toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sankaran, K.J.; Deshmukh, S.; Korneychuk, S.; Yeh, C.-J.; Thomas, J.P.; Drijkoningen, S.; Pobedinskas, P.; Van Bael, M.K.; Verbeeck, J.; Leou, K.-C.; Leung, K.-T.; Roy, S.S.; Lin, I.-N.; Haenen, K. pdf  doi
openurl 
  Title Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods Type A1 Journal article
  Year 2018 Publication MRS communications Abbreviated Journal Mrs Commun  
  Volume 8 Issue (up) 3 Pages 1311-1320  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Vertically aligned nitrogen-doped nanocrystalline diamond nanorods are fabricated from nitrogen-doped nanocrystalline diamond films using reactive ion etching in oxygen plasma. These nanorods show enhanced thermionic electron emission (TEE) characteristics, viz.. a high current density of 12.0 mA/cm(2) and a work function value of 4.5 eV with an applied voltage of 3 Vat 923 K. The enhanced TEE characteristics of these nanorods are ascribed to the induction of nanographitic phases at the grain boundaries and the field penetration effect through the local field enhancement from nanorods owing to a high aspect ratio and an excellent field enhancement factor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000448887900089 Publication Date 2018-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-6859; 2159-6867 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.01 Times cited 1 Open Access  
  Notes The authors thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. The Hercules Foundation Flanders is acknowledged for financial support of the Raman equipment. The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S.K. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. K.J. Sankaran and P. Pobedinskas are Postdoctoral Fellows of FWO. Approved Most recent IF: 3.01  
  Call Number UA @ admin @ c:irua:155521 Serial 5364  
Permanent link to this record
 

 
Author Ozen, S.A.; Ozkalayci, F.; Cevik, U.; Van Grieken, R. pdf  doi
openurl 
  Title Investigation of heavy metal distributions along 15m soil profiles using EDXRF, XRD, SEM-EDX, and ICP-MS techniques Type A1 Journal article
  Year 2018 Publication X-ray spectrometry Abbreviated Journal  
  Volume 47 Issue (up) 3 Pages 231-241  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The research of soil contamination by heavy metal is an important field due to its environmental and health implications. The goal was to study the elemental mobility as a function of depth. For this reason, the distribution of heavy metals (V, Cr, Co, Ni, Cu, Zn, As, Sn, and Pb) was investigated along soil profiles up to a depth of 15m at 9 sampling sites in the Nilufer industrial district (Bursa, Turkey). Elemental analyses were done with the Epsilon 5 energy dispersive X-ray fluorescence and inductively coupled plasma mass spectrometry equipment. Particle analysis was performed with a JEOL scanning electron microscope equipped with a Si(Li) X-ray detector. The crystallographic compositions of oxide compounds in soil samples were identified by a Rigaku X-ray diffraction instrument. Different parameters such as the soil's chemical (mineralogical structure, pH, and electrical conductivity) and physical properties (the number of blows, the stiffness index, the liquidity index, the plasticity index, and the water content) were analyzed. To assess the mobility of the heavy metals, diffusion (D) and convection coefficients (?) were calculated with the finite difference method. Convection was determined to dominate the studied region. In addition, the mobility coefficient was determined for each metal. High mobilities were determined for Zn and V, moderate mobilities for Cr, Ni, Cu, and As, and low mobilities were determined for Co and Pb. The results revealed that elements had reached depths of up to 15m, causing irreversible soil contamination that may lead to environmental health issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430188700005 Publication Date 2018-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:150722 Serial 8123  
Permanent link to this record
 

 
Author Yuan, H.; Debroye, E.; Bladt, E.; Lu, G.; Keshavarz, M.; Janssen, K.P.F.; Roeffaers, M.B.J.; Bals, S.; Sargent, E.H.; Hofkens, J. pdf  url
doi  openurl
  Title Imaging heterogeneously distributed photo-active traps in perovskite single crystals Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue (up) 30 Pages 1705494  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Organic-inorganic halide perovskites (OIHPs) have demonstrated outstanding energy conversion efficiency in solar cells and light-emitting devices. In spite of intensive developments in both materials and devices, electronic traps and defects that significantly affect their device properties remain under-investigated. Particularly, it remains challenging to identify and to resolve traps individually at the nanoscopic scale. Here, photo-active traps (PATs) are mapped over OIHP nanocrystal morphology of different crystallinity by means of correlative optical differential super-resolution localization microscopy (Delta-SRLM) and electron microscopy. Stochastic and monolithic photoluminescence intermittency due to individual PATs is observed on monocrystalline and polycrystalline OIHP nanocrystals. Delta-SRLM reveals a heterogeneous PAT distribution across nanocrystals and determines the PAT density to be 1.3 x 10(14) and 8 x 10(13) cm(-3) for polycrystalline and for monocrystalline nanocrystals, respectively. The higher PAT density in polycrystalline nanocrystals is likely related to an increased defect density. Moreover, monocrystalline nanocrystals that are prepared in an oxygen and moisture-free environment show a similar PAT density as that prepared at ambient conditions, excluding oxygen or moisture as chief causes of PATs. Hence, it is conduded that the PATs come from inherent structural defects in the material, which suggests that the PAT density can be reduced by improving crystalline quality of the material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000428793600009 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 29 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the Research Foundation-Flanders (FWO, grant G.0197.11, G.0962.13, G0B39.15, ZW1509 GOH6316N, postdoctoral fellowships to H.Y., E.D., and K.P.F.J., doctoral fellowship to E.B.), KU Leuven Research Fund (C14/15/053), the Flemish government through long term structural funding Methusalem (CASAS2, Meth/15/04), the Hercules foundation (HER/11/14), the Belgian Federal Science Policy Office (IAP-PH05), the EC through the Marie Curie ITN project iSwitch (GA-642196), and the ERC project LIGHT (GA-307523). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). G.L. acknowledges Key University Science Research Project of Jiangsu Province (No. 17KJA150005). E.H.S. acknowledges support from the Ontario Research Fund – Research Excellence Program. ; ecassara Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:150826UA @ admin @ c:irua:150826 Serial 4970  
Permanent link to this record
 

