toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verberck, B.; Nikolaev, A.V.; Michel, K.H. doi  openurl
  Title Theoretical model for the structural phase transition and the metal-insulator transition in polymerized KC60 Type A1 Journal article
  Year 2004 Publication Fullerenes, nanotubes, and carbon nanostructures T2 – 6th Biennial International Workshop on Fullerenes and Atomic Clusters, JUN 30-JUL 04, 2003, St Petersburg, RUSSIA Abbreviated Journal Fuller Nanotub Car N  
  Volume 12 Issue 1-2 Pages 243-252  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The recently discovered structural phase transition in Polymerized KC60 at about 50K leads to a doubling of the unit cell volume and is accompanied by a metal-insulator transition. Here, we show that the ((a) over right arrow + (c) over right arrow, (b) over right arrow, (a) over right arrow – (c) over right arrow) superstructure results from orientational charge density waves along the polymer chains and correlated displacements of the K+ ions. The presented model can also account for the metal-insulator transition. The effect is specific for the space group Pmnn of KC60 and is absent in both Rb- and CsC60 (space group 12/m), in agreement with the present experimental knowledge of these compounds.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000220551600040 Publication Date 2004-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1536-383X;1536-4046; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.35 Times cited Open Access  
  Notes Approved Most recent IF: 1.35; 2004 IF: 1.117  
  Call Number UA @ lucian @ c:irua:103259 Serial 3607  
Permanent link to this record
 

 
Author Verberck, B.; Nikolaev, A.V.; Michel, K.H. url  doi
openurl 
  Title Theoretical model for the structural phase transition at the metal-insulator transition in polymerized KC60 Type A1 Journal article
  Year 2002 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 66 Issue 16 Pages 165425-165425,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The recently discovered structural transition in polymerized KC60 at about 50 K results in a doubling of the unit cell volume and accompanies the metal-insulator transition. Here we show that the ((a) over right arrow+(c) over right arrow,(b) over right arrow,(a) over right arrow-(c) over right arrow) superstructure results from small orientational charge density waves along the polymer chains and concomitant displacements of the surrounding K+ ions. The effect is specific for the space group Pmnn of KC60 and is absent in RbC60 and CsC60 (space group I2/m). The mechanism is relevant for the metal-insulator transition.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000179286400135 Publication Date 2002-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:94907 Serial 3608  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. doi  openurl
  Title Theoretical phonon dispersions in monolayers and multilayers of hexagonal boron-nitride Type A1 Journal article
  Year 2009 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 246 Issue 11/12 Pages 2802-2805  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from an empirical force constant model of valence interactions and calculating by Ewald's method the electrostatic force constants, we derive the dynamical matrix for a monolayer and for multilayer systems of hexagonal boron nitride (h-BN). Solution of the secular problem leads to the corresponding phonon dispersion relations. The interplay between valence forces and Coulomb forces is discussed. A comparison with previous results on graphene and graphene multilayers is made. Our spectra on the h-BN monolayer are rather similar to previous ab initio theory results. Comparison is also made with Raman and infrared experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Berlin Editor  
  Language Wos 000272904100091 Publication Date 2009-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.674; 2009 IF: 1.150  
  Call Number UA @ lucian @ c:irua:80673 Serial 3609  
Permanent link to this record
 

 
Author Mlinar, V.; Schliwa, A.; Bimberg, D.; Peeters, F.M. url  doi
openurl 
  Title Theoretical study of electronic and optical properties of inverted GaAs/AlxGa1-xAs quantum dots with smoothed interfaces in an external magnetic field Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue Pages 205308,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Lancaster, Pa Editor  
  Language Wos 000246890900065 Publication Date 2007-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:69652 Serial 3610  
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M. doi  openurl
  Title Theoretical study of InAs/GaAs quantum dots grown on [11k] substrates in the presence of a magnetic field Type A1 Journal article
  Year 2006 Publication Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 37 Issue 12 Pages 1427-1429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Luton Editor  
  Language Wos 000242907400002 Publication Date 2006-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.163 Times cited Open Access  
  Notes Approved Most recent IF: 1.163; 2006 IF: 0.651  
  Call Number UA @ lucian @ c:irua:62325 Serial 3612  
Permanent link to this record
 

