|
Record |
Links |
|
Author |
Leus, K.; Folens, K.; Nicomel, N.R.; Perez, J.P.H.; Filippousi, M.; Meledina, M.; Dirtu, M.M.; Turner, S.; Van Tendeloo, G.; Garcia, Y.; Du Laing, G.; Van Der Voort, P. |
|
|
Title |
Removal of arsenic and mercury species from water by covalent triazine framework encapsulated \gamma-Fe2O3 nanoparticles |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Journal of hazardous materials |
Abbreviated Journal |
J Hazard Mater |
|
|
Volume |
353 |
Issue |
353 |
Pages |
312-319 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The covalent triazine framework, CTF-1, served as host material for the in situ synthesis of Fe2O3 nanoparticles. The composite material consisted of 20 +/- 2 m% iron, mainly in gamma-Fe2O3 phase. The resulting gamma-Fe2O3@CTF-1 was examined for the adsorption of As-III, As-V and H-II from synthetic solutions and real surface-, ground- and wastewater. The material shows excellent removal efficiencies, independent from the presence of Ca2+, Mg2+ or natural organic matter and only limited dependency on the presence of phosphate ions. Its adsorption capacity towards arsenite (198.0 mg g(-1)), arsenate (102.3 mg g(-1)) and divalent mercury (165.8 mg g(-1)) belongs amongst the best-known adsorbents, including many other iron-based materials. Regeneration of the adsorbent can be achieved for use over multiple cycles without a decrease in performance by elution at 70 degrees C with 0.1 M NaOH, followed by a stirring step in a 5 m% H2O2 solution for As or 0.1 M thiourea and 0.001 M HCl for Hg. In highly contaminated water (100 mu gL(-1)), the adsorbent polishes the water quality to well below the current WHO limits. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Amsterdam |
Editor |
|
|
|
Language |
|
Wos |
000438002800035 |
Publication Date |
2018-04-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0304-3894 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.065 |
Times cited |
22 |
Open Access |
OpenAccess |
|
|
Notes |
; Karen Leus acknowledges financial support from Ghent University. Nina Ricci Nicomel and Jeffrey Paulo H. Perez thank the funding of the VLIR-UOS. Marinela M. Dirtu acknowledges F.R.S.-FNRS for a Charge de recherches position. Stuart Turner gratefully acknowledges the FWO Vlaanderen for a post-doctoral scholarship. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. ; |
Approved |
Most recent IF: 6.065 |
|
|
Call Number |
UA @ lucian @ c:irua:152430 |
Serial |
5124 |
|
Permanent link to this record |