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Thermodynamic properties of the electron gas in multilayer graphene in the presence
of a perpendicular magnetic field
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The thermodynamic properties of the electron gas in multilayer graphene depend strongly on the number of
layers and the type of stacking. Here we analyze how those properties change when we vary the number of
layers for rhombohedral stacked multilayer graphene and compare our results with those from a conventional
two-dimensional electron gas. We show that the highly degenerate zero-energy Landau level which is partly
filled with electrons and partly with holes has a strong influence on the values of the different thermodynamic
quantities.

DOI: 10.1103/PhysRevB.88.245429 PACS number(s): 75.70.Ak, 73.20.At, 73.22.Pr

I. INTRODUCTION

The relativistic character of the charge carriers in graphene
has attracted a lot of interest. The unconventional quantum Hall
effect,1 Klein tunneling,2 and the Landau level spectrum3,4

have shown that electrons in a layer of a hexagonal lattice of
carbon atoms behave as two-dimensional massless Dirac par-
ticles with a velocity 300 times smaller than the speed of light.

When several graphene layers are stacked on top of each
other, the character of the charge carriers changes fundamen-
tally with the number of layers and the type of stacking.5,6

The low-energy behavior of the electrons in multilayered
structures can however be decomposed into a combination
of multilayers with a lower number of rhombohedral stacked
layers.6,7 Recent experimental progress proved that it is
possible to fabricate multilayer samples with a specific number
of layers and a specific type of stacking.8 This resulted in
an increased interest in the electronic properties of these
multilayers.9–12 Experiments support the low-energy theory
for both bilayers13,14 and trilayers15–17 and results for other
multilayers are expected soon.

One of the most peculiar properties of a two-dimensional
electron gas (2DEG) is that upon the application of a per-
pendicular magnetic field, the energy spectrum is completely
quantized and that several thermodynamic quantities like the
Fermi level, magnetization, and magnetic susceptibility have
an oscillatory behavior as a function of the magnetic field.18,19

This oscillatory behavior has proven to be significantly differ-
ent from the de Haas–van Alphen effect in three-dimensional
systems, indicating that it is a purely two -dimensional effect.20

In this paper, we combine the two-dimensionality of
graphene with the relativistic character of the electrons to com-
pare the thermodynamic quantities with those of a conventional
2DEG. We investigate rhombohedral stacked multilayered sys-
tems using the two-band approximation7 and present analytical
formulas for different thermodynamic quantities as a function
of the number of layers for zero and nonzero temperature.

We consider a two-dimensional gas of noninteracting
electrons with only nearest-neighbor interlayer and intralayer
transitions. This allows us to present an analytical theory which
can form the basis of a more in-depth analysis that does include
these corrections.13,14,21–25

We find that our results are fundamentally different from
those of a 2DEG due to the different Landau-level spectrum

and in particular because of the presence of a highly degenerate
zero-energy Landau level. The results, however, still show
the vanishing magnetization at zero magnetic field which is a
signature of the two-dimensionality of the system.

In the first two sections, Secs. II and III, of the paper at hand
we discuss respectively the electronic properties of graphene
multilayers and the way the spectrum discretizes into Landau
levels. Then we calculate the oscillations of the Fermi level,
the magnetization, and the magnetic susceptibility for zero
temperature in Sec. IV and for finite temperature in Sec. V. In
Sec. VI we conclude the analysis with a summary and some
remarks concerning many-body interactions and additional
transitions.

II. ELECTRONS IN GRAPHENE MULTILAYERS

As discussed before,7 the valence and conduction bands
in multilayer graphene touch each other at two inequivalent
points in reciprocal space, the so-called Dirac points. There-
fore, the low-energy behavior of the charge carriers in graphene
multilayers resides in the energy valleys near these two points.
Because of the high energy barrier between the two valleys,
we consider them to be uncoupled so their presence can be
incorporated solely in the degeneracy of the electron states.