 
Author Berends, A.C.; van der Stam, W.; Hofmann, J.P.; Bladt, E.; Meeldijk, J.D.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue (up) 30 Pages 2400-2413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract ZnS shelling of I-III-VI(2 )nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 degrees C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2 ) and high reaction temperatures (210 degrees C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000430023700027 Publication Date 2018-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 85 Open Access OpenAccess  
  Notes ; Annelies van der Bok is gratefully acknowledged for performing the ICP measurements. A.C.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. ECHO.712.014.001. S.B. and E.B. acknowledge financial support from European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:150772UA @ admin @ c:irua:150772 Serial 4972  
Permanent link to this record
 

 
Author Peters, J.L.; Altantzis, T.; Lobato, I.; Jazi, M.A.; van Overbeek, C.; Bals, S.; Vanmaekelbergh, D.; Sinai, S.B. url  doi
openurl 
  Title Mono- and Multilayer Silicene-Type Honeycomb Lattices by Oriented Attachment of PbSe Nanocrystals: Synthesis, Structural Characterization, and Analysis of the Disorder Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue (up) 30 Pages 4831-4837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystal (NC) solids are commonly prepared from nonpolar organic NC suspensions. In many cases, the capping on the NC surface is preserved and forms a barrier between the NCs. More recently, superstructures with crystalline connections between the NCs, implying the removal of the capping, have been reported, too. Here, we present large-scale uniform superstructures of attached PbSe NCs with a silicene-type honeycomb geometry, resulting from solvent evaporation under nearly reversible conditions. We also prepared multilayered silicene honeycomb structures by using larger amounts of PbSe NCs. We show that the two-dimensional silicene superstructures can be seen as a crystallographic slice from a 3-D simple cubic structure. We describe the disorder in the silicene lattices in terms of the nanocrystals position and their atomic alignment. The silicene honeycomb sheets are large enough to be used in transistors and optoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440105500042 Publication Date 2018-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access OpenAccess  
  Notes The authors acknowledge funding from the European Commission (Grant EUSMI 731019). S.B. acknowledges funding from the European Research Council (Grant 335078 COLOURATOM). T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the Grant Agreement No. 731019 EUSMI. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:152997UA @ admin @ c:irua:152997 Serial 5011  
Permanent link to this record
 

 
Author Tong, Y.; Yao, E.-P.; Manzi, A.; Bladt, E.; Wang, K.; Doeblinger, M.; Bals, S.; Mueller-Buschbaum, P.; Urban, A.S.; Polavarapu, L.; Feldmann, J. pdf  url
doi  openurl
  Title Spontaneous self-assembly of Perovskite nanocrystals into electronically coupled supercrystals : toward filling the green gap Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue (up) 30 Pages 1801117  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Self-assembly of nanoscale building blocks into ordered nanoarchitectures has emerged as a simple and powerful approach for tailoring the nanoscale properties and the opportunities of using these properties for the development of novel optoelectronic nanodevices. Here, the one-pot synthesis of CsPbBr3 perovskite supercrystals (SCs) in a colloidal dispersion by ultrasonication is reported. The growth of the SCs occurs through the spontaneous self-assembly of individual nanocrystals (NCs), which form in highly concentrated solutions of precursor powders. The SCs retain the high photoluminescence (PL) efficiency of their NC subunits, however also exhibit a redshifted emission wavelength compared to that of the individual nanocubes due to interparticle electronic coupling. This redshift makes the SCs pure green emitters with PL maxima at approximate to 530-535 nm, while the individual nanocubes emit a cyan-green color (approximate to 512 nm). The SCs can be used as an emissive layer in the fabrication of pure green light-emitting devices on rigid or flexible substrates. Moreover, the PL emission color is tunable across the visible range by employing a well-established halide ion exchange reaction on the obtained CsPbBr3 SCs. These results highlight the promise of perovskite SCs for light emitting applications, while providing insight into their collective optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000438709400019 Publication Date 2018-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 161 Open Access OpenAccess  
  Notes ; This research work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech),” by the China Scholarship Council (Y.T. and K.W.), by the European Union's Horizon 2020 research and innovation program under the Marie Skodowska-Curie Grant Agreement COMPASS No. 691185 and by LMU Munich's Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative (L.P., J.F. and A.S.U.). E.B. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors would like to thank Alexander Richter for helpful discussions. ; ecas_Sara Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:152413UA @ admin @ c:irua:152413 Serial 5129  
Permanent link to this record
 

 
Author Tessier, M.D.; Baquero, E.A.; Dupont, D.; Grigel, V.; Bladt, E.; Bals, S.; Coppel, Y.; Hens, Z.; Nayral, C.; Delpech, F. url  doi
openurl 
  Title Interfacial oxidation and photoluminescence of InP-Based core/shell quantum dots Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue (up) 30 Pages 6877-6883  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Indium phosphide colloidal quantum dots (QDs) are emerging as an efficient cadmium-free alternative for optoelectronic applications. Recently, syntheses based on easy-to-implement aminophosphine precursors have been developed. We show by solid-state nuclear magnetic resonance spectroscopy that this new approach allows oxide-free indium phosphide core or core/shell quantum dots to be made. Importantly, the oxide-free core/shell interface does not help in achieving higher luminescence efficiencies. We demonstrate that in the case of InP/ZnS and InP/ZnSe QDs, a more pronounced oxidation concurs with a higher photoluminescence efficiency. This study suggests that a II-VI shell on a III-V core generates an interface prone to defects. The most efficient InP/ZnS or InP/ZnSe QDs are therefore made with an oxide buffer layer between the core and the shell: it passivates these interface defects but also results in a somewhat broader emission line width.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000447237800031 Publication Date 2018-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 74 Open Access OpenAccess  
  Notes ; The authors thank L. Biadala and C. Delerue for fruitful discussion. Z.H. acknowledges support by the European Commission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656), by Research Foundation Flanders (Project 17006602), and by Ghent University (GOA No. 01G01513). Z.H., M.D.T., and D.D. acknowledge the Strategisch Initiatief Materialen in Vlaanderen of Agentschap Innoveren en Ondernemen (SIM VLAIO), vzw (SBO-QDOCCO, ICON-QUALIDI). This work was supported by the Universite Paul Sabatier, the Region Midi-Pyrenees, the CNRS, the Institut National des Sciences Appliquees of Toulouse, and the Agence Nationale pour la Recherche (Project ANR-13-IS10-0004-01). E.A.B. is grateful to Marie Curie Actions and Campus France for a PRESTIGE postdoc fellowship (FP7 /2007-2013) under REA Grant Agreement PCOFUND-GA-2013-609102. E.B. acknowledges financial support from Research Foundation Flanders (FWO). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:154732UA @ admin @ c:irua:154732 Serial 5109  
Permanent link to this record
 

