toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sankaran, K.; Clima, S.; Mees, M.; Adelmann, C.; Tokei, Z.; Pourtois, G. openurl 
  Title Exploring alternative metals to Cu and W for interconnects : an ab initio Insight Type P1 Proceeding
  Year 2014 Publication (up) 2014 Ieee International Interconnect Technology Conference / Advanced Metallization Conference (iitc/amc) Abbreviated Journal  
  Volume Issue Pages 193-195  
  Keywords P1 Proceeding; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The properties of alternative metals to Cu and W for interconnect applications are reviewed based on first-principles simulations and benchmarked in terms of intrinsic bulk resistivity and electromigration.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-4799-5018-8 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:127034 Serial 1149  
Permanent link to this record
 

 
Author Yu, H.; Schaekers, M.; Chew, S.A.; Eyeraert, J.-L.; Dabral, A.; Pourtois, G.; Horiguchi, N.; Mocuta, D.; Collaert, N.; De Meyer, K. pdf  openurl
  Title Titanium (germano-)silicides featuring 10-9 Ω.cm2 contact resistivity and improved compatibility to advanced CMOS technology Type P1 Proceeding
  Year 2018 Publication (up) 2018 18th International Workshop On Junction Technology (iwjt) Abbreviated Journal  
  Volume Issue Pages 80-84 T2 - 18th International Workshop on Junction  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract uIn this work, we discuss three novel Ti (germano-)silicidation techniques featuring respectively the pre-contact amorphization implantation (PCAI), the TiSi co-deposition, and Ti atomic layer deposition (ALD). All three techniques form TiSix(Ge-y) contacts with ultralow contact resistivity (rho(c)) of (1-3)x10(-9) Omega.cm(2) on both highly doped n-Si and p-SiGe substrates: these techniques meet rho(c) requirement of 5-14 nm CMOS technology and feature unified CMOS contact solutions. We further discuss the compatibility of these techniques to the realistic CMOS transistor fabrication.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502768600020 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-4511-6; 978-1-5386-4511-6 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:165190 Serial 8673  
Permanent link to this record
 

 
Author Sankaran, K.; Swerts, J.; Carpenter, R.; Couet, S.; Garello, K.; Evans, R.F.L.; Rao, S.; Kim, W.; Kundu, S.; Crotti, D.; Kar, G.S.; Pourtois, G. openurl 
  Title Evidence of magnetostrictive effects on STT-MRAM performance by atomistic and spin modeling Type P1 Proceeding
  Year 2018 Publication (up) 2018 Ieee International Electron Devices Meeting (iedm) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract For the first time, we demonstrate, using an atomistic description of a 30nm diameter spin-transfer-torque magnetic random access memories (STT-MRAM), that the difference in mechanical properties of its sub-nanometer layers induces a high compressive strain in the magnetic tunnel junction (MTJ) and leads to a detrimental magnetostrictive effect. Our model explains the issues met in engineering the electrical and magnetic performances in scaled STT-MRAM devices. The resulting high compressive strain built in the stack, particularly in the MgO tunnel barrier (t-MgO), and its associated non-uniform atomic displacements, impacts on the quality of the MTJ interface and leads to strain relieve mechanisms such as surface roughness and adhesion issues. We illustrate that the strain gradient induced by the different materials and their thicknesses in the stacks has a negative impact on the tunnel magneto-resistance (TMR), on the magnetic nucleation process and on the STT-MRAM performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459882300147 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-72811-987-8; 978-1-72811-987-8 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:158694 Serial 7942  
Permanent link to this record
 