 
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M. url  doi
openurl 
  Title Theoretical study of the stable states of small carbon clusters Cn (n=210) Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 23 Pages 235433,1-235433,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Both even- and odd-numbered neutral carbon clusters Cn (n=210) are systematically studied using the energy minimization method and the modified Brenner potential for the carbon-carbon interactions. Many stable configurations were found, and several new isomers are predicted. For the lowest energy stable configurations we obtained their binding energies and bond lengths. We found that for n5 the linear isomer is the most stable one while for n>5 the monocyclic isomer becomes the most stable. The latter was found to be regular for all studied clusters. The dependence of the binding energy for linear and cyclic clusters versus the cluster size n (n=210) is found to be in good agreement with several previous calculations, in particular with ab initio calculations as well as with experimental data for n=25.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Lancaster, Pa Editor  
  Language Wos 000262245400119 Publication Date 2008-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76006 Serial 3613  
Permanent link to this record
 

 
Author Michel, K.H.; Nikolaev, A.V.; Verberck, B. openurl 
  Title Theory of crystal structures of polymerized C60-fullerite and fullerides AC60, A=K, Rb, Cs Type H1 Book chapter
  Year 2001 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication s.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 462-465 Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:36883 Serial 3614  
Permanent link to this record
 

 
Author Michel, K.H.; Nikolaev, A.V. url  doi
openurl 
  Title Theory of distinct crystal structures of polymerized fullerides AC60, A=K, Rb, Cs: the specific role of alkalis Type A1 Journal article
  Year 2000 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 85 Issue Pages 3197-3200  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication New York, N.Y. Editor  
  Language Wos 000089807800033 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 16 Open Access  
  Notes Approved Most recent IF: 8.462; 2000 IF: 6.462  
  Call Number UA @ lucian @ c:irua:34339 Serial 3615  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 22 Pages 224301,1-224301,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from an empirical force constant model of valence interactions and calculating by Ewalds method the ion-ion force constants, we derive the dynamical matrix for a monolayer crystal of hexagonal boron nitride (h-BN). The phonon dispersion relations are calculated. The interplay between valence and Coulomb forces is discussed. It is shown by analytical methods that the longitudinal and the transverse optical (LO and TO) phonon branches for in-plane motion are degenerate at the Γ point of the Brillouin zone. Away from Γ, the LO branch exhibits pronounced overbending. It is found that the nonanalytic Coulomb contribution to the dynamical matrix causes a linear increase of the LO branch with increasing wave vector starting at Γ. This effect is general for two-dimensional (2D) ionic crystals. Performing a long-wavelength expansion of the dynamical matrix, we use Borns perturbation method to calculate the elastic constants (tension coefficients). Since the crystal is noncentrosymmetric, internal displacements due to relative shifts between the two sublattices (B and N) contribute to the elastic constants. These internal displacements are responsible for piezoelectric and dielectric phenomena. The piezoelectric stress constant and the dielectric susceptibility of 2D h-BN are calculated.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Lancaster, Pa Editor  
  Language Wos 000273228500045 Publication Date 2009-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 96 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80576 Serial 3616  
Permanent link to this record
 

 
Author Schattschneider, P.; Verbeeck, J. pdf  url
doi  openurl
  Title Theory of free electron vortices Type A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 9/10 Pages 1461-1468  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The recent creation of electron vortex beams and their first practical application motivates a better understanding of their properties. Here, we develop the theory of free electron vortices with quantized angular momentum, based on solutions of the Schrödinger equation for cylindrical boundary conditions. The principle of transformation of a plane wave into vortices with quantized angular momentum, their paraxial propagation through round magnetic lenses, and the effect of partial coherence are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Amsterdam Editor  
  Language Wos 000300461200002 Publication Date 2011-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 57 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:91882 Serial 3617  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. pdf  doi
openurl 
  Title Theory of phonon dispersions and piezoelectricity in multilayers of hexagonal boron-nitride Type A1 Journal article
  Year 2011 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 248 Issue 11 Pages 2720-2723  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Taking into account covalent, Coulomb and van der Waals interactions, we construct the dynamical matrix and calculate the phonon dispersion relations for multilayer crystals of hexagonal boron-nitride. Coulomb interactions account for a strong overbending of optical phonons. Applying and extending Born's long-wave theory to the case of multilayer crystals, we calculate the piezoelectric stress constant equation image as a function of the number of layers equation image. In agreement with group theory, we find that equation image for equation image even; for an uneven number equation image of layers we obtain equation image, i.e. the piezoelectric constant decreases as equation image.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Berlin Editor  
  Language Wos 000297517100069 Publication Date 2011-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 13 Open Access  
  Notes ; Discussions with G. Heger, B. Partoens and F. M. Peeters are gratefully acknowledged. This work has been supported by the Flemish Science Foundation (FWO-Vl) and the Bijzonder Onderzoeksfonds, Universiteit Antwerpen (BOF-UA). ; Approved Most recent IF: 1.674; 2011 IF: 1.316  
  Call Number UA @ lucian @ c:irua:94034 Serial 3618  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title Theory of rigid-plane phonon modes in layered crystals Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 9 Pages 094303-094303,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The lattice dynamics of low-frequency rigid-plane modes in metallic (graphene multilayers, GML) and in insulating (hexagonal boron-nitride multilayers, BNML) layered crystals is investigated. The frequencies of shearing and compression (stretching) modes depend on the layer number N and are presented in the form of fan diagrams. The results for GML and BNML are very similar. In both cases, only the interactions (van der Waals and Coulomb) between nearest-neighbor planes are effective, while the interactions between more distant planes are screened. A comparison with recent Raman scattering results on low-frequency shear modes in GML [Tan et al., Nat. Mater., in press, doi: 10.1038/nmat3245, (2012)] is made. Relations with the low-lying rigid-plane phonon dispersions in the bulk materials are established. Master curves, which connect the fan diagram frequencies for any given N, are derived. Static and dynamic thermal correlation functions for rigid-layer shear and compression modes are calculated. The results might be of use for the interpretation of friction force experiments on multilayer crystals.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000301646000006 Publication Date 2012-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; The authors are indebted to J. Maultzsch for bringing Ref. 20 to their attention. They thank D. Lamoen, F.M. Peeters, B. Trauzettel, and C. Van Haesendonck for useful discussions. This work has been financially supported by the Research Foundation Flanders (FWO). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:97787 Serial 3619  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. doi  openurl
  Title Theory of the elastic constants of graphite and graphene Type A1 Journal article
  Year 2008 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 245 Issue 10 Pages 2177-2180  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Born's long wave method is used to study the elastic properties of graphite and graphene. Starting from an empirical force constant model derived from full inplane phonon dispersions of graphite [Mohr et al., Phys. Rev. B 76, 035439 (2007)] we calculate the tension coefficients of graphene. Extending the model by interplanar interactions, we calculate the elastic constants of graphite. The agreement of our theoretical values with inelastic x-ray scattering results on elastic constants of graphite [Bosak et al., Phys. Rev. B 75, 153408 (2007)] is very satisfactory.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Berlin Editor  
  Language Wos 000260581800066 Publication Date 2008-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 47 Open Access  
  Notes Approved Most recent IF: 1.674; 2008 IF: 1.166  
  Call Number UA @ lucian @ c:irua:75660 Serial 3621  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title Theory of the evolution of phonon spectra and elastic constants from graphene to graphite Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 8 Pages 085424,1-085424,17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a unified theory of the phonon dispersions and elastic properties of graphene, graphite, and graphene multilayer systems. Starting from a fifth-nearest-neighbor force-constant model derived from full in-plane phonon dispersions of graphite [Mohr et al., Phys. Rev. B 76, 035439 (2007)], we use Born's long-wave method to calculate the tension and bending coefficients of graphene. Extending the model by interplanar interactions, we study the phonon dispersions and the elastic constants of graphite, and the phonon spectra of graphene multilayers. We find that the inner displacement terms due to sublattice shifts between inequivalent C atoms are quantitatively important in determining the elastomechanical properties of graphene and of graphite. The overall agreement between theory and experiment is very satisfactory. We investigate the evolution from graphene to graphite by studying the increase in the rigid plane optical mode as a function of the number of layers N. At N=10 the graphite value B2g1127 cm−1 is attained within a few percent.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Lancaster, Pa Editor  
  Language Wos 000259406900106 Publication Date 2008-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 72 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76527 Serial 3622  
Permanent link to this record
 