Near the Dirac point, the energy spectrum can be decom-
posed into noninteracting pseudospin doublets with chirality
N . These pseudospin doublets have a similar low-energy
spectrum to that of a rhombohedrally stacked multilayer with
N layers. Its Hamiltonian can be approximated by

ĤN = vN
F

γ N−1
1

[
0 π̂N

(π̂ †)N 0

]
, (1)

where26 vF ≈ 106 m/s is the Fermi velocity in monolayer
graphene, π̂ = p̂x − ip̂y with �p = (px,py) the in-plane mo-
mentum, and6 γ1 ≈ 0.4 eV is the interlayer hopping parameter.
Note that we have omitted the minus sign in front of γ1

due to electron-hole symmetry. The corresponding dispersion
relation is

ε = ± vN
F

γ N
1

pN. (2)

The energy E is here expressed in units of the interlayer
hopping parameter, i.e., ε = E/γ1.
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FIG. 1. (Color online) Schematic representation of the DOS as a
function of the energy of (a) monolayer, (b) bilayer, and (c) trilayer
graphene. (d) Results for a normal 2DEG. The Landau levels (LLs)
are shown as Gaussian peaks. The different colors indicate with which
LL the states from the zero-field DOS are associated.

The two-band approximation neglects the skew hopping
parameters6 γ3 ≈ 0.29 eV and γ4 ≈ 0.12 eV that give rise
to trigonal warping and to a violation of electron-hole
symmetry27 which becomes visible only for large energy, i.e.,
E > 1 eV. Also the γ2 ≈ 0.02 eV and γ5 ≈ 0.02 eV parameters
are neglected because they correspond to next-to-nearest-
neighbor interlayer transitions. The validity of the two-band
approximation is therefore limited to energies |γ2| < E < γ1.
However, we can take Eq. (1) also as a model Hamiltonian
which allows us to obtain many results analytically.

The density of states (DOS) of the two-dimensional electron
gas in multilayer graphene depends strongly on the power law
of the dispersion relation. This is a big difference with respect
to that of the normal 2DEG. The DOS per unit area A is
given by

D(ε)

A
= 2

2π

2

N

γ1

(�vF )2
|ε|2/N−1. (3)

This expression incorporates the extra valley degeneracy as the
additional factor 2. In Fig. 1 the DOSs for zero and nonzero
magnetic field are shown for multilayers with N up to 3 and
compared with that of the normal 2DEG.

III. LANDAU-LEVEL QUANTIZATION

As for the 2DEG, the electronic states of multilayer
graphene discretize upon the application of a perpendicular
magnetic field leading to a DOS quantized into Landau
levels (LLs).28–32 The magnetic field is incorporated in the
Hamiltonian of Eq. (1) by the Peierls substitution �p → �p +
e �A. Using the Landau gauge �A = B(0,x,0) for convenience,
this changes the operator π̂ to π̂ = p̂x − ip̂y − ieBx̂, which
behaves now as a ladder operator similarly to the case of a
harmonic oscillator. Defining the lowering operator â = lB√

2�
π̂

and the raising operator â† = lB√
2�

π̂ †, with the magnetic length

lB =
√

�

eB
, the Hamiltonian from Eq. (1) can be written as

ĤN (B) = γ1α
NBN/2

[
0 âN

(â†)N 0

]
, (4)

with α =
√

2e�vF

γ1
≈ 0.1/

√
T, where T stands for tesla, the unit

of magnetic field strength and the commutator [â,â†] = 1
ensures a proper normalization of the ladder operators.

The eigenvalues and eigenstates of this Hamiltonian are
found by solving the eigenvalue equation ĤN�m = Em�m

with the two-spinor

�m =
(

φm

ψm

)
. (5)

The components of this two-spinor correspond to the atomic
orbitals of the two free-standing sublattices at the top and
bottom layers. These two sublattices are the only two that
do not lie directly below or above another sublattice in a
rhombohedral multilayer. For monolayer graphene, they are
the two inequivalent sublattices that are responsible for the
pseudospin properties of the electrons. Using this two-spinor,
one obtains the set of equations

εmφm = αNBN/2âNψm, εmψm = αNBN/2(â†)Nφm, (6)

with the dimensionless energy εm = Em/γ1. The energy is
found by solving the equation

ε2
m

α2NBN
ψm = (â†)N âNψm. (7)

Therefore, the second component of the spinor is an eigenstate
of the number operator m̂ = â†â, and the energy is given in
terms of the eigenvalues m of the number operator as33

ελ
m,N (B) = λαNBN/2

√
m!

(m − N )!
for m � N, (8)

where λ = 1 for electrons and λ = −1 for holes. The eigen-
states corresponding to these eigenenergies are

�λ
m,ky = 1√

2

(|m − N,ky〉
λ|m,ky〉

)
for m � N, (9)

where |m,ky〉 correspond to the eigenfunctions of the number
operator m̂ and are given in position representation as

〈�r|m,ky〉 = Ame−ξ 2/2Hm(ξ )eikyy, (10)

with Am = 1/
√√

π2mm!lB its normalization, �r = (x,y), ξ =
lBky + x/lB , and Hm(ξ ) the Hermite polynomial of order m ∈
N. In addition to this series of Landau levels, there is a zero-
energy Landau level (ZELL) that is N times as degenerate as
the rest of the LLs. This level has the eigenstates

�0
m,ky =

(
0

|m,ky〉
)

for 0 � m < N, (11)

which corresponds to eigenfunctions of Eq. (10) located on
only one of the two sublattices. Note that when we consider
the other Dirac point, the other sublattice is occupied by
these zero-energy states.34,35 The ZELL is half filled with
electrons and half with holes3,4 and therefore it gives rise to the
unconventional quantum Hall effect which has been observed
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FIG. 2. (Color online) Magnetic field dependence of the LLs in
rhombohedral (a) monolayer, (b) bilayer, and (c) trilayer graphene.
(d) The LL spectrum for a 2DEG in GaAs with m∗ = 0.0665m0 where
m0 is the free-electron mass. The color of the curve indicates the type
of charge carriers making up the LLs. Blue corresponds to electrons
(positive energy), red to holes (negative energy), and green indicates
the ZELL at zero energy.

in graphene multilayer structures.7,28,29,36,37 Due to its high
degeneracy it has also attracted a lot of attention recently in
the framework of fractional quantum Hall studies and other
many-body effects.14,38,39

Since we are interested in the thermodynamic properties
of the electron gas in graphene multilayer structures, we
renumber the LLs by n = m − N + 1, so the energy spectrum
changes into

ελ
n,N (B) = λαNBN/2

√
(n − 1 + N )!

(n − 1)!
for n � 0, (12)

where the degeneracy of the n = 0 LL is multiplied by a factor
N to account for the states corresponding to m < N . The
magnetic field dependence of the LLs is shown in Fig. 2 for
various multilayer structures and compared with the spectrum
of the 2DEG.

Note that, in contrast to the 2DEG, the LLs of a graphene
multilayer are not positioned at equidistant energy levels.
However, the electron concentration at which the LLs are
filled does scale linearly with the LL index n for large n.
They are therefore placed at equidistant levels of the electron
concentration for large values of the LL index n.

IV. ZERO TEMPERATURE

A. Fermi energy

Due to the LL quantization, the Fermi level of the system
will oscillate as the magnetic field pushes the LLs apart in
a similar fashion as in the case of a normal 2DEG.18,19 The
discretized DOS per unit surface area is given by

ρN (ε) = 4

2πl2
B

[
Nδ(ε) +

∑
λ=±1

∞∑
n=1

δ
(
ε − ελ

n,N

)]
, (13)

where the LL energy ελ
n,N is given by Eq. (12). The discretized

DOS is schematically shown in Fig. 1 for mono- to trilayer
structures and compared to the usual 2DEG. In this figure,
the part of the DOS that will form a specific LL is colored
according to the coloring of the LL peak. Note that the
degeneracy of all but the ZELL is 2/πl2

B , twice that of the
2DEG due to the additional valley degeneracy. The DOS given
in Eq. (13) covers both the electrons (λ = +1) and the holes
(λ = −1). In the following we will consider only electrons.

To calculate the Fermi level εF , we assume the electron
density n0 to be independent of the strength of the applied
magnetic field. The zero-field Fermi level for a given concen-
tration n0 can be obtained using Eq. (13),

εF,0 =
(

�vF

γ1

)N

(πn0)N/2. (14)

For a normal 2DEG, the Fermi energy is proportional to the
electron concentration. This is, however, not the case any
longer for multilayer graphene, where the number of layers
determines the power of the relation. Using the discretized
DOS from Eq. (13) one obtains a relation between the electron
concentration n0 and the Fermi energy εF :

n0 = 4B

φ0

∞∑
n=0

gnθ (εF − εn,N (B)), (15)

where φ0 = h/e is the quantum of flux, θ (· · · ) is the Heaviside
step function, and the degeneracy of each LL is incorporated
in the factor gn which is defined as

gn =
{
N/2 if n = 0,

1 if n > 0,
(16)

where the factor of N/2 is due to the aforementioned half
occupancy of the ZELL by electrons. Solving Eq. (15) for the
Fermi level at a constant electron density results in a Fermi
level that oscillates as a function of the magnetic field as shown
in Fig. 3 by the blue dashed curves.

Due to scattering or imperfections, the LLs are broadened.
This can be incorporated by replacing the Dirac delta functions
δ(· · · ) by a finite-width Gaussian function given by

Gn(ε) =
√

2

π

1

�n

exp

[
− 2

(
ε − εn,N

τn

)2]
, (17)

where �n is the width of the nth LL and τn = �n/γ1 its reduced
value. Although the width may be different for each level, for
convenience we will present numerical results for �n = �,
independent of the LL index. The electron concentration is

n0 = 4B

φ0

∞∑
n=0

gn

2
erf

(√
2
εF − εn,N

τn

)
, (18)

where erf(· · · ) is the error function. The Fermi energy as a
function of the magnetic field obtained using the above is
shown in Fig. 3 as solid green curves.

The Fermi level converges to zero energy at increasing
magnetic field because then all electrons are pushed into the
ZELL. The transition to the nth LL occurs at the magnetic field
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FIG. 3. (Color online) Oscillatory behavior of the Fermi energy
as a function of the magnetic field. The green curves are the case of
Gaussian LLs with width � = 0.05γ1. The blue dashed line is for
� = 0 and the red thin curves are the LL spectrum for (a) mono-,
(b) bi-, and (c) trilayer graphene. (d) The Fermi level for a 2DEG in
GaAs. The results are for an electron density such that the zero-field
Fermi level is at EF,0 = 0.5γ1.

Bn given by

Bn = φ0n0

4
(
n + N

2

) , (19)

where n is a positive integer. This is a distinctive feature
that differs from the behavior of the 2DEG for which Bn =
φ0n0/2n and n > 0. Note that, since this quantity depends on
the number of layers, N , the measurement of the magnetic
field at which the magnetization changes rapidly can be used
to determine the number of layers of the rhombohedral sample.

Using the expression of Eq. (19), we define the filling factor
ν as a function of the magnetic field as

ν(B) = φ0n0

4B
− N

2
. (20)

When the ZELL is completely filled and the other levels are
empty, this filling factor is exactly zero. It can, however, also
be smaller than zero; then the ZELL is only partly filled. Its
lowest value, −N/2, is obtained for an infinite magnetic field.
The filling factor can be decomposed into ν = p + ξ with

p =
⌊

φ0n0

4B
− N

2

⌋
and ξ = φ0n0

4B
− N

2
−

⌊
φ0n0

4B
− N

2

⌋
,

(21)

where �x� corresponds to the largest integer smaller than x,
the highest fully occupied LL is p, and ξ measures the partial
occupation of the next LL and is a positive number smaller
than 1. Therefore, the Fermi level for nonbroadened LLs at
T = 0 is given by

εF (B) = εp(B)+1,N . (22)

This corresponds to an oscillating function that jumps between
the different branches of the spectrum shown in Fig. 3. Since
the interlevel transitions occur for different multilayers at

FIG. 4. (Color online) The Fermi level as a function of the filling
factor ν for N = 1 (solid blue), N = 2 (dashed red), N = 3 (dotted
green), and N = 4 (dash-dotted yellow) using the same parameters
as in Fig. 3 with broadened LLs.

different magnetic fields as given by Eq. (19), the investigation
of the electronic properties as a function of the filling factor
allows for a better comparison of different multilayers, as
shown in Fig. 4.

The unconventional integer quantum Hall effect in multi-
layer graphene was shown earlier to give rise to plateaus in the
Hall conductivities with value7

σxy = ±4e2

h

(
N

2
+ n

)
. (23)

This agrees with the values of the magnetic field at which a
new Landau level starts to be filled in Eq. (19).

B. Magnetization and susceptibility

At T = 0, the internal energy is generated by the first p

occupied LLs and a partial contribution from LL p + 1. The

FIG. 5. (Color online) Internal energy per electron for graphene
multilayers with N = 1 (solid blue), N = 2 (dashed red), N =
3 (dotted green), and N = 4 (dash-dotted yellow). The electron
concentration is such that the zero-field Fermi level is EF,0 = 0.5γ1.
The width of the LL is � = 0.
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FIG. 6. (Color online) Magnetization per electron as a function of the magnetic field for (a) monolayer, (b) bilayer, and (c) trilayer graphene,
and (d) a 2DEG in GaAs. The dashed blue curves correspond to � = 0 while for the green solid curve � = 0.05γ1.

internal energy per electron is therefore given by

uN = 4B

φ0n0

[
p∑

n=1

εn,N + ξεp+1,N

]
, (24)

where uN = U/N0γ1, the internal energy of N -multilayer
graphene per electron, for a total number of N0 electrons,
and εn,N is the single-particle electron energy from Eq. (12).
In Fig. 5 we show the internal energy calculated as a function
of the filling factor for various multilayers.

With increasing magnetic field, or decreasing filling factor,
the occupation of the ZELL increases. Since the total number
of electrons is kept constant, the internal energy per electron
decreases at high magnetic fields because the electrons in the
ZELL do not contribute to the internal energy. Therefore,
when the field B is larger than B0, so ν < 0, uN remains
constant at zero energy. This is another feature distinct from
the normal 2DEG where at high magnetic field the lowest LL
still contributes to the internal energy, which increases with
magnetic field. At zero field, the internal energy per electron,
uN,0, will be

uN,0 = εF,0

(N/2 + 1)
, (25)

which also depends on the number of layers, N , of the system.

FIG. 7. (Color online) Magnetization per electron for multilayers
with N = 1 (solid blue), N = 2 (dashed red), N = 3 (dotted green),
and N = 4 (dash-dotted yellow) as a function of the filling factor ν.
The electron concentration is such that the zero-field Fermi level is
at EF,0 = 0.5γ1. The width of the LL is � = 0.

The magnetization is found by differentiating the free
energy with respect to the magnetic field M = −∂F/∂B.
Because at T = 0 the free energy equals the internal energy,
the magnetization per electron becomes

mN = 1

B
[εp+1,N − uN ], (26)

where mN = M/N0γ1 is the magnetization per electron of
N -multilayer graphene and uN is the previously calculated
internal energy per electron.

In Fig. 6 we show the magnetization for different multi-
layers up to N = 3 and compare it with that of the 2DEG.
The sawtooth behavior is similar to that of a 2DEG although it
increases with magnetic field and becomes completely positive
at large magnetic field before exponentially decreasing to
zero for B > B0. The tendency for positive magnetization
is the consequence of the ZELL not contributing to the
magnetization and is therefore important for large magnetic
fields. For small fields, the magnetization oscillates around
zero but keeps decreasing in magnitude. This is reminiscent of
the nonequidistant energy spacing of the LLs. Furthermore,
only the bilayer case has a linear sawtooth magnetization
because for a single LL the field dependence is mN ∼ BN/2.
When all the electrons occupy the zero-energy LL, the
magnetization is equal to zero since the internal energy no
longer changes with the magnetic field. The latter is distinct
from the 2DEG where the magnetization retains a finite

FIG. 8. (Color online) Susceptibility of graphene multilayers
with N = 1 (solid blue), N = 2 (dashed red), N = 3 (dotted green),
and N = 4 (dash-dotted yellow) as a function of the filling factor ν.
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constant value for large fields as shown in Fig. 6(d). In Fig. 7,
the magnetization is shown as a function of the filling factor
for various multilayers.

Differentiating once more, the susceptibility per electron
χN = ∂mN/∂B is obtained:

χN = 1

B2

N

2
[2εp+1,N − uN ], (27)

where uN is the internal energy per electron. The susceptibility
is shown in Fig. 8 as a function of the filling factor. Bilayer
graphene has a constant steplike susceptibility similar to that
of a 2DEG.

V. FINITE TEMPERATURE

At finite temperature, the particle density for a spectrum of
nonbroadened LLs is given by

n0 = 4B

φ0

∞∑
n=1

gn

(
1 + eβ(εn,N −εF )

)−1
, (28)

where β = γ1/kBT measures the inverse temperature and
gn accounts for the degeneracy of each LL as before. The
oscillations of the Fermi energy are damped as compared to
the zero-temperature result. This is shown in Fig. 9(a).

At finite temperature, one needs to consider the free energy
to find the thermodynamic quantities such as the magnetization
and the magnetic susceptibility. The free energy per unit area
is19

fN = n0εF − 4B

φ0β

∞∑
n=0

gn ln
(
1 + eβ(εF −εn,N )

)
, (29)

where fN = F/γ1 and the Fermi energy εF is found by solving
Eq. (28) for a constant electron density n0. Using the free
energy, the magnetization is readily obtained by calculating its
derivative with respect to the magnetic field,

mN,T = 4

βφ0

∞∑
n=0

gn

[
ln

(
1 + eβ(εF −εn,N )

)

− N

2
βεn,N

(
1 + eβ(εn,N −εF ))−1

]
, (30)

and the susceptibility becomes

FIG. 9. (Color online) Thermodynamic quantities at T ≈ 40 K
as a function of the filling factor for multilayer graphene with
N = 1 (solid blue), N = 2 (dashed red), N = 3 (dotted green),
and N = 4 (dash-dotted yellow). (a) Fermi level, (b) free energy,
(c) magnetization, and (d) magnetic susceptibility.

χN,T = 4

φ0

∞∑
n=0

gn

(
1 + eβ(εn,N −εF )

)−1
[(

1 − N

2
βεn,N

(
1 + eβ(εF −εn,N )

)−1
)(

∂εF

∂B
− N

2

εn,N

B

)
− N2

4

εn,N

B

]
, (31)

where the derivative of the Fermi energy is obtained by differentiating the expression for the electron concentration

∂εF

∂B
= −4

∑∞
n=0 gn

(
1 + eβ(εn,N −εF )

)−1[
1 − N

2 βεn,N

(
1 + eβ(εF −εn,N )

)−1]
βB

∑∞
n=0 gn cosh−2

[ εn,N−εF

2 β
] . (32)

In Figs. 9(c) and 9(d) we show the magnetization and
susceptibility at T ≈ 40 K for mono-, bi-, tri-, and tetralayered
structures. As compared to the zero-temperature case, the
oscillations are damped, but the larger the number of layers,
the weaker the damping is.

VI. CONCLUSION AND REMARKS

In this paper, we have calculated the thermodynamic
quantities of the noninteracting electron gas in multilayer
rhombohedral graphene structures in a perpendicular magnetic
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field at zero and nonzero temperature. Due to the discretization
of the DOS, the Fermi level, magnetization, and susceptibility
oscillate as a function of the magnetic field. In contrast to
a 2DEG, multilayer graphene has a highly degenerate ZELL
which causes the magnetization and the susceptibility to tend
towards zero for fields above a critical magnetic field. The
value of this critical magnetic field can in principle be used
to determine the number of layers of a rhombohedral sample.
With a finite-temperature analysis, we have shown that with
increasing temperature, the oscillations are damped, but that
this effect is less pronounced in samples with a higher number
of layers.

The results obtained in this paper will be affected by
electron-electron interactions24 the inclusion of additional

inter- and intralayer transitions,25 the occurrence of stacking
boundaries,40 or other corrections. Therefore, the paper at hand
provides a basis and reference point for these studies.
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