|
Record |
Links |
|
Author |
Gorbanev, Y.; Vervloessem, E.; Nikiforov, A.; Bogaerts, A. |
|
|
Title |
Nitrogen fixation with water vapor by nonequilibrium plasma : toward sustainable ammonia production |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Acs Sustainable Chemistry & Engineering |
Abbreviated Journal |
Acs Sustain Chem Eng |
|
|
Volume |
8 |
Issue |
7 |
Pages |
2996-3004 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Ammonia is a crucial nutrient used for plant growth and as a building block in the pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing nonfossil-based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as a H source for nitrogen fixation into NH3 by nonequilibrium plasma. The highest selectivity toward NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor contents. We also studied the role of H2O vapor and of the plasma-exposed liquid H2O in nitrogen fixation by using isotopically labeled water to distinguish between these two sources of H2O. We show that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. The studied catalyst- and H2-free method offers excellent selectivity toward NH3 (up to 96%), with energy consumption (ca. 95–118 MJ/mol) in the range of many plasma-catalytic H2-utilizing processes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000516665500045 |
Publication Date |
2020-02-03 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2168-0485 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
8.4 |
Times cited |
14 |
Open Access |
|
|
|
Notes |
; This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the Catalisti Moonshot project P2C, and the Methusalem project of the University of Antwerp. ; |
Approved |
Most recent IF: 8.4; 2020 IF: 5.951 |
|
|
Call Number |
UA @ admin @ c:irua:167134 |
Serial |
6568 |
|
Permanent link to this record |