 
Author Azadi, H.; Keramati, P.; Taheri, F.; Rafiaani, P.; Teklemariam, D.; Gebrehiwot, K.; Hosseininia, G.; Van Passel, S.; Lebailly, P.; Witlox, F. pdf  doi
openurl 
  Title Agricultural land conversion : reviewing drought impacts and coping strategies Type A1 Journal article
  Year 2018 Publication International Journal Of Disaster Risk Reduction Abbreviated Journal Int J Disast Risk Re  
  Volume 31 Issue (up) 31 Pages 184-195  
  Keywords A1 Journal article; Economics; Engineering Management (ENM); Government and Law  
  Abstract This paper aims to review the impacts of drought on agricultural land conversion (ALC) on the one hand and the impacts of ALC on intensifying drought on the other. The paper further investigates coping strategies at three levels; i.e., micro (local), meso (national), and macro (international), in order to mitigate drought impacts that are classified as economic, social, and environmental. This paper shows that ALC, drought and coping strategies are in a reciprocal relationship and can have either a positive or negative influence on each other. The paper concludes that the complex and multidimensional nature of drought requires the development of an integrated approach that focuses on the governments collaboration with different stakeholders. Such an integrated approach can improve drought risk management implementations, decrease vulnerability and construct resilience and coping capacity at all levels in order to deal with droughts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000446353300020 Publication Date 2018-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-4209 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 1.603 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 1.603  
  Call Number UA @ admin @ c:irua:154142 Serial 6149  
Permanent link to this record
 

 
Author Wu, S.-M.; Liu, X.-L.; Lian, X.-L.; Tian, G.; Janiak, C.; Zhang, Y.-X.; Lu, Y.; Yu, H.-Z.; Hu, J.; Wei, H.; Zhao, H.; Chang, G.-G.; Van Tendeloo, G.; Wang, L.-Y.; Yang, X.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Homojunction of oxygen and titanium vacancies and its interfacial n-p effect Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue (up) 32 Pages 1802173  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D H-1 TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new homojunction of oxygen and titanium vacancies concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000440813300022 Publication Date 2018-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 39 Open Access Not_Open_Access  
  Notes ; This work was supported by National Key R&D Program of China (2017YFC1103800), National SFC (U1662134, U1663225, 51472190, 51611530672, 21711530705, 51503166, 21706199), ISTCP (2015DFE52870), PCSIRT (IRT_15R52), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:153106 Serial 5105  
Permanent link to this record
 

 
Author Volykhov, A.A.; Sanchez-Barriga, J.; Batuk, M.; Callaert, C.; Hadermann, J.; Sirotina, A.P.; Neudachina, V.S.; Belova, A.I.; Vladimirova, N.V.; Tamm, M.E.; Khmelevsky, N.O.; Escudero, C.; Perez-Dieste, V.; Knop-Gericke, A.; Yashina, L.V. pdf  doi
openurl 
  Title Can surface reactivity of mixed crystals be predicted from their counterparts? A case study of (Bi1-xSbx)2Te3 topological insulators Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue (up) 33 Pages 8941-8949  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The behavior of ternary mixed crystals or solid solutions and its correlation with the properties of their binary constituents is of fundamental interest. Due to their unique potential for application in future information technology, mixed crystals of topological insulators with the spin-locked, gapless states on their surfaces attract huge attention of physicists, chemists and material scientists. (Bi1-xSbx)(2)Te-3 solid solutions are among the best candidates for spintronic applications since the bulk carrier concentration can be tuned by varying x to obtain truly bulk-insulating samples, where the topological surface states largely contribute to the transport and the realization of the surface quantum Hall effect. As this ternary compound will be evidently used in the form of thin-film devices its chemical stability is an important practical issue. Based on the atomic resolution HAADF-TEM and EDX data together with the XPS results obtained both ex situ and in situ, we propose an atomistic picture of the mixed crystal reactivity compared to that of its binary constituents. We find that the surface reactivity is determined by the probability of oxygen attack on the Te-Sb bonds, which is directly proportional to the number of Te atoms bonded to at least one Sb atom. The oxidation mechanism includes formation of an amorphous antimony oxide at the very surface due to Sb diffusion from the first two quintuple layers, electron tunneling from the Fermi level of the crystal to oxygen, oxygen ion diffusion to the crystal, and finally, slow Te oxidation to the +4 oxidation state. The oxide layer thickness is limited by the electron transport, and the overall process resembles the Cabrera-Mott mechanism in metals. These observations are critical not only for current understanding of the chemical reactivity of complex crystals, but also to improve the performance of future spintronic devices based on topological materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443279300007 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 3 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support within the bilateral program "Russian-German Laboratory at BESSY II''. We thank Helmholtz-Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and ISISS. Support of ALBA staff during measurements at the CIRCE beamline is gratefully acknowledged. We thank Dr Ivan Bobrikov for support in the XRD measurements and Daria Tsukanova for the participation in crystal preparation and XPS measurements. A. Volykhov thanks RSF (grant 18-73-00248) for financial support. A. I. Belova acknowledges support from the G-RISC Centre of Excellence. The work was supported by Helmholtz Gemeinschaft (Grant No. HRJRG-408) and RFBR (grant 14-03-31518). J. H. and C. C. acknowledge support from the University of Antwerp through the BOF grant 31445. ; Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:153647 Serial 5080  
Permanent link to this record
 

 
Author Zhang, H.; Wang, W.; Li, X.; Han, L.; Yan, M.; Zhong, Y.; Tu, X. pdf  url
doi  openurl
  Title Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma : a chemical kinetics study Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 345 Issue (up) 345 Pages 67-78  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a chemical kinetics study on methane activation for hydrogen production in a warm plasma, i.e., N-2 rotating gliding arc (RGA), was performed for the first time to get new insights into the underlying reaction mechanisms and pathways. A zero-dimensional chemical kinetics model was developed, which showed a good agreement with the experimental results in terms of the conversion of CH4 and product selectivities, allowing us to get a better understanding of the relative significance of various important species and their related reactions to the formation and loss of CH4, H-2, and C2H2 etc. An overall reaction scheme was obtained to provide a realistic picture of the plasma chemistry. The results reveal that the electrons and excited nitrogen species (mainly N-2(A)) play a dominant role in the initial dissociation of CH4. However, the H atom induced reaction CH4+ H -> CH3+ H-2, which has an enhanced reaction rate due to the high gas temperature (over 1200 K), is the major contributor to both the conversion of CH4 and H-2 production, with its relative contributions of > 90% and > 85%, respectively, when only considering the forward reactions. The coexistence and interaction of thermochemical and plasma chemical processes in the rotating gliding arc warm plasma significantly enhance the process performance. The formation of C-2 hydrocarbons follows a nearly one-way path of C2H6 -> C2H4 -> C2H2, explaining why the selectivities of C-2 products decreased in the order of C2H2 > C2H4 > C2H6.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Sequoia Place of Publication Lausanne Editor  
  Language Wos 000430696500008 Publication Date 2018-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 25 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ lucian @ c:irua:151450 Serial 5036  
Permanent link to this record
 