 
Author Clima, S.; McMitchell, S.R.C.; Florent, K.; Nyns, L.; Popovici, M.; Ronchi, N.; Di Piazza, L.; Van Houdt, J.; Pourtois, G. pdf  openurl
  Title First-principles perspective on poling mechanisms and ferroelectric/antiferroelectric behavior of Hf1-xZrxO2 for FEFET applications Type P1 Proceeding
  Year 2018 Publication (up) 2018 Ieee International Electron Devices Meeting (iedm) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigate at the atomic level the most probable phase transformations under strain, that are responsible for the ferroelectric/ antiferroelectric behavior in Hf1-xZrxO2 materials. Four different crystalline phase transformations exhibit a polar/non-polar transition: monoclinic-to-orthorhombic requires a gliding strain tensor, orthorhombic-to-orthorhombic transformation does not need strain to polarize the material, whereas tetragonal-to-cubic cell compression and tetragonal-to-orthorhombic cell elongation destabilizes the non-polar tetragonal phase, facilitating the transition towards a polar atomic configuration, therefore changing the polarization-electric field loop from antiferroelectric to ferroelectric. Oxygen vacancies can reduce drastically the polarization reversal barriers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459882300073 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-72811-987-8; 978-1-72811-987-8 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:158693 Serial 7972  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A. pdf  doi
openurl 
  Title Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates Type A1 Journal article
  Year 2014 Publication (up) 2D materials Abbreviated Journal 2D Mater  
  Volume 1 Issue 1 Pages 011010  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By using first-principles simulations, we investigate the interaction of a 2D silicon layer with two classes of chalcogenide-layered compounds, namely MoX2 and GaX (X = S, Se, Te). A rather weak (van der Waals) interaction between the silicene layers and the chalcogenide layers is predicted. We found that the buckling of the silicene layer is correlated to the lattice mismatch between the silicene layer and the MoX2 or GaX template. The electronic properties of silicene on these different templates largely depend on the buckling of the silicene layer: highly buckled silicene on MoS2 is predicted to be metallic, while low buckled silicene on GaS and GaSe is predicted to be semi-metallic, with preserved Dirac cones at the K points. These results indicate new routes for artificially engineering silicene nanosheets, providing tailored electronic properties of this 2D layer on non-metallic substrates. These non-metallic templates also open the way to the possible integration of silicene in future nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000353649900011 Publication Date 2014-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 49 Open Access  
  Notes Approved Most recent IF: 6.937; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:126032 Serial 1048  
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. pdf  doi
openurl 
  Title Two-dimensional hexagonal tin : ab initio geometry, stability, electronic structure and functionalization Type A1 Journal article
  Year 2014 Publication (up) 2D materials Abbreviated Journal 2D Mater  
  Volume 1 Issue Pages 021004  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We study the structural, mechanical and electronic properties of the two-dimensional (2D) allotrope of tin: tinene/stanene using first-principles calculation within density functional theory, implemented in a set of computer codes. Continuing the trend of the group-IV 2D materials graphene, silicene and germanene; tinene is predicted to have a honeycomb lattice with lattice parameter of a(0) = 4.62 angstrom and a buckling of d(0) = 0.92 angstrom. The electronic dispersion shows a Dirac cone with zero gap at the Fermi energy and a Fermi velocity of v(F) = 0.97 x 10(6) m s(-1); including spin-orbit coupling yields a bandgap of 0.10 eV. The monolayer is thermally stable up to 700 K, as indicated by first-principles molecular dynamics, and has a phonon dispersion without imaginary frequencies. We explore applied electric field and applied strain as functionalization mechanisms. Combining these two mechanisms allows for an induced bandgap up to 0.21 eV, whilst retaining the linear dispersion, albeit with degraded electronic transport parameters.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000353650400004 Publication Date 2014-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 58 Open Access  
  Notes Approved Most recent IF: 6.937; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:134432 Serial 4530  
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Functional silicene and stanene nanoribbons compared to graphene: electronic structure and transport Type A1 Journal article
  Year 2016 Publication (up) 2D materials Abbreviated Journal 2D Mater  
  Volume 3 Issue 1 Pages 015001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Since the advent of graphene, other 2D materials have garnered interest; notably the single element materials silicene, germanene, and stanene. Weinvestigate the ballistic current-voltage (I-V) characteristics of armchair silicene and stanene armchair nanoribbons (AXNRs with X = Si, Sn) using a combination of density functional theory and non-equilibrium Green's functions. The impact of out-of-plane electric field and in-plane uniaxial strain on the ribbon geometries, electronic structure, and (I-V)s are considered and contrasted with graphene. Since silicene and stanene are sp(2)/sp(3) buckled layers, the electronic structure can be tuned by an electric field that breaks the sublattice symmetry, an effect absent in graphene. This decreases the current by similar to 50% for Sn, since it has the largest buckling. Uniaxial straining of the ballistic channel affects the AXNR electronic structure in multiple ways: it changes the bandgap and associated effective carrier mass, and creates a local buckling distortion at the lead-channel interface which induces a interface dipole. Due to the increasing sp(3) hybridization character with increasing element mass, large reconstructions rectify the strained systems, an effect absent in sp(2) bonded graphene. This results in a smaller strain effect on the current: a decrease of 20% for Sn at 15% tensile strain compared to a similar to 75% decrease for C.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000373936300021 Publication Date 2016-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 19 Open Access  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:144746 Serial 4658  
Permanent link to this record
 

 
Author Heyne, M.H.; Marinov, D.; Braithwaite, N.; Goodyear, A.; de Marneffe, J.-F.; Cooke, M.; Radu, I.; Neyts, E.C.; De Gendt, S. pdf  doi
openurl 
  Title A route towards the fabrication of 2D heterostructures using atomic layer etching combined with selective conversion Type A1 Journal article
  Year 2019 Publication (up) 2D materials Abbreviated Journal 2D Mater  
  Volume 6 Issue 3 Pages 035030  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Heterostructures of low-dimensional semiconducting materials, such as transition metal dichalcogenides (MX2), are promising building blocks for future electronic and optoelectronic devices. The patterning of one MX2 material on top of another one is challenging due to their structural similarity. This prevents an intrinsic etch stop when conventional anisotropic dry etching processes are used. An alternative approach consist in a two-step process, where a sacrificial silicon layer is pre-patterned with a low damage plasma process, stopping on the underlying MoS2 film. The pre-patterned layer is used as sacrificial template for the formation of the top WS2 film. This study describes the optimization of a cyclic Ar/Cl-2 atomic layer etch process applied to etch silicon on top of MoS2, with minimal damage, followed by a selective conversion of the patterned Si into WS2. The impact of the Si atomic layer etch towards the MoS2 is evaluated: in the ion energy range used for this study, MoS2 removal occurs in the over-etch step over 1-2 layers, leading to the appearance of MoOx but without significant lattice distortions to the remaining layers. The combination of Si atomic layer etch, on top of MoS2, and subsequent Si-to-WS2 selective conversion, allows to create a WS2/MoS2 heterostructure, with clear Raman signals and horizontal lattice alignment. These results demonstrate a scalable, transfer free method to achieve horizontally individually patterned heterostacks and open the route towards wafer-level processing of 2D materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468335500004 Publication Date 2019-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:160229 Serial 5266  
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations Type A1 Journal article
  Year 2017 Publication (up) Accounts of chemical research Abbreviated Journal Accounts Chem Res  
  Volume 50 Issue 50 Pages 796-804  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The continuous miniaturization of nanodevices, such as transistors, solar cells, and optical fibers, requires the controlled synthesis of (ultra)thin gate oxides (<10 nm), including Si gate-oxide (SiO2) with high quality at the atomic scale. Traditional thermal growth of SiO2 on planar Si surfaces, however, does not allow one to obtain such ultrathin oxide due to either the high oxygen diffusivity at high temperature or the very low sticking ability of incident oxygen at low temperature. Two recent techniques, both operative at low (room) temperature, have been put forward to overcome these obstacles: (i) hyperthermal oxidation of planar Si surfaces and (ii) thermal or plasma-assisted oxidation of nonplanar Si surfaces, including Si nanowires (SiNWs). These nanooxidation processes are, however, often difficult to study experimentally, due to the key intermediate processes taking place on the nanosecond time scale.

In this Account, these Si nano-oxidation techniques are discussed from a computational point of view and compared to both hyperthermal and thermal oxidation experiments, as well as to well-known models of thermal oxidation, including the Deal−Grove, Cabrera−Mott, and Kao models and several alternative mechanisms. In our studies, we use reactive molecular dynamics (MD) and hybrid MD/Monte Carlo simulation techniques, applying the Reax force field. The incident energy of oxygen species is chosen in the range of 1−5 eV in hyperthermal oxidation of planar Si surfaces in order to prevent energy-induced damage. It turns out that hyperthermal growth allows for two growth modes, where the ultrathin oxide thickness depends on either (1) only the kinetic energy of the incident oxygen species at a growth temperature below Ttrans = 600 K, or (2) both the incident energy and the growth temperature at a growth temperature above Ttrans. These modes are specific to such ultrathin oxides, and are not observed in traditional thermal oxidation, nor theoretically considered by already existing models. In the case of thermal or plasma-assisted oxidation of small Si nanowires, on the other hand, the thickness of the ultrathin oxide is a function of the growth temperature and the nanowire diameter. Below Ttrans, which varies with the nanowire diameter, partially oxidized SiNW are formed, whereas complete oxidation to a SiO2 nanowire occurs only above Ttrans. In both nano-oxidation processes at lower temperature (T < Ttrans), final sandwich c-Si|SiOx|a-SiO2 structures are obtained due to a competition between overcoming the energy barrier to penetrate into Si subsurface layers and the compressive stress (∼2−3 GPa) at the Si crystal/oxide interface. The overall atomic-simulation results strongly indicate that the thickness of the intermediate SiOx (x < 2) region is very limited (∼0.5 nm) and constant irrespective of oxidation parameters. Thus, control over the ultrathin SiO2 thickness with good quality is indeed possible by accurately tuning the oxidant energy, oxidation temperature and surface curvature.

In general, we discuss and put in perspective these two oxidation mechanisms for obtaining controllable ultrathin gate-oxide films, offering a new route toward the fabrication of nanodevices via selective nano-oxidation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399859800016 Publication Date 2017-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.268 Times cited 5 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 12M1315N ; Approved Most recent IF: 20.268  
  Call Number PLASMANT @ plasmant @ c:irua:142638 Serial 4561  
Permanent link to this record
 

 
Author Osella, S.; Knippenberg, S. pdf  doi
openurl 
  Title Laurdan as a molecular rotor in biological environments Type A1 Journal article
  Year 2019 Publication (up) ACS applied bio materials Abbreviated Journal  
  Volume 2 Issue 12 Pages 5769-5778  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Laurdan is one of the most used fluorescent probes for lipid membrane phase recognition. Despite its wide use for optical techniques and its versatility as a solvatochromic probe, little is known regarding its use as molecular rotor, for which clear evidence is found in the current study. Although recent computational and experimental studies suggest the existence of two stable conformations of laurdan in different membrane phases, it is difficult to experimentally probe their prevalence. By means of multiscale computational approaches, we prove now that this information can be obtained through the optical properties of the two conformers, ranging from one-photon absorption over two-photon absorption to the first hyperpolarizability. Fluorescence decay and anisotropy analyses are performed as well and stress the importance of laurdan's conformational versatility. As a molecular rotor and with reference to the distinct properties of its conformers, laurdan can be used to probe biochemical processes that change the lipid orders in cell membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000616372300047 Publication Date 2019-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2576-6422 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:180356 Serial 8166  
Permanent link to this record
 

 
Author Shah, J.; Wang, W.; Bogaerts, A.; Carreon, M.L. pdf  url
doi  openurl
  Title Ammonia Synthesis by Radio Frequency Plasma Catalysis: Revealing the Underlying Mechanisms Type A1 Journal article
  Year 2018 Publication (up) ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.  
  Volume 1 Issue 9 Pages 4824-4839  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nonthermal plasma is a promising alternative for ammonia synthesis at gentle conditions. Metal meshes of Fe, Cu, Pd, Ag, and Au were employed as catalysts in radio frequency plasma for ammonia synthesis. The energy yield for all these transition metal catalysts ranged between 0.12 and 0.19 g-NH3/kWh at 300 W and, thus, needs further improvement. In addition, a semimetal, pure gallium, was used for the first time as catalyst for ammonia synthesis, with energy yield of 0.22 g-NH3/kWh and with a maximum yield of ∼10% at 150 W. The emission spectra, as well as computer simulations, revealed hydrogen recombination as a primary governing parameter, which depends on the concentration or flux of H atoms in the plasma and on the catalyst surface. The simulations helped to elucidate the underlying mechanism, implicating the dominance of surface reactions and surface adsorbed species. The rate limiting step appears to be NH2 formation on the surface of the reactor wall and on the catalyst surface, which is different from classical catalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458706500048 Publication Date 2018-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes M.L.C. acknowledges financial support from The University of Tulsa Faculty Startup Funds and The University of Tulsa Faculty Development Summer Fellowship Grant (FDSF). A.B. acknowledges financial support from the Excellence of Science program of the Fund for Scientific Research (FWO-FNRS; Grant no. G0F91618N; EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:153804 Serial 5051  
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Radu, I.P.; Pourtois, G. pdf  doi
openurl 
  Title Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures : a first-principles study Type A1 Journal article
  Year 2017 Publication (up) ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 8 Pages 7725-7734  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Since the discovery of graphene, a broad range of two-dimensional (2D) materials has captured the attention of the scientific communities. Materials, such as hexagonal boron nitride (hBN) and the transition metal dichalcogenides (TMDs) family, have shown promising semiconducting and insulating properties that are very appealing for the semiconductor industry. Recently, the possibility of taking advantage of the properties of 2D-based heterostructures has been investigated for low-power nanoelectronic applications. In this work, we aim at evaluating the relation between the nature of the materials used in such heterostructures and the amplitude of the layer-to-layer charge transfer induced by an external electric field, as is typically present in nanoelectronic gated devices. A broad range of combinations of TMDs, graphene, and hBN has been investigated using density functional theory. Our results show that the electric field induced charge transfer strongly depends on the nature of the 2D materials used in the van der Waals heterostructures and to a lesser extent on the relative orientation of the materials in the structure. Our findings contribute to the building of the fundamental understanding required to engineer electrostatically the doping of 2D materials and to establish the factors that drive the charge transfer mechanisms in electron tunneling-based devices. These are key ingredients for the development of 2D -based nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395494200119 Publication Date 2017-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 10 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 7.504  
  Call Number UA @ lucian @ c:irua:142483 Serial 4696  
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
  Year 2022 Publication (up) ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 14 Issue 30 Pages 34946-34954  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000835946500001 Publication Date 2022-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 9.5  
  Call Number UA @ admin @ c:irua:189467 Serial 7127  
Permanent link to this record
 

 
Author Wang, Z.; Zhang, Y.; Neyts, E.C.; Cao, X.; Zhang, X.; Jang, B.W.-L.; Liu, C.-jun doi  openurl
  Title Catalyst preparation with plasmas : how does it work? Type A1 Journal article
  Year 2018 Publication (up) ACS catalysis Abbreviated Journal Acs Catal  
  Volume 8 Issue 3 Pages 2093-2110  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Catalyst preparation with plasmas is increasingly attracting interest. A plasma is a partially ionized gas, consisting of electrons, ions, molecules, radicals, photons, and excited species, which are all active species for catalyst preparation and treatment. Under the influence of plasma, nucleation and crystal growth in catalyst preparation can be very different from those in the conventional thermal approach. Some thermodynamically unfavorable reactions can easily take place with plasmas. Compounds such as sulfides, nitrides, and phosphides that are produced under harsh conditions can be synthesized by plasma under mild conditions. Plasmas can produce catalysts with smaller particle sizes and controllable structure. Plasma is also a facile tool for reduction, oxidation, doping, etching, coating, alloy formation, surface treatment, and surface cleaning in a simple and direct way. A rapid and convenient plasma template removal has thus been established for zeolite synthesis. It can operate at room temperature and allows the catalyst preparation on temperature-sensitive supporting materials. Plasma is typically effective for the production of various catalysts on metallic substrates. In addition, plasma-prepared transition-metal catalysts show enhanced low-temperature activity with improved stability. This provides a useful model catalyst for further improvement of industrial catalysts. In this review, we aim to summarize the recent advances in catalyst preparation with plasmas. The present understanding of plasma-based catalyst preparation is discussed. The challenges and future development are addressed.  
  Address  
  Corporate Author Thesis  
  Publisher Amer chemical soc Place of Publication Washington Editor  
  Language Wos 000426804100055 Publication Date 2018-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 81 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:150880 Serial 4963  
Permanent link to this record
 

 
Author Mehta, P.; Barboun, P.M.; Engelmann, Y.; Go, D.B.; Bogaerts, A.; Schneider, W.F.; Hicks, J.C. pdf  url
doi  openurl
  Title Plasma-Catalytic Ammonia Synthesis beyond the Equilibrium Limit Type A1 Journal article
  Year 2020 Publication (up) Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 10 Issue 12 Pages 6726-6734  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explore the consequences of nonthermal plasma-activation on product yields in catalytic ammonia synthesis, a reaction that is equilibrium-limited at elevated temperatures. We employ a minimal microkinetic model that incorporates the influence of plasma-activation on N2 dissociation rates to predict NH3 yields into and across the equilibrium-limited regime. NH3 yields are predicted to exceed bulk thermodynamic equilibrium limits on materials that are thermal-rate-limited by N2 dissociation. In all cases, yields revert to bulk equilibrium at temperatures at which thermal reaction rates exceed plasma-activated ones. Beyond-equilibrium NH3 yields are observed in a packed bed dielectric barrier discharge reactor and exhibit sensitivity to catalytic material choice in a way consistent with model predictions. The approach and results highlight the opportunity to exploit synergies between nonthermal plasmas and catalysts to affect transformations at conditions inaccessible through thermal routes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543663800015 Publication Date 2020-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access  
  Notes University of Notre Dame; Basic Energy Sciences, DE-SC-0016543 ; Air Force Office of Scientific Research, FA9550-18-1- 0157 ; This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Sustainable Ammonia Synthesis Program, under Award DE-SC-0016543 and by the U.S. Air Force Office of Scientific Research, under Award FA9550-18-1-0157. P.M. acknowledges support through the Eilers Graduate Fellowship for Energy Related Research from the University of Notre Dame. Computational resources were provided by the Notre Dame Center for Research Computing. We thank the Notre Dame Energy Materials Characterization Facility and the Notre Dame Integrated Imaging Facility for the use of the X-ray diffractometer and the transmission electron microscope, respectively. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number PLASMANT @ plasmant @c:irua:170713 Serial 6405  
Permanent link to this record
 

 
Author Yi, Y.; Wang, X.; Jafarzadeh, A.; Wang, L.; Liu, P.; He, B.; Yan, J.; Zhang, R.; Zhang, H.; Liu, X.; Guo, H.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Catalytic Ammonia Reforming of Methane over Cu-Based Catalysts for the Production of HCN and H2at Reduced Temperature Type A1 Journal article
  Year 2021 Publication (up) Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 11 Issue 3 Pages 1765-1773  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Industrial production of HCN from NH3 and CH4 not only uses precious Pt or Pt−Rh catalysts but also requires extremely high temperatures (∼1600 K). From an energetic, operational, and safety perspective, a drastic decrease in temperature is highly desirable. Here, we report ammonia reforming of methane for the production of HCN and H2 at 673 K by the combination of CH4/NH3 plasma and a supported Cu/silicalite-1 catalyst. 30% CH4 conversion has been achieved with 79% HCN selectivity. Catalyst characterization and plasma diagnostics reveal that the excellent reaction performance is attributed to metallic Cu active sites. In addition, we propose a possible reaction pathway, viz. E-R reactions with N, NH, NH2, and CH radicals produced in the plasma, for the production of HCN, based on density functional theory calculations. Importantly, the Cu/silicalite-1 catalyst costs less than 5% of the commercial Pt mesh catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000618540300057 Publication Date 2021-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited Open Access OpenAccess  
  Notes Universiteit Antwerpen, 32249 ; China Postdoctoral Science Foundation, 2015M580220 2016T90217 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; National Natural Science Foundation of China, 21503032 ; We acknowledge financial support from the National Natural Science Foundation of China [21503032], the China Postdoctoral Science Foundation [grant numbers 2015M580220 and 2016T90217, 2016], the PetroChina Innovation Foundation [2018D-5007-0501], and the TOP research project of the Research Fund of the University of Antwerp [grant ID 32249]. Approved Most recent IF: 10.614  
  Call Number PLASMANT @ plasmant @c:irua:175880 Serial 6675  
Permanent link to this record
 

 
Author Nematollahi, P.; Barbiellini, B.; Bansil, A.; Lamoen, D.; Qingying, J.; Mukerjee, S.; Neyts, E.C. pdf  url
doi  openurl
  Title Identification of a Robust and Durable FeN4CxCatalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand Type A1 Journal article
  Year 2022 Publication (up) ACS catalysis Abbreviated Journal Acs Catal  
  Volume Issue Pages 7541-7549  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Although recent studies have advanced the understanding of pyrolyzed

Fe−N−C materials as oxygen reduction reaction (ORR) catalysts, the atomic and

electronic structures of the active sites and their detailed reaction mechanisms still remain unknown. Here, based on first-principles density functional theory (DFT) computations, we discuss the electronic structures of three FeN4 catalytic centers with different local topologies of the surrounding C atoms with a focus on unraveling the mechanism of their ORR activity in acidic electrolytes. Our study brings back a forgotten, synthesized pyridinic Fe−N coordinate to the community’s attention, demonstrating that this catalyst can exhibit excellent activity for promoting direct four-electron ORR through the addition of a fifth ligand such as −NH2, −OH, and −SO4. We also identify sites with good stability properties through the combined use of our DFT calculations and Mössbauer spectroscopy data.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000823193100001 Publication Date 2022-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access OpenAccess  
  Notes Basic Energy Sciences, DE-FG02-07ER46352 ; Fonds Wetenschappelijk Onderzoek, 1261721N ; Opetus- ja Kulttuuriministeri?; Department of Energy, DE-EE0008416 ; Approved Most recent IF: 12.9  
  Call Number EMAT @ emat @c:irua:189000 Serial 7073  
Permanent link to this record
 

 
Author Cui, Z.; Meng, S.; Yi, Y.; Jafarzadeh, A.; Li, S.; Neyts, E.C.; Hao, Y.; Li, L.; Zhang, X.; Wang, X.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic methanol synthesis from CO₂ hydrogenation over a supported Cu cluster catalyst : insights into the reaction mechanism Type A1 Journal article
  Year 2022 Publication (up) Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 12 Issue 2 Pages 1326-1337  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-catalytic CO, hydrogenation for methanol production is gaining increasing interest, but our understanding of its reaction mechanism remains primitive. We present a combined experimental/computational study on plasma-catalytic CO, hydrogenation to CH3OH over a size-selected Cu/gamma-Al2O3 catalyst. Our experiments demonstrate a synergistic effect between the Cu/gamma-Al2O3 catalyst and the CO2/H-2 plasma, achieving a CO2 conversion of 10% at 4 wt % Cu loading and a CH3OH selectivity near 50% further rising to 65% with H2O addition (for a H2O/CO2 ratio of 1). Furthermore, the energy consumption for CH3OH production was more than 20 times lower than with plasma only. We carried out density functional theory calculations over a Cu-13/gamma-Al2O3 model, which reveal that the interfacial sites of the Cu-13 cluster and gamma-Al2O3 support show a bifunctional effect: they not only activate the CO2 molecules but also strongly adsorb key intermediates to promote their hydrogenation further. Reactive plasma species can regulate the catalyst surface reactions via the Eley-Rideal (E-R) mechanism, which accelerates the hydrogenation process and promotes the generation of the key intermediates. H2O can promote the CH3OH desorption by competitive adsorption over the Cu-13/gamma-Al2O3 surface. This study provides new insights into CO2 hydrogenation through plasma catalysis, and it provides inspiration for the conversion of some other small molecules (CH4, N-2, CO, etc.) by plasma catalysis using supported-metal clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000742735600001 Publication Date 2022-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.9  
  Call Number UA @ admin @ c:irua:186416 Serial 7192  
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Plasma Technology: An Emerging Technology for Energy Storage Type A1 Journal article
  Year 2018 Publication (up) ACS energy letters Abbreviated Journal Acs Energy Lett  
  Volume 3 Issue 4 Pages 1013-1027  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology is gaining increasing interest for gas conversion applications, such as CO2 conversion into value-added chemicals or renewable fuels, and N2 fixation from the air, to be used for the production of small building blocks for, e.g., mineral fertilizers. Plasma is generated by electric power and can easily be switched on/off, making it, in principle, suitable for using intermittent renewable electricity. In this Perspective article, we explain why plasma might be promising for this application. We briefly present the most common types of plasma reactors with their characteristic features, illustrating why some plasma types exhibit better energy efficiency than others. We also highlight current research in the fields of CO2 conversion (including the combined conversion of CO2 with CH4, H2O, or H2) as well as N2 fixation (for NH3 or NOx synthesis). Finally, we discuss the major limitations and steps to be taken for further improvement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430369600035 Publication Date 2018-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 56 Open Access OpenAccess  
  Notes Universiteit Antwerpen, TOP research project 32249 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0254.14N G.0383.16N ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:150358 Serial 4919  
Permanent link to this record
 

 
Author Biswas, A.N.; Winter, L.R.; Loenders, B.; Xie, Z.; Bogaerts, A.; Chen, J.G. pdf  url
doi  openurl
  Title Oxygenate Production from Plasma-Activated Reaction of CO2and Ethane Type A1 Journal article
  Year 2021 Publication (up) Acs Energy Letters Abbreviated Journal Acs Energy Lett  
  Volume Issue Pages 236-241  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Upgrading ethane with CO2 as a soft oxidant represents a desirable means of obtaining oxygenated hydrocarbons. This reaction is not thermodynamically feasible under mild conditions and has not been previously achieved as a one-step process. Nonthermal plasma was implemented as an alternative means of supplying energy to overcome activation barriers, leading to the production of alcohols, aldehydes, and acids as well as C1−C5+ hydrocarbons under ambient pressure, with a maximum total oxygenate selectivity of 12%. A plasma chemical kinetic computational model was developed and found to be in good agreement with the experimental trends. Results from this study illustrate the potential to use plasma for the direct synthesis of value-added alcohols, acids, and aldehydes from ethane and CO2 under mild conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000732435700001 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Basic Energy Sciences, DE-SC0012704 ; Fonds Wetenschappelijk Onderzoek, S001619N ; H2020 European Research Council, 810182 ; National Science Foundation, DGE 16-44869 ; This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Program (grant no. DE-SC0012704). L.R.W. acknowledges the U.S. National Science Foundation Graduate Research Fellowship Program grant number DGE 16-44869. B.L. and A.B. acknowledge support from the FWO-SBO project PLASMA240 Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:184812 Serial 6897  
Permanent link to this record
 

 
Author Xu, X.; Vereecke, G.; Chen, C.; Pourtois, G.; Armini, S.; Verellen, N.; Tsai, W.K.; Kim, D.W.; Lee, E.; Lin, C.Y.; Van Dorpe, P.; Struyf, H.; Holsteyns, F.; Moshchalkov, V.; Indekeu, J.; De Gendt, S.; doi  openurl
  Title Capturing wetting states in nanopatterned silicon Type A1 Journal article
  Year 2014 Publication (up) ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 1 Pages 885-893  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Spectacular progress in developing advanced Si circuits with reduced size, along the track of Moore's law, has been relying on necessary developments in wet cleaning of nanopatterned Si wafers to provide contaminant free surfaces. The most efficient cleaning is achieved when complete wetting can be realized. In this work, ordered arrays of silicon nanopillars on a hitherto unexplored small scale have been used to study the wetting behavior on nanomodulated surfaces in a substantial range of surface treatments and geometrical parameters. With the use of optical reflectance measurements, the nanoscale water imbibition depths have been measured and the transition to the superhydrophobic Cassie-Baxter state has been accurately determined. For pillars of high aspect ratio (about 15), the transition occurs even when the surface is grafted with a hydrophilic functional group. We have found a striking consistent deviation between the contact angle measurements and the straightforward application of the classical wetting models. Molecular dynamics simulations show that these deviations can be attributed to the long overlooked atomic-scale surface perturbations that are introduced during the nanofabrication process. When the transition condition is approached, transient states of partial imbibition that characterize intermediate states between the Wenzel and Cassie-Baxter states are revealed in our experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000330542900092 Publication Date 2013-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 39 Open Access  
  Notes Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:114871 Serial 276  
Permanent link to this record
 

 
Author Neyts, E.C.; Shibuta, Y.; van Duin, A.C.T.; Bogaerts, A. doi  openurl
  Title Catalyzed growth of carbon nanotube with definable chirality by hybrid molecular dynamics-force biased Monte Carlo simulations Type A1 Journal article
  Year 2010 Publication (up) ACS nano Abbreviated Journal Acs Nano  
  Volume 4 Issue 11 Pages 6665-6672  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Metal-catalyzed growth mechanisms of carbon nanotubes (CNTs) were studied by hybrid molecular dynamics−Monte Carlo simulations using a recently developed ReaxFF reactive force field. Using this novel approach, including relaxation effects, a CNT with definable chirality is obtained, and a step-by-step atomistic description of the nucleation process is presented. Both root and tip growth mechanisms are observed. The importance of the relaxation of the network is highlighted by the observed healing of defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000284438000043 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 129 Open Access  
  Notes Approved Most recent IF: 13.942; 2010 IF: 9.865  
  Call Number UA @ lucian @ c:irua:84759 Serial 294  
Permanent link to this record
 

 
Author Almohammadi, G.; O'Modhrain, C.; Kelly, S.; Sullivan, J.A. url  doi
openurl 
  Title Ti-doped SBA-15 catalysts used in phenol oxidation reactions Type A1 Journal article
  Year 2020 Publication (up) ACS Omega Abbreviated Journal  
  Volume 5 Issue 1 Pages 791-798  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Two Ti-SBA-15 catalysts are synthesized using techniques that should either deposit Ti atoms specifically at the SBA-15 surface or allow Ti-containing species to exist at both the surface and within the bulk of SBA-15. The materials have been characterized by Fourier transform infrared (FTIR), Raman and UV visible spectroscopies, transmission electron microscopy, scanning electron microscopy/energy-dispersive X-ray spectrometry microscopies, and N-2 physisorption experiments. They have been applied in the total oxidation of phenol under catalytic wet air oxidation (CWAO) conditions and using photo- and plasma promotion. The materials retain the structure of SBA-15 following the doping in both cases and Ti incorporation is confirmed. The nature of the incorporated Ti remains unclear-with evidence for anatase TiO2 (from Raman and UV vis analysis) and evidence for atomically dispersed Ti from FTIR. In terms of reactivity, the presence of Ti in the in situ-prepared catalyst improves reactivity in the photopromoted reaction (increasing conversion from 28 to 60%), while both Ti catalysts improve reactivity in the CWAO reaction (by 7% over the in situ catalyst and by 25% over the grafted material). The presence of Ti has no beneficial effect on conversion in the plasma-promoted reaction. Here, however, Ti does affect the nature of the oxidized intermediates formed during the total phenol oxidation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507578300086 Publication Date 2019-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.1 Times cited Open Access  
  Notes ; The KSA Ministry of Higher Education is acknowledged for providing G.A.'s studentship, and IRC funded the plasma work under grant ref: GOIPD/2017/1000. ; Approved Most recent IF: 4.1; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:166578 Serial 6629  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmenev, R.A.; Neyts, E.C.; Koptyug, A.V.; Volkova, A.P.; Surmeneva, M.A. url  doi
openurl 
  Title Combined first-principles and experimental study on the microstructure and mechanical characteristics of the multicomponent additive-manufactured Ti-35Nb-7Zr-5Ta alloy Type A1 Journal article
  Year 2023 Publication (up) ACS Omega Abbreviated Journal  
  Volume 8 Issue 30 Pages 27519-27533  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract New & beta;-stabilizedTi-based alloys are highly promising forbone implants, thanks in part to their low elasticity. The natureof this elasticity, however, is as yet unknown. We here present combinedfirst-principles DFT calculations and experiments on the microstructure,structural stability, mechanical characteristics, and electronic structureto elucidate this origin. Our results suggest that the studied & beta;Ti-35Nb-7Zr-5Ta wt % (TNZT) alloy manufacturedby the electron-beam powder bed fusion (E-PBF) method has homogeneousmechanical properties (H = 2.01 & PLUSMN; 0.22 GPa and E = 69.48 & PLUSMN; 0.03 GPa) along the building direction,which is dictated by the crystallographic texture and microstructuremorphologies. The analysis of the structural and electronic properties,as the main factors dominating the chemical bonding mechanism, indicatesthat TNZT has a mixture of strong metallic and weak covalent bonding.Our calculations demonstrate that the softening in the Cauchy pressure(C & PRIME; = 98.00 GPa) and elastic constant C ̅ ( 44 ) = 23.84 GPa is the originof the low elasticity of TNZT. Moreover, the nature of this softeningphenomenon can be related to the weakness of the second and thirdneighbor bonds in comparison with the first neighbor bonds in theTNZT. Thus, the obtained results indicate that a carefully designedTNZT alloy can be an excellent candidate for the manufacturing oforthopedic internal fixation devices. In addition, the current findingscan be used as guidance not only for predicting the mechanical propertiesbut also the nature of elastic characteristics of the newly developedalloys with yet unknown properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001031269000001 Publication Date 2023-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:198313 Serial 9011  
Permanent link to this record
 

 
Author Engelmann, Y.; Mehta, P.; Neyts, E.C.; Schneider, W.F.; Bogaerts, A. pdf  url
doi  openurl
  Title Predicted Influence of Plasma Activation on Nonoxidative Coupling of Methane on Transition Metal Catalysts Type A1 Journal article
  Year 2020 Publication (up) Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng  
  Volume 8 Issue 15 Pages 6043-6054  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract The combination of catalysis and nonthermal plasma holds promise for enabling difficult chemical conversions. The possible synergy between both depends strongly on the nature of the reactive plasma species and the catalyst material. In this paper, we show how vibrationally excited species and plasma-generated radicals interact with transition metal catalysts and how changing the catalyst material can improve the conversion rates and product selectivity. We developed a microkinetic model to investigate the impact of vibrational excitations and plasma-generated radicals on the nonoxidative coupling of methane over transition metal surfaces. We predict a significant increase in ethylene formation for vibrationally excited methane. Plasma-generated radicals have a stronger impact on the turnover frequencies with high selectivity toward ethylene on noble catalysts and mixed selectivity on non-noble catalysts. In general, we show how the optimal catalyst material depends on the desired products as well as the plasma conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526884000025 Publication Date 2020-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access  
  Notes Herculesstichting; University of Notre Dame; Universiteit Antwerpen; Division of Engineering Education and Centers, EEC-1647722 ; We would like to thank Tom Butterworth for his work on methane vibrational distribution functions (VDF) and for sharing his thoughts and experiences on this matter, specifically regarding the VDF of the degenerate modes of methane. We ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article https://dx.doi.org/10.1021/acssuschemeng.0c00906 ACS Sustainable Chem. Eng. 2020, 8, 6043−6054 6052 also acknowledge financial support from the DOC-PRO3 and the TOP-BOF projects of the University of Antwerp. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Support for W.F.S. was provided by the National Science Foundation under cooperative agreement no. EEC-1647722, an Engineering Research Center for the Innovative and Strategic Transformation of Alkane Resources (CISTAR). P.M. acknowledges support through the Eilers Graduate Fellowship of the University of Notre Dame. Approved Most recent IF: 8.4; 2020 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:169228 Serial 6366  
Permanent link to this record
 

 
Author Vervloessem, E.; Aghaei, M.; Jardali, F.; Hafezkhiabani, N.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Based N2Fixation into NOx: Insights from Modeling toward Optimum Yields and Energy Costs in a Gliding Arc Plasmatron Type A1 Journal article
  Year 2020 Publication (up) Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng  
  Volume 8 Issue 26 Pages 9711-9720  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology provides a sustainable, fossil-free method for N2 fixation, i.e., the conversion of inert atmospheric N2 into valuable substances, such as NOx or ammonia. In this work, we present a novel gliding arc plasmatron at atmospheric pressure for NOx production at different N2/O2 gas feed ratios, offering a promising NOx yield of 1.5% with an energy cost of 3.6 MJ/mol NOx produced. To explain the underlying mechanisms, we present a chemical kinetics model, validated by experiments, which provides insight into the NOx formation pathways and into the ambivalent role of the vibrational kinetics. This allows us to pinpoint the factors limiting the yield and energy cost, which can help to further improve the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000548456600013 Publication Date 2020-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Herculesstichting; Universiteit Antwerpen; Vlaamse regering; H2020 European Research Council, 810182 ; N2 Applied; Excellence of Science FWO – FNRS project, 30505023 GoF9618n ; Approved Most recent IF: 8.4; 2020 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:170138 Serial 6392  
Permanent link to this record
 

 
Author Gorbanev, Y.; Vervloessem, E.; Nikiforov, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Nitrogen fixation with water vapor by nonequilibrium plasma : toward sustainable ammonia production Type A1 Journal article
  Year 2020 Publication (up) Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng  
  Volume 8 Issue 7 Pages 2996-3004  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ammonia is a crucial nutrient used for plant growth and as a building block in the pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing nonfossil-based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as a H source for nitrogen fixation into NH3 by nonequilibrium plasma. The highest selectivity toward NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor contents. We also studied the role of H2O vapor and of the plasma-exposed liquid H2O in nitrogen fixation by using isotopically labeled water to distinguish between these two sources of H2O. We show that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. The studied catalyst- and H2-free method offers excellent selectivity toward NH3 (up to 96%), with energy consumption (ca. 95–118 MJ/mol) in the range of many plasma-catalytic H2-utilizing processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516665500045 Publication Date 2020-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited 14 Open Access  
  Notes ; This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the Catalisti Moonshot project P2C, and the Methusalem project of the University of Antwerp. ; Approved Most recent IF: 8.4; 2020 IF: 5.951  
  Call Number UA @ admin @ c:irua:167134 Serial 6568  
Permanent link to this record
 

 
Author Engelmann, Y.; van ’t Veer, K.; Gorbanev, Y.; Neyts, E.C.; Schneider, W.F.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma Catalysis for Ammonia Synthesis: A Microkinetic Modeling Study on the Contributions of Eley–Rideal Reactions Type A1 Journal Article;Plasma catalysis
  Year 2021 Publication (up) Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng  
  Volume 9 Issue 39 Pages 13151-13163  
  Keywords A1 Journal Article;Plasma catalysis; Eley−Rideal reactions; Volcano plots; Vibrational excitation; Radical reactions; Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma catalysis is an emerging new technology for the electrification and downscaling of NH3 synthesis. Increasing attention is being paid to the optimization of plasma catalysis with respect to the plasma conditions, the catalyst material, and their mutual interaction. In this work we use microkinetic models to study how the total conversion process is impacted by the combination of different plasma conditions and transition metal catalysts. We study how plasma-generated radicals and vibrationally excited N2 (present in a dielectric barrier discharge plasma) interact with the catalyst and impact the NH3 turnover frequencies (TOFs). Both filamentary and uniform plasmas are studied, based on plasma chemistry models that provided plasma phase speciation and vibrational distribution functions. The Langmuir−Hinshelwood reaction rate coefficients (i.e., adsorption reactions and subsequent reactions among adsorbates) are determined using conventional scaling relations. An additional set of Eley−Rideal reactions (i.e., direct reactions of plasma radicals with adsorbates) was added and a sensitivity analysis on the assumed reaction rate coefficients was performed. We first show the impact of different vibrational distribution functions on the catalytic dissociation of N2 and subsequent production of NH3, and we gradually include more radical reactions, to illustrate the contribution of these species and their corresponding reaction pathways. Analysis over a large range of catalysts indicates that different transition metals (metals such as Rh, Ni, Pt, and Pd) optimize the NH3TOFs depending on the population of the vibrational levels of N2. At higher concentrations of plasma-generated radicals, the NH3 TOFs become less dependent on the catalyst material, due to radical adsorptions on the more noble catalysts and Eley−Rideal reactions on the less noble catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000705367800004 Publication Date 2021-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.951 Times cited Open Access OpenAccess  
  Notes Basic Energy Sciences, DE-SC0021107 ; Vlaamse regering, HBC.2019.0108 ; H2020 European Research Council, 810182 ; Methusalem project – University of Antwerp; Excellence of science FWO-FNRS, GoF9618n ; TOP-BOF – University of Antwerp; DOCPRO3 – University of Antwerp; We acknowledge the financial support from the DOC-PRO3, the TOP-BOF, and the Methusalem project of the University of Antwerp, as well as from the European Research Council (ERC) (grant agreement No, 810182−SCOPE ERC Synergy project), under the European Union’s Horizon 2020 research and innovation programme, the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108), and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). Calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), 13162 Approved Most recent IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:182482 Serial 6811  
Permanent link to this record
 

 
Author Li, S.; Sun, J.; Gorbanev, Y.; van’t Veer, K.; Loenders, B.; Yi, Y.; Kenis, T.; Chen, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Assisted Dry Reforming of CH4: How Small Amounts of O2Addition Can Drastically Enhance the Oxygenate Production─Experiments and Insights from Plasma Chemical Kinetics Modeling Type A1 Journal Article
  Year 2023 Publication (up) ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 11 Issue 42 Pages 15373-15384  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-based dry reforming of methane (DRM) into

high-value-added oxygenates is an appealing approach to enable

otherwise thermodynamically unfavorable chemical reactions at

ambient pressure and near room temperature. However, it suffers

from coke deposition due to the deep decomposition of CH4. In this

work, we assess the DRM performance upon O2 addition, as well as

varying temperature, CO2/CH4 ratio, discharge power, and gas

residence time, for optimizing oxygenate production. By adding O2,

the main products can be shifted from syngas (CO + H2) toward

oxygenates. Chemical kinetics modeling shows that the improved

oxygenate production is due to the increased concentration of

oxygen-containing radicals, e.g., O, OH, and HO2, formed by electron

impact dissociation [e + O2 → e + O + O/O(1D)] and subsequent

reactions with H atoms. Our study reveals the crucial role of oxygen-coupling in DRM aimed at oxygenates, providing practical

solutions to suppress carbon deposition and at the same time enhance the oxygenates production in plasma-assisted DRM.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082603900001 Publication Date 2023-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, S001619N ; China Scholarship Council, 202006060029 ; National Natural Science Foundation of China, 21975018 ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:201013 Serial 8966  
Permanent link to this record
 

 
Author Tsonev, I.; O’Modhrain, C.; Bogaerts, A.; Gorbanev, Y. url  doi
openurl 
  Title Nitrogen Fixation by an Arc Plasma at Elevated Pressure to Increase the Energy Efficiency and Production Rate of NOx Type A1 Journal article
  Year 2023 Publication (up) ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1888-1897  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based nitrogen fixation for fertilizer production is an attractive alternative to the fossil fuel-based industrial processes. However, many factors hinder its applicability, e.g., the commonly observed inverse correlation between energy consumption and production rates or the necessity to enhance the selectivity toward NO2, the desired product for a more facile formation of nitrate-based fertilizers. In this work, we investigated the use of a rotating gliding arc plasma for nitrogen fixation at elevated pressures (up to 3 barg), at different feed gas flow rates and composition. Our results demonstrate a dramatic increase in the amount of NOx produced as a function of increasing pressure, with a record-low EC of 1.8 MJ/(mol N) while yielding a high production rate of 69 g/h and a high selectivity (94%) of NO2. We ascribe this improvement to the enhanced thermal Zeldovich mechanism and an increased rate of NO oxidation compared to the back reaction of NO with atomic oxygen, due to the elevated pressure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000924366700001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G0G2322N ; Horizon 2020 Framework Programme, 965546 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:194281 Serial 7239  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: