest themselves only in the close vicinity to
the phase boundary. Vortex-antivortex arrays become
unstable in a type II superconducting triangle, in accord-
ance with previous reports. The stability of the vortex-
antivortex molecules in type I superconducting triangles
is due to the change of the sign in the vortex-vortex and
vortex-antivortex interaction forces when passing
through the dual point k = 1/ \/i combined with the
condensate confinement by the boundaries of the meso-
scopic triangle.
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