 
Author Cremers, V.; Rampelberg, G.; Barhoum, A.; Walters, P.; Claes, N.; Oliveira, T.M. de; Assche, G.V.; Bals, S.; Dendooven, J.; Detavernier, C. pdf  url
doi  openurl
  Title Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition Type A1 Journal article
  Year 2018 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech  
  Volume 349 Issue (up) 349 Pages 1032-1041  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic layer deposition (ALD) is a vapor based technique which allows to deposit uniform, conformal films with a thickness control at the atomic scale. In this research, Al 2 O 3 coatings were deposited on micrometer-sized Fe and Cu powder (particles) using the thermal trimethylaluminum (TMA)/ water (H 2 O) process in a rotary pump-type ALD reactor. Rotation of the powder during deposition was required to obtain a pinhole-free ALD coating. The protective nature of the coating was evaluated by quantifying its effectiveness in protecting the metal particles during oxidative annealing treatments. The Al 2 O 3 coated powders were annealed in ambient air while in-situ thermogravimetric analysis (TGA) and in-situ x-ray diffraction (XRD) data were acquired. The thermal stability of a series of Cu and Fe powder with different Al 2 O 3 thicknesses were determined with TGA. In both samples a clear shift in oxidation temperature is visible. For Cu and Fe powder coated with 25 nm Al 2 O 3 , we observed an increase of the oxidation temperature with 300-400°C. For the Cu powder a thin film of only 8 nm is required to obtain an initial increase in oxidation temperature of 200°C. In contrast, for Fe powder a thicker coating of 25 nm is required. In both cases, the oxidation temperature increases with increasing thickness of the Al 2 O 3 coating. These results illustrate that the Al 2 O 3 thin film, deposited by the thermal ALD process (TMA/H 2 O) can be an efficient and pinhole-free barrier layer for micrometer-sized powder particles, provided that the powder is properly agitated during the process to ensure sufficient vapour-solid interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441492600108 Publication Date 2018-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.589 Times cited 10 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Strategic Initiative Materials in Flanders (SIM, SBO-FUNC project) and the Special Research Fund BOF of Ghent University (GOA 01G01513). J. D. acknowledges the Research Foundation Flanders (FWO-Vlaanderen) for a postdoctoral fellowship. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant 335078-COLOURATOMS). The authors acknowledge S. Goeteyn for the assistance in preliminary depositions. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 2.589  
  Call Number EMAT @ emat @c:irua:152174UA @ admin @ c:irua:152174 Serial 4994  
Permanent link to this record
 

 
Author Amini, M.N.; Altantzis, T.; Lobato, I.; Grzelczak, M.; Sánchez-Iglesias, A.; Van Aert, S.; Liz-Marzán, L.M.; Partoens, B.; Bals, S.; Neyts, E.C. url  doi
openurl 
  Title Understanding the Effect of Iodide Ions on the Morphology of Gold Nanorods Type A1 Journal article
  Year 2018 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 35 Issue (up) 35 Pages 1800051  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The presence of iodide ions during the growth of gold nanorods strongly affects the shape of the final products, which is proposed to be due to selective iodide adsorption on certain crystallographic facets. Therefore, a detailed structural and morphological characterization of the starting rods is crucial toward understanding this effect. Electron tomography is used to determine the crystallographic indices of the lateral facets of gold nanorods, as well as those present at the tips. Based on this information, density functional theory calculations are used to determine the surface and interface energies of the observed facets and provide insight into the relationship between the amount of iodide ions in the growth solution and the final morphology of anisotropic gold nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441893400002 Publication Date 2018-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 6 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (grant 335078 COLOURATOM to S.B.). T.A., S.V.A. S.B. and E.C.N., acknowledge funding from the Research Foundation Flanders (FWO, Belgium), through project funding (G.0218.14N and G.0369.15N) and a postdoctoral grant to T.A. L.M.L.-M. and M.G. acknowledge funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013-46101-R). Mozhgan N. Amini and Thomas Altantzis contributed equally to this work. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.474  
  Call Number EMAT @ emat @c:irua:152998UA @ admin @ c:irua:152998 Serial 5010  
Permanent link to this record
 

 
Author Leus, K.; Folens, K.; Nicomel, N.R.; Perez, J.P.H.; Filippousi, M.; Meledina, M.; Dirtu, M.M.; Turner, S.; Van Tendeloo, G.; Garcia, Y.; Du Laing, G.; Van Der Voort, P. pdf  url
doi  openurl
  Title Removal of arsenic and mercury species from water by covalent triazine framework encapsulated \gamma-Fe2O3 nanoparticles Type A1 Journal article
  Year 2018 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater  
  Volume 353 Issue (up) 353 Pages 312-319  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The covalent triazine framework, CTF-1, served as host material for the in situ synthesis of Fe2O3 nanoparticles. The composite material consisted of 20 +/- 2 m% iron, mainly in gamma-Fe2O3 phase. The resulting gamma-Fe2O3@CTF-1 was examined for the adsorption of As-III, As-V and H-II from synthetic solutions and real surface-, ground- and wastewater. The material shows excellent removal efficiencies, independent from the presence of Ca2+, Mg2+ or natural organic matter and only limited dependency on the presence of phosphate ions. Its adsorption capacity towards arsenite (198.0 mg g(-1)), arsenate (102.3 mg g(-1)) and divalent mercury (165.8 mg g(-1)) belongs amongst the best-known adsorbents, including many other iron-based materials. Regeneration of the adsorbent can be achieved for use over multiple cycles without a decrease in performance by elution at 70 degrees C with 0.1 M NaOH, followed by a stirring step in a 5 m% H2O2 solution for As or 0.1 M thiourea and 0.001 M HCl for Hg. In highly contaminated water (100 mu gL(-1)), the adsorbent polishes the water quality to well below the current WHO limits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000438002800035 Publication Date 2018-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.065 Times cited 22 Open Access OpenAccess  
  Notes ; Karen Leus acknowledges financial support from Ghent University. Nina Ricci Nicomel and Jeffrey Paulo H. Perez thank the funding of the VLIR-UOS. Marinela M. Dirtu acknowledges F.R.S.-FNRS for a Charge de recherches position. Stuart Turner gratefully acknowledges the FWO Vlaanderen for a post-doctoral scholarship. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. ; Approved Most recent IF: 6.065  
  Call Number UA @ lucian @ c:irua:152430 Serial 5124  
Permanent link to this record
 