 
Author Scipioni, R.; Matsubara, M.; Ruiz, E.; Massobrio, C.; Boero, M. doi  openurl
  Title Thermal behavior of Si-doped fullerenes vs their structural stability at T = 0 K : a density functional study Type A1 Journal article
  Year 2011 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 510 Issue 1/3 Pages 14-17  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We establish the topological conditions underlying the thermal stability of C30Si30 clusters. Two topologies have been considered: a segregated one, where Si and C atoms lie on neighboring and yet, separated parts of the cage, and a non-segregated one, where the number of SiC bonds is maximized. The segregated network is energetically favored against the non-segregated one, both structures being fully relaxed at T = 0 K. Conversely, the non-segregated structure is the only one stable at finite temperatures, regardless of the nature of the local states (d or p) included in the KleynmanBylander construction.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Amsterdam Editor  
  Language Wos 000291478400002 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.815 Times cited 14 Open Access  
  Notes Approved Most recent IF: 1.815; 2011 IF: 2.337  
  Call Number UA @ lucian @ c:irua:90453 Serial 3625  
Permanent link to this record
 

 
Author Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K. pdf  doi
openurl 
  Title Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 578 Issue 578 Pages 133-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A seriesof [TiN/TiAlN]nmultilayer coatingswith different bilayer numbers n=5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEMimaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Lausanne Editor  
  Language Wos 000351686500019 Publication Date 2015-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 41 Open Access  
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759  
  Call Number c:irua:125517 Serial 3626  
Permanent link to this record
 

 
Author Damm, H.; Kelchtermans, A.; Bertha, A.; Van den Broeck, F.; Elen, K.; Martins, J.C.; Carleer, R.; D'Haen, J.; De Dobbelaere, C.; Hadermann, J.; Hardy, A.; Van Bael, M.K.; doi  openurl
  Title Thermal decomposition synthesis of Al-doped ZnO nanoparticles : an in-depth study Type A1 Journal article
  Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 3 Issue 45 Pages 23745-23754  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Al-doped ZnO nanoparticles are synthesized by means of a heating up solution based thermal decomposition method. The synthesis involves a reaction of zinc acetylacetonate hydrate, aluminium acetylacetonate and 1,2-hexadecanediol in the presence of oleic acid and oleyl amine. A proposed reaction mechanism from reagents to monomers is corroborated by analysis of the evolving gases using headspace GC-MS analysis. The Al-doped ZnO nanoparticles synthesized are dynamically stabilized by adsorbed oleate ions, after deprotonation of oleic acid by oleyl amine, as was found by NOESY proton NMR and complementary FTIR spectroscopy. Precession electron diffraction shows a simultaneous increase in lattice parameters with Al concentration. This, together with HAADF-STEM and EDX maps, indicates the incorporation of Al into the ZnO nanoparticles. By the combination of complementary characterization methods during all stages of the synthesis, it is concluded that Al is incorporated into the ZnO wurtzite lattice as a dopant.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000326395800139 Publication Date 2013-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.108; 2013 IF: 3.708  
  Call Number UA @ lucian @ c:irua:112753 Serial 3627  
Permanent link to this record
 

 
Author Neek-Amal, M.; Xu, P.; Schoelz, J.K.; Ackerman, M.L.; Barber, S.D.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M. doi  openurl
  Title Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 4962  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Knowledge of and control over the curvature of ripples in freestanding graphene are desirable for fabricating and designing flexible electronic devices, and recent progress in these pursuits has been achieved using several advanced techniques such as scanning tunnelling microscopy. The electrostatic forces induced through a bias voltage (or gate voltage) were used to manipulate the interaction of freestanding graphene with a tip (substrate). Such forces can cause large movements and sudden changes in curvature through mirror buckling. Here we explore an alternative mechanism, thermal load, to control the curvature of graphene. We demonstrate thermal mirror buckling of graphene by scanning tunnelling microscopy and large-scale molecular dynamic simulations. The negative thermal expansion coefficient of graphene is an essential ingredient in explaining the observed effects. This new control mechanism represents a fundamental advance in understanding the influence of temperature gradients on the dynamics of freestanding graphene and future applications with electro-thermal-mechanical nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000342984800018 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 36 Open Access  
  Notes ; Financial support for this study was provided, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. has also been supported partially by BOF project of University of Antwerp number 28033. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:121121 Serial 3628  
Permanent link to this record
 

 
Author Singh, S.K.; Srinivasan, S.G.; Neek-Amal, M.; Costamagna, S.; van Duin, A.C.T.; Peeters, F.M. url  doi
openurl 
  Title Thermal properties of fluorinated graphene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 10 Pages 104114-104116  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Large-scale atomistic simulations using the reactive force field approach are implemented to investigate the thermomechanical properties of fluorinated graphene (FG). A set of parameters for the reactive force field potential optimized to reproduce key quantum mechanical properties of relevant carbon-fluorine cluster systems are presented. Molecular dynamics simulations are used to investigate the thermal rippling behavior of FG and its mechanical properties and compare them with graphene, graphane and a sheet of boron nitride. The mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures show that FG is an unrippled system in contrast to the thermal rippling behavior of graphene. The effective Young's modulus of a flake of fluorinated graphene is obtained to be 273 N/m and 250 N/m for a flake of FG under uniaxial strain along armchair and zigzag directions, respectively. DOI: 10.1103/PhysRevB.87.104114  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000316933500002 Publication Date 2013-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes ; M.N.-A. is supported by the EU-Marie Curie IIF postdoc Fellowship/299855. This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. S. G. S. and A.C.T.vD. acknowledge support by the Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-10-1-0563. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108495 Serial 3629  
Permanent link to this record
 

 
Author Costamagna, S.; Neek-Amal, M.; Los, J.H.; Peeters, F.M. url  doi
openurl 
  Title Thermal rippling behavior of graphane Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 4 Pages 041408-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thermal fluctuations of single layer hydrogenated graphene (graphane) are investigated using large scale atomistic simulations. By analyzing the mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures, we show that hydrogenated graphene is an unrippled system in contrast to graphene. The height fluctuations are bounded, which is confirmed by a H(q) tending to a constant in the long wavelength limit instead of showing the characteristic scaling law q(4-eta)(eta similar or equal to 0.85) predicted by membrane theory. This unexpected behavior persists up to temperatures of at least 900 K and is a consequence of the fact that in graphane the thermal energy can be accommodated by in-plane bending modes, i.e., modes involving C-C-C bond angles in the buckled carbon layer, instead of leading to significant out-of-plane fluctuations that occur in graphene.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Lancaster, Pa Editor  
  Language Wos 000306649200002 Publication Date 2012-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 46 Open Access  
  Notes ; We thank A. Fasolino, A. Dobry, and K. H. Michel for their useful comments. S.C. is supported by the Belgian Science Foundation (BELSPO). This work is supported by the ESF-EuroGRAPHENE project CONGRAN and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100840 Serial 3630  
Permanent link to this record
 

 
Author Nistor, L.C.; Richard, O.; Zhao, C.; Bender, H.; Van Tendeloo, G. doi  openurl
  Title Thermal stability of atomic layer deposited Zr:Al mixed oxide thin films: an in situ transmission electron microscopy study Type A1 Journal article
  Year 2005 Publication Journal of materials research Abbreviated Journal J Mater Res  
  Volume 20 Issue 7 Pages 1741-1750  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication New York, N.Y. Editor  
  Language Wos 000230296100012 Publication Date 2005-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0884-2914;2044-5326; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.673 Times cited Open Access  
  Notes Bil 01/73; IAP V-1 Approved Most recent IF: 1.673; 2005 IF: 2.104  
  Call Number UA @ lucian @ c:irua:54884 Serial 3631  
Permanent link to this record
 

 
Author Grodzinska, D.; Pietra, F.; van Huis, M.A.; Vanmaekelbergh, D.; de Mello Donegá, C. url  doi
openurl 
  Title Thermally induced atomic reconstruction of PbSe/CdSe core/shell quantum dots into PbSe/CdSe bi-hemisphere hetero-nanocrystals Type A1 Journal article
  Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 21 Issue 31 Pages 11556-11565  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The properties of hetero-nanocrystals (HNCs) depend strongly on the mutual arrangement of the nanoscale components. In this work we have investigated the structural and morphological evolution of colloidal PbSe/CdSe core/shell quantum dots upon annealing under vacuum. Prior to annealing the PbSe core has an approximately octahedral morphology with eight {111} facets, and the CdSe shell has zinc-blende crystal structure. Thermal annealing under vacuum at temperatures between 150 °C and 200 °C induces a structural and morphological reconstruction of the HNCs whereby the PbSe core and the CdSe shell are reorganized into two hemispheres joined by a common {111} Se plane. This thermally induced reconstruction leads to considerable changes in the optical properties of the colloidal PbSe/CdSe HNCs.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Cambridge Editor  
  Language Wos 000293190200018 Publication Date 2011-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 44 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:91945 Serial 3632  
Permanent link to this record
 

 
Author Goris, B.; van Huis, M.A.; Bals, S.; Zandbergen, H.W.; Manna, L.; Van Tendeloo, G. pdf  doi
openurl 
  Title Thermally induced structural and morphological changes of CdSe/CdS octapods Type A1 Journal article
  Year 2012 Publication Small Abbreviated Journal Small  
  Volume 8 Issue 6 Pages 937-942  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Branched nanostructures are of great interest because of their promising optical and electronic properties. For successful and reliable integration in applications such as photovoltaic devices, the thermal stability of the nanostructures is of major importance. Here the different domains (CdSe cores, CdS pods) of the heterogeneous octapods are shown to have different thermal stabilities, and heating is shown to induce specific shape changes. The octapods are heated from room temperature to 700 °C, and investigated using (analytical and tomographic) transmission electron microscopy (TEM). At low annealing temperatures, pure Cd segregates in droplets at the outside of the octapods, indicating non-stochiometric composition of the octapods. Furthermore, the tips of the pods lose their faceting and become rounded. Further heating to temperatures just below the sublimation temperature induces growth of the zinc blende core at the expense of the wurtzite pods. At higher temperatures, (500700 °C), sublimation of the octapods is observed in real time in the TEM. Three-dimensional tomographic reconstructions reveal that the four pods pointing into the vacuum have a lower thermal stability than the four pods that are in contact with the support.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Weinheim Editor  
  Language Wos 000301718800021 Publication Date 2012-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 20 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 8.643; 2012 IF: 7.823  
  Call Number UA @ lucian @ c:irua:95040 Serial 3633  
Permanent link to this record
 

 
Author Leys, F.E.; March, N.H.; Lamoen, D. doi  openurl
  Title Thermodynamic consistency and integral equations for the liquid structure Type A1 Journal article
  Year 2002 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 117 Issue Pages 10726  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication New York, N.Y. Editor  
  Language Wos 000179495000031 Publication Date 2002-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 2.965 Times cited Open Access  
  Notes Approved Most recent IF: 2.965; 2002 IF: 2.998  
  Call Number UA @ lucian @ c:irua:41406 Serial 3634  
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Thermodynamic properties of the electron gas in multilayer graphene in the presence of a perpendicular magnetic field Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 24 Pages 245429-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The thermodynamic properties of the electron gas in multilayer graphene depend strongly on the number of layers and the type of stacking. Here we analyze how those properties change when we vary the number of layers for rhombohedral stacked multilayer graphene and compare our results with those from a conventional two-dimensional electron gas. We show that the highly degenerate zero-energy Landau level which is partly filled with electrons and partly with holes has a strong influence on the values of the different thermodynamic quantities.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000328686900006 Publication Date 2014-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes ; The authors would like to thank C. De Beule for enlightening discussions. This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B.V.D., and the Methusalem Program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:113700 Serial 3635  
Permanent link to this record
 

 
Author Engelmann; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 20 Pages 11981-11987  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Cambridge Editor  
  Language Wos 000343000800049 Publication Date 2014-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 20 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:121106 Serial 3637  
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F.M. url  doi
openurl 
  Title Thermomechanical properties of a single hexagonal boron nitride sheet Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 18 Pages 184106-184107  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic simulations we investigate the thermodynamical properties of a single atomic layer of hexagonal boron nitride (h-BN). The thermal induced ripples, heat capacity, and thermal lattice expansion of large scale h-BN sheets are determined and compared to those found for graphene (GE) for temperatures up to 1000 K. By analyzing the mean-square height fluctuations < h(2)> and the height-height correlation function H(q) we found that the h-BN sheet is a less stiff material as compared to graphene. The bending rigidity of h-BN (i) is about 16% smaller than the one of GE at room temperature (300 K), and (ii) increases with temperature as in GE. The difference in stiffness between h-BN and GE results in unequal responses to external uniaxial and shear stress and different buckling transitions. In contrast to a GE sheet, the buckling transition of a h-BN sheet depends strongly on the direction of the applied compression. The molar heat capacity, thermal-expansion coefficient, and Gruneisen parameter are estimated to be 25.2 J mol(-1) K-1, 7.2 x 10(-6) K-1, and 0.89, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000318653800001 Publication Date 2013-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes ; We thank K. H. Michel and D. A. Kirilenko for their useful comments on the manuscript. M. N.-A. was supported by EU-Marie Curie IIF Postdoctorate Fellowship No. 299855. S. Costamagna was supported by the Belgian Science Foundation (BELSPO). This work was supported by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109010 Serial 3638  
Permanent link to this record
 

 
Author Lajevardipour, A.; Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title Thermomechanical properties of graphene : valence force field model approach Type A1 Journal article
  Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 17 Pages 175303-175303,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the valence force field model of Perebeinos and Tersoff (2009 Phys. Rev. B 79 241409(R)), different energy modes of suspended graphene subjected to tensile or compressive strain are studied. By carrying out Monte Carlo simulations it is found that: (i) only for small strains (vertical bar epsilon vertical bar (sic) 0.02) is the total energy symmetrical in the strain, while it behaves completely differently beyond this threshold; (ii) the important energy contributions in stretching experiments are stretching, angle bending, an out-of-plane term, and a term that provides repulsion against pi-pi misalignment; (iii) in compressing experiments the two latter terms increase rapidly, and beyond the buckling transition stretching and bending energies are found to be constant; (iv) from stretching-compressing simulations we calculated the Young's modulus at room temperature 350 +/- 3.15 N m(-1), which is in good agreement with experimental results (340 +/- 50 N m(-1)) and with ab initio results (322-353) N m(-1); (v) molar heat capacity is estimated to be 24.64 J mol(-1) K-1 which is comparable with the Dulong-Petit value, i. e. 24.94 J mol(-1) K-1, and is almost independent of the strain; (vi) nonlinear scaling properties are obtained from height-height correlations at finite temperature; (vii) the used valence force field model results in a temperature independent bending modulus for graphene, and (viii) the Gruneisen parameter is estimated to be 0.64.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication London Editor  
  Language Wos 000303499700012 Publication Date 2012-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 29 Open Access  
  Notes ; We acknowledge helpful comments by V Perebeinos, S Costamagna, A Fasolino and J H Los. This work was supported by the Flemish science foundation (FWO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:99123 Serial 3639  
Permanent link to this record
 

 
Author Dubourdieu, C.; Huot, G.; Gelard, I.; Roussel, H.; Lebedev, O.I.; Van Tendeloo, G. pdf  doi
openurl 
  Title Thin films and superlattices of multiferroic hexagonal rare earth manganites Type A1 Journal article
  Year 2007 Publication Philosophical magazine letters Abbreviated Journal Phil Mag Lett  
  Volume 87 Issue 3/4 Pages 203-210  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication London Editor  
  Language Wos 000246263700008 Publication Date 2007-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0839;1362-3036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.941 Times cited 17 Open Access  
  Notes Approved Most recent IF: 0.941; 2007 IF: 1.878  
  Call Number UA @ lucian @ c:irua:64721 Serial 3640  
Permanent link to this record
 

 
Author Ke, X.; Bals, S.; Cott, D.; Hantschel, T.; Bender, H.; Van Tendeloo, G. doi  openurl
  Title Three-dimensional analysis of carbon nanotube networks in interconnects by electron tomography without missing wedge artifacts Type A1 Journal article
  Year 2010 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 16 Issue 2 Pages 210-217  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The three-dimensional (3D) distribution of carbon nanotubes (CNTs) grown inside semiconductor contact holes is studied by electron tomography. The use of a specialized tomography holder results in an angular tilt range of ±90°, which means that the so-called missing wedge is absent. The transmission electron microscopy (TEM) sample for this purpose consists of a micropillar that is prepared by a dedicated procedure using the focused ion beam (FIB) but keeping the CNTs intact. The 3D results are combined with energy dispersive X-ray spectroscopy (EDS) to study the relation between the CNTs and the catalyst particles used during their growth. The reconstruction, based on the full range of tilt angles, is compared with a reconstruction where a missing wedge is present. This clearly illustates that the missing wedge will lead to an unreliable interpretation and will limit quantitative studies  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Cambridge, Mass. Editor  
  Language Wos 000276137200011 Publication Date 2010-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 42 Open Access  
  Notes Esteem 026019; Fwo; Iap-Vi Approved Most recent IF: 1.891; 2010 IF: 3.259  
  Call Number UA @ lucian @ c:irua:82279 Serial 3642  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: