|
Record |
Links |
|
Author |
Yi, Y.; Wang, X.; Jafarzadeh, A.; Wang, L.; Liu, P.; He, B.; Yan, J.; Zhang, R.; Zhang, H.; Liu, X.; Guo, H.; Neyts, E.C.; Bogaerts, A. |
|
|
Title |
Plasma-Catalytic Ammonia Reforming of Methane over Cu-Based Catalysts for the Production of HCN and H2at Reduced Temperature |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Acs Catalysis |
Abbreviated Journal |
Acs Catal |
|
|
Volume |
11 |
Issue |
3 |
Pages |
1765-1773 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Industrial production of HCN from NH3 and CH4 not only uses precious Pt or Pt−Rh catalysts but also requires extremely high temperatures (∼1600 K). From an energetic, operational, and safety perspective, a drastic decrease in temperature is highly desirable. Here, we report ammonia reforming of methane for the production of HCN and H2 at 673 K by the combination of CH4/NH3 plasma and a supported Cu/silicalite-1 catalyst. 30% CH4 conversion has been achieved with 79% HCN selectivity. Catalyst characterization and plasma diagnostics reveal that the excellent reaction performance is attributed to metallic Cu active sites. In addition, we propose a possible reaction pathway, viz. E-R reactions with N, NH, NH2, and CH radicals produced in the plasma, for the production of HCN, based on density functional theory calculations. Importantly, the Cu/silicalite-1 catalyst costs less than 5% of the commercial Pt mesh catalyst. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000618540300057 |
Publication Date |
2021-02-05 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2155-5435 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
10.614 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
Universiteit Antwerpen, 32249 ; China Postdoctoral Science Foundation, 2015M580220 2016T90217 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; National Natural Science Foundation of China, 21503032 ; We acknowledge financial support from the National Natural Science Foundation of China [21503032], the China Postdoctoral Science Foundation [grant numbers 2015M580220 and 2016T90217, 2016], the PetroChina Innovation Foundation [2018D-5007-0501], and the TOP research project of the Research Fund of the University of Antwerp [grant ID 32249]. |
Approved |
Most recent IF: 10.614 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:175880 |
Serial |
6675 |
|
Permanent link to this record |