 
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Determination of intrinsic kinetic parameters in photocatalytic multi-tube reactors by combining the NTUm-method with radiation field modelling Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 354 Issue (up) 354 Pages 1042-1049  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, we propose an adapted Number of Transfer Units (NTUm)-method as an effective tool to determine the Langmuir-Hinshelwood kinetic parameters for a photocatalytic multi-tube reactor. The Langmuir-Hinshelwood rate constant kLH and the Langmuir adsorption constant KL were determined from several experiments under different UV-irradiance conditions, resulting in irradiance depending values for kLH. In order to determine a unique, intrinsic empirical constant k0, valid for all irradiation conditions, we coupled the adapted NTUm-method with a radiation field model to predict UV-irradiance distribution inside the reactor. The final set of kinetic parameters were derived using a Generalized Reduced Gradient (GRG) nonlinear solving method in Matlab which minimizes the differences between model and experimental reactor outlet concentrations of acetaldehyde for various photocatalytic experiments under varying operating conditions, including inlet concentration, flow rate and UV-irradiance. An excellent agreement of the intrinsic empirical constant k0, derived from the coupled NTUm-radiation field model and an earlier published CFD approach was found, emphasizing its validity and reliability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445413900099 Publication Date 2018-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 2 Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:154845 Serial 5940  
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Atomic scale understanding of the permeation of plasma species across native and oxidized membranes Type A1 Journal article
  Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue (up) 36 Pages 365203  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasmas (CAPs) have attracted significant interest for their potential benefits in medical applications, including cancer therapy. The therapeutic effects of CAPs are related to reactive oxygen and nitrogen species (ROS and RNS) present in the plasma. The impact of ROS has been extensively studied, but the role of RNS in CAP-treatment remains poorly understood at the molecular level. Here, we investigate the permeation of RNS and ROS across native and oxidized phospholipid bilayers (PLBs) by means of computer simulations. The results reveal significantly lower free energy barriers for RNS (i.e. NO, NO2, N2O4) and O3 compared to hydrophilic ROS, such as OH, HO2 and H2O2. This suggests that the investigated RNS and O3 can permeate more easily through both native and oxidized PLBs in comparison to hydrophilic ROS, indicating their potentially important role in plasma medicine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441182400002 Publication Date 2018-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 10 Open Access OpenAccess  
  Notes M Y gratefully acknowledges financial support from the Research Foundation—Flanders (FWO), grant 1200216N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. RMC thanks FAPESP and CNPq for financial support (grants 2012/50680-5 and 459270/2014-1, respectively). Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:152824 Serial 5005  
Permanent link to this record
 

 
Author Filez, M.; Poelman, H.; Redekop, E.A.; Galvita, V.V.; Alexopoulos, K.; Meledina, M.; Ramachandran, R.K.; Dendooven, J.; Detavernier, C.; Van Tendeloo, G.; Safonova, O.V.; Nachtegaal, M.; Weckhuysen, B.M.; Marin, G.B. url  doi
openurl 
  Title Kinetics of lifetime changes in bimetallic nanocatalysts revealed by quick X-ray absorption spectroscopy Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue (up) 38 Pages 12430-12434  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Alloyed metal nanocatalysts are of environmental and economic importance in a plethora of chemical technologies. During the catalyst lifetime, supported alloy nanoparticles undergo dynamic changes which are well-recognized but still poorly understood. High-temperature O-2-H-2 redox cycling was applied to mimic the lifetime changes in model Pt13In9 nanocatalysts, while monitoring the induced changes by insitu quick X-ray absorption spectroscopy with one-second resolution. The different reaction steps involved in repeated Pt13In9 segregation-alloying are identified and kinetically characterized at the single-cycle level. Over longer time scales, sintering phenomena are substantiated and the intraparticle structure is revealed throughout the catalyst lifetime. The insitu time-resolved observation of the dynamic habits of alloyed nanoparticles and their kinetic description can impact catalysis and other fields involving (bi)metallic nanoalloys.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000444225100038 Publication Date 2018-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 4 Open Access OpenAccess  
  Notes ; M.F. acknowledges a European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement (No. 748563). E.A.R acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (No. 301703). This work was supported by the Fund for Scientific Research Flanders (G.0209.11), the “Long Term Structural Methusalem Funding by the Flemish Government”. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7 /2007-2013) under grant agreement No. 312284 (CALIPSO). We thanks the Swiss Light Source for providing beamtime at the SuperXAS beamline. ; Approved Most recent IF: 11.994  
  Call Number UA @ lucian @ c:irua:153633 Serial 5111  
Permanent link to this record
 

 
Author Ren, Z.; Wu, M.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J.; Xie, Y.; Mai, J.; Li, X.; Lu, X.; Lu, Y.; Zhang, H.; Van Tendeloo, G.; Zhang, Z.; Han, G. pdf  doi
openurl 
  Title Electrostatic force-driven oxide heteroepitaxy for interface control Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue (up) 38 Pages 1707017  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low-temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid-liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000444671900002 Publication Date 2018-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 4 Open Access Not_Open_Access  
  Notes ; Z.H.R., M.J.W., and X.C. contributed equally to this work. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51232006, 51472218, 11474249, 61574123, 11374009, and 11234011), the National 973 Program of China (Grant No. 2015CB654901), National Young 1000 Talents Program of China, the Fundamental Research Funds for the Central Universities (Grant No. 2017FZA4008), and the 111 Project under Grant No. B16042. J.M. and X.L. gratefully thank the beam time and technical supports provided by 23A SWAXS beamline at NSRRC, Hsinchu. ; Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:153628 Serial 5098  
Permanent link to this record
 

 
Author Abdullah, H.M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B. pdf  doi
openurl 
  Title Confined states in graphene quantum blisters Type A1 Journal article
  Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue (up) 38 Pages 385301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer graphene samples may exhibit regions where the two layers are locally delaminated forming a so-called quanttun blister in the graphene sheet. Electron and hole states can be confined in this graphene quantum blisters (GQB) by applying a global electrostatic bias. We scrutinize the electronic properties of these confined states under the variation of interlayer bias, coupling, and blister's size. The spectra display strong anti-crossings due to the coupling of the confined states on upper and lower layers inside the blister. These spectra are layer localized where the respective confined states reside on either layer or equally distributed. For finite angular momentum, this layer localization can be at the edge of the blister and corresponds to degenerate modes of opposite momenta. Furthermore, the energy levels in GQB exhibit electron-hole symmetry that is sensitive to the electrostatic bias. Finally, we demonstrate that confinement in GQB persists even in the presence of a variation in the interlayer coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000443135000001 Publication Date 2018-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 6 Open Access  
  Notes ; HMA and HB acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group projects RG1502-1 and RG1502-2. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (BVD). ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:153620UA @ admin @ c:irua:153620 Serial 5086  
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
  Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 115 Issue (up) 38 Pages 9515-9520  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447224900057 Publication Date 2018-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 50 Open Access OpenAccess  
  Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059  
Permanent link to this record
 

 
Author Gorbanev, Y.; Verlackt, C.C.W.; Tinck, S.; Tuenter, E.; Foubert, K.; Cos, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue (up) 4 Pages 2797-2808  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The vast biomedical potential of cold atmospheric pressure plasmas (CAPs) is governed by the formation of reactive species. These biologically active species are formed upon the interaction of CAPs with the surroundings. In biological milieu, water plays an essential role. The development of biomedical CAPs thus requires understanding of the sources of the reactive species in aqueous media exposed to the plasma. This is especially important in case of the COST RF plasma jet, which is developed as a reference microplasma system. In this work, we investigated the formation of the OH radicals, H atoms and H2O2 in aqueous solutions exposed to the COST plasma jet. This was done by combining experimental and modelling approaches. The liquid phase species were analysed using UV-Vis spectroscopy and spin trapping with hydrogen isotopes and electron paramagnetic resonance (EPR) spectroscopy. The discrimination between the species formed from the liquid phase and the gas phase molecules was performed by EPR and 1H-NMR analyses of the liquid samples. The concentrations of the reactive species in the gas phase plasma were obtained using a zero-dimensional (0D) chemical kinetics computational model. A three-dimensional (3D) fluid dynamics model was developed to provide information on the induced humidity in the plasma effluent. The comparison of the experimentally obtained trends for the formation of the species as a function of the feed gas and effluent humidity with the modelling results suggest that all reactive species detected in our system are mostly formed in the gas phase plasma inside the COST jet, with minor amounts arising from the plasma effluent humidity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423505500066 Publication Date 2018-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 23 Open Access OpenAccess  
  Notes We are grateful to Volker Schulz-von der Gathen (Experimental Physics II: Application Oriented Plasma Physics, Ruhr-Universita¨t Bochum, Germany) for providing the COST RF plasma jet. We thank our colleagues at the University of Antwerp: Gilles Van Loon (Mechanical Workshop), Karen Leyssens (Research group PLASMANT), and Sylvia Dewilde (Department of Biomedical Sciences) for their help with the equipment. This work was funded by the European Marie Sklodowska-Curie Individual Fellowship ‘LTPAM’ within Horizon2020 (grant no. 657304). Stefan Tinck thanks the Fund for Scientific Research – Flanders (FWO) for supporting his work (grant no. 0880.212.840). Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @c:irua:148365 Serial 4808  
Permanent link to this record
 

 
Author Lane, T.L.M.; Andelkovic, M.; Wallbank, J.R.; Covaci, L.; Peeters, F.M.; Fal'ko, V.I. url  doi
openurl 
  Title Ballistic electron channels including weakly protected topological states in delaminated bilayer graphene Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue (up) 4 Pages 045301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We show that delaminations in bilayer graphene (BLG) with electrostatically induced interlayer symmetry can provide one with ballistic channels for electrons with energies inside the electrostatically induced BLG gap. These channels are formed by a combination of valley-polarized evanescent states propagating along the delamination edges (which persist in the presence of a strong magnetic field) and standing waves bouncing between them inside the delaminated region (in a strong magnetic field, these transform into Landau levels in the monolayers). For inverted stackings in BLGs on the left and right of the delamination (AB-2ML-BA or BA-2ML-AB, where 2ML indicates two decoupled monolayers of graphene), the lowest-energy ballistic channels are gapless, have linear dispersion, and appear to be weakly topologically protected. When BLG stackings on both sides of the delamination are the same (AB-2ML-AB or BA-2ML-BA), the lowest-energy ballistic channels are gapped, with a gap epsilon(g) scaling as epsilon(g) alpha W-1 with delamination width and epsilon(g) alpha delta(-1) with the on-layer energy difference in the delaminated part of the structure. Depending on the width, delaminations may also support several \u0022higher-energy\u0022 waveguide modes. Our results are based on both the analytical study of the wave matching of Dirac states and tight-binding model calculations, and we analyze in detail the dependence of the delamination spectrum on the electrostatic conditions in the structure, such as the vertical displacement field.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000419772200005 Publication Date 2018-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was funded by EPSRC via EPSRC Grand Engineering Chellenges Grant No. EP/N010345, the Manchester NOWNANO CDT EP/L-1548X, the Flemish Science Foundation (FWO-VI), the European Graphene Flagship project, ERC Synergy grant Hetero2D, and FLAG-ERA project TRANS2DTMD. The authors would like to acknowledge useful discussions with M. Zarenia, S. Slizovskiy, E. McCann, and K. Novesolov. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148441UA @ admin @ c:irua:148441 Serial 4868  
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Plasma Technology: An Emerging Technology for Energy Storage Type A1 Journal article
  Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett  
  Volume 3 Issue (up) 4 Pages 1013-1027  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology is gaining increasing interest for gas conversion applications, such as CO2 conversion into value-added chemicals or renewable fuels, and N2 fixation from the air, to be used for the production of small building blocks for, e.g., mineral fertilizers. Plasma is generated by electric power and can easily be switched on/off, making it, in principle, suitable for using intermittent renewable electricity. In this Perspective article, we explain why plasma might be promising for this application. We briefly present the most common types of plasma reactors with their characteristic features, illustrating why some plasma types exhibit better energy efficiency than others. We also highlight current research in the fields of CO2 conversion (including the combined conversion of CO2 with CH4, H2O, or H2) as well as N2 fixation (for NH3 or NOx synthesis). Finally, we discuss the major limitations and steps to be taken for further improvement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430369600035 Publication Date 2018-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 56 Open Access OpenAccess  
  Notes Universiteit Antwerpen, TOP research project 32249 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0254.14N G.0383.16N ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:150358 Serial 4919  
Permanent link to this record
 

 
Author Song, H.-D.; Wu, Y.-F.; Yang, X.; Ren, Z.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Liu, D.; Wu, H.-C.; Yan, B.; Wu, X.; Duan, C.-G.; Han, G.; Liao, Z.-M.; Yu, D. pdf  doi
openurl 
  Title Asymmetric Modulation on Exchange Field in a Graphene/BiFeO3Heterostructure by External Magnetic Field Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue (up) 4 Pages 2435-2441  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphene, having all atoms on its surface, is favorable to extend the functions by introducing the spin–orbit coupling and magnetism through proximity effect. Here, we report the tunable interfacial exchange field produced by proximity coupling in graphene/BiFeO3 heterostructures. The exchange field has a notable dependence with external magnetic field, and it is much larger under negative magnetic field than that under positive magnetic field. For negative external magnetic field, interfacial exchange coupling gives rise to evident spin splitting for N ≠ 0 Landau levels and a quantum Hall metal state for N = 0 Landau level. Our findings suggest graphene/BiFeO3 heterostructures are promising for spintronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430155900034 Publication Date 2018-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 9 Open Access Not_Open_Access  
  Notes This work was supported by National Key Research and Development Program of China (No. 2016YFA0300802) and NSFC (Nos. 11774004 and 11604004). Ministry of Science and Technology of the People's Republic of China, 2016YFA0300802 ; National Natural Science Foundation of China, 11604004 11774004 ; Approved Most recent IF: 12.712  
  Call Number EMAT @ lucian @c:irua:150794 Serial 4923  
Permanent link to this record
 

 
Author Lombardo, J.; Jelić, Ž.L.; Baumans, X.D.A.; Scheerder, J.E.; Nacenta, J.P.; Moshchalkov, V.V.; Van de Vondel, J.; Kramer, R.B.G.; Milošević, M.V.; Silhanek, A.V. url  doi
openurl 
  Title In situ tailoring of superconducting junctions via electro-annealing Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue (up) 4 Pages 1987-1996  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We demonstrate the in situ engineering of superconducting nanocircuitry by targeted modulation of material properties through high applied current densities. We show that the sequential repetition of such customized electro-annealing in a niobium (Nb) nanoconstriction can broadly tune the superconducting critical temperature T-c and the normal-state resistance R-n in the targeted area. Once a sizable R-n is reached, clear magneto-resistance oscillations are detected along with a Fraunhofer-like field dependence of the critical current, indicating the formation of a weak link but with further adjustable characteristics. Advanced Ginzburg-Landau simulations fully corroborate this picture, employing the detailed parametrization from the electrical characterization and high resolution electron microscope images of the region within the constriction where the material has undergone amorphization by electro-annealing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000423355300049 Publication Date 2017-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 23 Open Access  
  Notes ; The authors thank the Fonds de la Recherche Scientifique – FNRS, the ARC grant 13/18-08 for Concerted Research Actions, financed by the French Community of Belgium (Wallonia-Brussels Federation), the Research Foundation – Flanders (FWO-Vlaanderen) and the COST action NanoCoHybri (CA16218). The work is also suppported by Methusalem Funding by the Flemish Government. J. Lombardo acknowledges support from F. R. S.-FNRS (FRIA Research Fellowship). The LANEF framework (ANR-10-LABX-51-01) and the Nanoscience Foundation are acknowledged for their support with mutualized infrastructure. The work of A. V. Silhanek is partially supported by PDR T.0106.16 of the F. R. S.-FNRS. The authors thank the ULg Microscopy facility CAREM for part of the SEM investigations. ; Approved Most recent IF: 7.367  
  Call Number UA @ lucian @ c:irua:149315UA @ admin @ c:irua:149315 Serial 4937  
Permanent link to this record
 

 
Author de de Meux, A.J.; Pourtois, G.; Genoe, J.; Heremans, P. url  doi
openurl 
  Title Method to quantify the delocalization of electronic states in amorphous semiconductors and its application to assessing charge carrier mobility of p-type amorphous oxide semiconductors Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue (up) 4 Pages 045208  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Amorphous semiconductors are usually characterized by a low charge carrier mobility, essentially related to their lack of long-range order. The development of such material with higher charge carrier mobility is hence challenging. Part of the issue comes from the difficulty encountered by first-principles simulations to evaluate concepts such as the electron effective mass for disordered systems since the absence of periodicity induced by the disorder precludes the use of common concepts derived from condensed matter physics. In this paper, we propose a methodology based on first-principles simulations that partially solves this problem, by quantifying the degree of delocalization of a wave function and of the connectivity between the atomic sites within this electronic state. We validate the robustness of the proposed formalism on crystalline and molecular systems and extend the insights gained to disordered/amorphous InGaZnO4 and Si. We also explore the properties of p-type oxide semiconductor candidates recently reported to have a low effective mass in their crystalline phases [G. Hautier et al., Nat. Commun. 4, 2292 (2013)]. Although in their amorphous phase none of the candidates present a valence band with delocalization properties matching those found in the conduction band of amorphous InGaZnO4, three of the seven analyzed materials show some potential. The most promising candidate, K2Sn2O3, is expected to possess in its amorphous phase a slightly higher hole mobility than the electron mobility in amorphous silicon.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000423427600005 Publication Date 2018-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149318 Serial 4943  
Permanent link to this record
 

 
Author Lutz, L.; Corte, D.A.D.; Chen, Y.; Batuk, D.; Johnson, L.R.; Abakumov, A.; Yate, L.; Azaceta, E.; Bruce, P.G.; Tarascon, J.-M.; Grimaud, A. pdf  doi
openurl 
  Title The role of the electrode surface in Na-Air batteries : insights in electrochemical product formation and chemical growth of NaO2 Type A1 Journal article
  Year 2018 Publication Advanced energy materials Abbreviated Journal Adv Energy Mater  
  Volume 8 Issue (up) 4 Pages 1701581  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The Na-air battery, because of its high energy density and low charging overpotential, is a promising candidate for low-cost energy storage, hence leading to intensive research. However, to achieve such a battery, the role of the positive electrode material in the discharge process must be understood. This issue is herein addressed by exploring the electrochemical reduction of oxygen, as well as the chemical formation and precipitation of NaO2 using different electrodes. Whereas a minor influence of the electrode surface is demonstrated on the electrochemical formation of NaO2, a strong dependence of the subsequent chemical precipitation of NaO2 is identified. In the origin, this effect stems from the surface energy and O-2/O-2(-) affinity of the electrode. The strong interaction of Au with O-2/O-2(-) increases the nucleation rate and leads to an altered growth process when compared to C surfaces. Consequently, thin (3 mu m) flakes of NaO2 are found on Au, whereas on C large cubes (10 mu m) of NaO2 are formed. This has significant impact on the cell performance and leads to four times higher capacity when C electrodes with low surface energy and O-2/O-2(-) affinity are used. It is hoped that these findings will enable the design of new positive electrode materials with optimized surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor  
  Language Wos 000424152200009 Publication Date 2017-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 13 Open Access Not_Open_Access  
  Notes ; L.L. thanks ALISTORE-ERI for his PhD grant. P.G.B. is indebted to the EPSRC for financial support, including the Supergen Energy Storage grant. ; Approved Most recent IF: 16.721  
  Call Number UA @ lucian @ c:irua:149269 Serial 4951  
Permanent link to this record
 

 
Author Roxana Vlad, V.; Bartolome, E.; Vilardell, M.; Calleja, A.; Meledin, A.; Obradors, X.; Puig, T.; Ricart, S.; Van Tendeloo, G.; Usoskin, A.; Lee, S.; Petrykin, V.; Molodyk, A. pdf  doi
openurl 
  Title Inkjet printing multideposited YBCO on CGO/LMO/MgO/Y2O3/Al2O3/Hastelloy tape for 2G-coated conductors Type A1 Journal article
  Year 2018 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 28 Issue (up) 4 Pages 6601805  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present the preparation of a new architecture of coated conductor by Inkjet printing of low fluorine YBa2Cu3O7-x (YBCO) on top of SuperOx tape: CGO/LMO/IBAD-MgO/Y2O3/Al-2 O-3/Hastelloy. A five-layered multideposited, 475-nm-thick YBCO film was structurally and magnetically characterized. A good texture was achieved using this combination of buffer layers, requiring only a 30-nm-thin ion-beam-assisted deposition (IBAD)-MgO layer. The LF-YBCO CC reaches self-field critical current density values of J(c)(GB) similar to NJ 15.9 MA/cm(2) (5 K), similar to 1.23 MA/cm(2) (77 K) corresponding to an I-c (77 K) = 58.4 A/cm-width. Inkjet printing offers a flexible and cost effective method for YBCO deposition, allowing patterning of structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000429010900001 Publication Date 2018-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.288 Times cited 2 Open Access Not_Open_Access  
  Notes ; This work was performed within the framework of the EUROTAPES Project FP7-NMP.2011.2.2-1 under Grant280432, funded by the EU. ICMAB research was financed by the Ministry of Economy and Competitiveness, and FEDER funds under Projects MAT2011-28874-C02-01, MAT2014-51778-C2-1-R, ENE2014-56109-C3-3-R, and Consolider Nanoselect CSD2007-00041, and by Generalitat de Catalunya (2009 SGR 770, 2015 SGR 753, and Xarmae). ICMAB acknowledges support from Severo Ochoa Program (MINECO) under Grant SEV-2015-0496. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150711 Serial 4971  
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P. url  doi
openurl 
  Title Self-assembly and clustering of magnetic peapod-like rods with tunable directional interaction Type A1 Journal article
  Year 2018 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 13 Issue (up) 4 Pages e0195552  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Based on extensive Langevin Dynamics simulations we investigate the structural properties of a two-dimensional ensemble of magnetic rods with a peapod-like morphology, i.e, rods consisting of aligned single dipolar beads. Self-assembled configurations are studied for different directions of the dipole with respect to the rod axis. We found that with increasing misalignment of the dipole from the rod axis, the smaller the packing fraction at which the percolation transition is found. For the same density, the system exhibits different aggregation states for different misalignment. We also study the stability of the percolated structures with respect to temperature, which is found to be affected by the microstructure of the assembly of rods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.806 Times cited Open Access  
  Notes Approved Most recent IF: 2.806  
  Call Number UA @ lucian @ c:irua:150778UA @ admin @ c:irua:150778 Serial 4977  
Permanent link to this record
 

 
Author Sieger, M.; Pahlke, P.; Lao, M.; Meledin, A.; Eisterer, M.; Van Tendeloo, G.; Schultz, L.; Nielsch, K.; Huehne, R. pdf  doi
openurl 
  Title Thick secondary phase pinning-enhanced YBCO films on technical templates Type A1 Journal article
  Year 2018 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 28 Issue (up) 4 Pages 8000505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The critical current I-c(B) of YBa2Cu3O7-delta (YBCO) coated conductors can be increased by growing thicker superconductor layers as well as improving the critical current density J(c)(B) by the incorporation of artificial pinning centers. We studied the properties of pulsed laser deposited BaHfO3 (BHO)-doped YBCO films with thicknesses of up to 5 mu m on buffered rolling-assisted biaxially textured Ni-5 at % W tape and alternating beam assisted deposition textured Yttrium-stabilized ZrO2 layers on stainless steel. X-Ray diffraction confirms the epitaxial growth of the superconductor on the buffered metallic template. BHO additions reduce the film porosity and lower the probability to grow misoriented grains, hence preventing the J(c) decrease observed in undoped YBCO films with thicknesses > 2 mu m. Thereby, a continuous increase in I-c at 77 K is achieved. A mixed structure of secondary phase nanorods and platelets with different orientations increases J(c)(B) in the full angular range and simultaneously lowers the J(c) anisotropy compared to pristine YBCO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000427623700001 Publication Date 2018-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.288 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7 / 2007 – 2013) under Grant Agreement no. 280432. Max Sieger acknowledges funding by the Graduate Academy of the Technical University Dresden, funded by means of the Excellence Initiative by the German Federal and State Governments. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150712 Serial 4986  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: