|
Record |
Links |
|
Author |
Clima, S.; McMitchell, S.R.C.; Florent, K.; Nyns, L.; Popovici, M.; Ronchi, N.; Di Piazza, L.; Van Houdt, J.; Pourtois, G. |
|
|
Title |
First-principles perspective on poling mechanisms and ferroelectric/antiferroelectric behavior of Hf1-xZrxO2 for FEFET applications |
Type |
P1 Proceeding |
|
Year |
2018 |
Publication |
2018 Ieee International Electron Devices Meeting (iedm) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
We investigate at the atomic level the most probable phase transformations under strain, that are responsible for the ferroelectric/ antiferroelectric behavior in Hf1-xZrxO2 materials. Four different crystalline phase transformations exhibit a polar/non-polar transition: monoclinic-to-orthorhombic requires a gliding strain tensor, orthorhombic-to-orthorhombic transformation does not need strain to polarize the material, whereas tetragonal-to-cubic cell compression and tetragonal-to-orthorhombic cell elongation destabilizes the non-polar tetragonal phase, facilitating the transition towards a polar atomic configuration, therefore changing the polarization-electric field loop from antiferroelectric to ferroelectric. Oxygen vacancies can reduce drastically the polarization reversal barriers. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000459882300073 |
Publication Date |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
978-1-72811-987-8; 978-1-72811-987-8 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
|
Times cited |
|
Open Access |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
UA @ admin @ c:irua:158693 |
Serial |
7972 |
|
Permanent link to this record |