PHYSICAL REVIEW B 97, 045301 (2018)

Ballistic electron channels including weakly protected topological states in
delaminated bilayer graphene

T. L. M. Lane,"?" M. Andelkovi¢,? J. R. Wallbank,' L. Covaci,? F. M. Peeters," and V. I. Fal’ko'-2
' National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
2School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
3Department Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

M (Received 11 October 2017, published 11 January 2018)

We show that delaminations in bilayer graphene (BLG) with electrostatically induced interlayer symmetry can
provide one with ballistic channels for electrons with energies inside the electrostatically induced BLG gap. These
channels are formed by a combination of valley-polarized evanescent states propagating along the delamination
edges (which persist in the presence of a strong magnetic field) and standing waves bouncing between them
inside the delaminated region (in a strong magnetic field, these transform into Landau levels in the monolayers).
For inverted stackings in BLGs on the left and right of the delamination (AB-2ML-BA or BA-2ML-AB, where
2ML indicates two decoupled monolayers of graphene), the lowest-energy ballistic channels are gapless, have
linear dispersion, and appear to be weakly topologically protected. When BLG stackings on both sides of the
delamination are the same (AB-2ML-AB or BA-2ML-BA), the lowest-energy ballistic channels are gapped, with
a gap &, scaling as &, o« W™ with delamination width and &, o §~' with the on-layer energy difference in the
delaminated part of the structure. Depending on the width, delaminations may also support several “higher-energy”
waveguide modes. Our results are based on both the analytical study of the wave matching of Dirac states and
tight-binding model calculations, and we analyze in detail the dependence of the delamination spectrum on the

electrostatic conditions in the structure, such as the vertical displacement field.

DOLI: 10.1103/PhysRevB.97.045301

I. INTRODUCTION

Demand for increasingly dense computational architectures
is driving the miniaturization of conventional electronic cir-
cuits to their limit, requiring novel technologies to be devel-
oped. Single-layer graphene, with its gapless band structure,
high-mobility carriers, and high thermal conductivity [1], has
been considered as a candidate for the creation of conducting
nanochannels. However, lithographic processes used for the
patterning of such wires spoil graphene edges, introducing de-
fects which make fabrication of ballistic channels in graphene
a technological challenge. At the same time, the use of a
split-gated structure on monolayer graphene does not help to
confine electrons due to high transparency of p-n interfaces [2].

An alternative approach to creating ballistic “one-
dimensional” channels in graphene is to use a gate-controlled
gap in its Bernal (AB) stacked bilayer allotrope, which has an
electrostatically tunable band gap [3—7]. Earlier studies [§—12]
have shown that sharply switching the direction of the vertical
displacement field across these split-gated structures leads to
ballistic “topological” modes localized near the boundaries,
persisting across junctions of interfaces [13,14]. It has also
been found that delaminations of bilayer graphene (BLG) can
provide well-defined one-dimensional channels [15,16] with
counterpropagating modes in the opposite valleys (K and
K 7). Experimental observations of states along delaminations
naturally occurring in mechanically exfoliated graphene have
already been reported [17,18].

“thomas.lane-3 @postgrad.manchester.ac.uk

2469-9950/2018/97(4)/045301(12)

045301-1

In this paper, we study electronic properties of delamina-
tions in a BLG sheet and their dependence on the electrostat-
ically controlled displacement field applied to the structure.
Such a system, modeled by both four-band k- p theory of
BLG and the numerical tight-binding (TB) model approach,
is illustrated in Fig. 1. The delamination is considered to be
two decoupled monolayers of graphene (2ML) between two
BLG regions either in the same (AB-2ML-AB or BA-2ML-
BA) stacking configuration or with opposite (AB-2ML-BA or
BA-2ML-AB) stacking. The vertical displacement field E, (in
real devices, controlled by top and bottom gates) induces a band
gap in the BLG, A = ¢Ed, and also mutually shifts on-site
energies on the two delaminated monolayers by § = ¢E,d’.

The low-energy band structure of 1}ernal stacked (AB or
BA) BLG is described by a four-band k - p Hamiltonian [4,7]
and band dispersion,

BLG _ 22_25&2 L1422222
EPYO =+ |02 (k2 ky)+ n + 5 +r 2 +v (kx+k).)(y1 +A2).
(D

Here, r = + indexes the low- and high-energy BLG bands, A
is the interlayer asymmetry gap, k, , are the in-plane wave
vectors of electrons in K* valleys, and y; = 0.39 eV and
v=6.6¢eV A are the interlayer coupling and Dirac velocity,
respectively [19]. This BLG spectrum suggests that at the
energies |¢| < &,

VilAl

8* = —1
2,/ A2+ y

there are no states for electrons in a gapped bilayer.
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FIG. 1. Sketch of the considered delamination. The decoupled
monolayers lie in the region 0 < y < W, connected to two bilayer
graphene regions (y < 0 and y > W). Corresponding energy dis-
persions within each distinct zone are shown with the electrostatic
variables of the model indicated. These would be tuned by varying the
vertical displacement field E, across the system via top and bottom
gates in each region. Below are images depicting the two different
Bernal stacking arrangements discussed in the text.

In contrast, the electron spectrum in the delaminated region
is gapless (see Fig. 1),

8
EzML=U+l§:I:v [k2 — k2. 3)

Here, U is an energy shift between the BLG and 2ML regions,
| = £ are upper (+) and lower (—) monolayer indexes,
and § is the energy offset between them produced by the
displacement field (in principle, § = ¢E,d’ can be larger
than the BLG gap A due to the larger interlayer distance
within the delamination, d’ > d). Due to its continuous
spectrum, the delamination can support states within the BLG
gap, and in the following, we will analyze the dispersion of
electrons channeled by the delamination.

In particular, in Sec. I we analyze a system with a single
interface between bias-gapped BLG and 2ML, which supports
valley-polarized evanescent modes with linear dispersion. In
Sec. III, we study evanescent edge states and standing waves
inside a delamination using both the continuum k- p model
and TB calculations. The form of these states depends on the
choice of interlayer stacking on either side of the decoupled
monolayers. Inequivalent BLG stacking on either side of the
delamination (AB on one side and BA on the other) results in
the valley-polarized channels propagating in the same direction
along both interfaces, leading to a gapless dispersion with
two weakly topologically protected modes with dispersion
spanning across the BLG gap. Having the same stacking in
the outer BLG parts of the structure reverses the direction of
one of these channels, so that the resulting counterpropagating
evanescent modes hybridize, producing a gapped spectrum.

We also analyze the higher-energy “gapped” modes resulting
from standing waves bouncing between the gapped BLG
regions, and we study the dependence of the spectrum on
the displacement-field-shifted energies of Dirac points in
the delaminated layers. In Sec. IV, we study how a strong
magnetic field transforms the modes in the AB-2ML-BA
structure into Landau levels in the delaminated monolayers.

Before going into the technical details of Secs. II-1V, we
note that edges in graphene flakes can take two different forms:
zigzag and armchair [20,21]. For the armchair edge, electron
scattering from it mixes electron states in the two valleys.
In contrast, for a zigzag edge or an arbitrarily cut edge, the
large momentum difference between K and K~ projections
onto the delamination axis suppresses intervalley mixing [20].
For this study, we assume general boundary conditions that
coincide with those of a zigzag edge but will underline features
of the armchair edge in Sec. V.

II. ELECTRONIC PROPERTIES OF A SINGLE
BLG-2ML INTERFACE

To study a single BLG-2ML interface using k- p theory,
we employ a four-band Hamiltonian,

Viy) vl O(=ym 0
. t
7:[;1 _ v Vi(y) 0 wf . (da)
O(—=y)n 0 V_(») vit
0 w3 vA T V_(y)

written in the sublattice basis (A}, B;,Bs,A>)" in valley K",
where n =4, # = n(—id,) +i(—id,), and {O(—y),#} in
w3 = ;—;Zem {®(—y), 7} is an anticommutator. In this Hamilto-
nian, hopping parameter y; describes coupling of the “dimer”
sites, A1 and B,, of the bilayer, whilst terms with y3 describe
skew hopping (between nondimer sites),! and angle 6 is
between the zig-zag direction and delamination axis. On-site
energies, Vi(y), are defined as,

+2,

)
U3,

y <0,

Vi(y) = : V=0,

and ©(y) is the Heaviside step function used to implement
the suppression of y; by delamination. This Hamiltonian has
the dispersion of Egs. (1) and (3) in regions y < O and y > O,
respectively. Implicit within this Hamiltonian is the required
continuity of the electron wave functions at the junction
between the two regions,

1 0 0 —R

0 10 07)= 0" 4b
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0 0 0 1

'In contrast to the vertical interlayer hopping, y;, for electrons at the
K" and K~ points in a pristine graphene bilayer the effect of skew
interlayer hopping, ys, cancels out as we sum the phase contributions
from the three nearest interlayer neighbours. At the delamination
such cancellation is broken, which leads to the off-diagonal terms
in boundary condition (4b). However, the quantitative effect of such
a term is negligibly small.

045301-2



BALLISTIC ELECTRON CHANNELS INCLUDING WEAKLY ... PHYSICAL REVIEW B 97, 045301 (2018)

Parameter 8 = ¢y /(2yy) is determined by the ratio of the skew interlayer hopping [3] and intralayer hopping. As y3/yp & 0.12
(hence, 8 < 1), the skew hopping (y3) terms lead to only small corrections to the interface mode dispersion and wavefunctions
(see Fig. 3). Therefore, the terms describing skew hopping will be neglected in the rest of the text (formally, setting y3/yo — 0).

A. Reflection at the BLG-2ML interface

Here, we investigate the reflection of plane waves in a semi-infinite delamination and their scattering between two monolayers
from a gapped BLG. On the delaminated side of the interface we solve the Dirac equation,

(H, — ey =0,

assuming propagating plane-wave solutions,

4 o 1 8\
‘-IJZML = I/IZMLelkXx X et(q,;,z)yethx’ qs1 = S;\/(E - U — lz) — Uzk)%, (5)

where g, ; have real values. Here, s = &1 and / = +1 distinguish between right- and left-moving waves (y > 0) and the upper
and lower layers, respectively:

1 0
2ML _ s+ | igosy 0 igs—y
Pk =D | A e A e (6)
0 as _

where A, 1 are the monolayer wave amplitudes and

_ 2v[kx + il‘Zs,l]

= Tl 7
2¢ —2U — 15 @

as1

are chirality factors for electrons in monolayer graphene.

Because the direction of the electron’s propagation is given by group velocity, v = d¢/dk, electrons in the monolayer conduction
band with wave vector kK move in the direction opposite those in the monolayer valence band with the same wave vector. In order
to distinguish between left- and right-moving states we write the index s = +&;, where & = sgn(e — [U + [5/2]) determines
whether electrons lie in the conduction (§; = +) or valence (§;, = —) band in each monolayer and the =% selects left- (—) or right-
(4) moving states.

At the same time, the asymptotics of eigenstates in the gapped bilayer region must be decaying,

\IJBLG _

; BLG, ;
O = .(pBLGelkxX AL yethx’

X e

1 A2 A?
ABLG — -~ vzkﬁ—sz—ji\/Azsz—yf(T_52)- ®)

Substituting these in Eq. (4a) for y < 0, we find that

oy o_
VB (k&) = B, B+ Mg B- Y g = —2y1(A 4 2¢)(A — 28)’
X+ X- X+
1 1
Ay 0k, + ABLOY(A + 2¢) (A +20)[(A —26)” — 402 (K2 — (A39)7)]
B+ = s Xt = ,
Xi X:t
Xi = 2v(k, — ABO){(A — 26)> — 402[K2 — (AB16)]). )
Requiring continuity of the eigenstates at the BLG-2ML interface, we find
-1 O 1 O —O04 —_ A+%‘+,+
—a—¢, + 0 A e v\ | ate s 0 =B+ B || Ave - (10)
0 —1 A_giw_ 0 1 — X+ —X- B+ ’
0 —Aa_g_  — 0 Aye — -1 -1 B_

which is nothing but the conservation condition for the current projected onto the direction perpendicular to the boundary.
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Fixing the incoming wave to reside solely on the upper monolayer (A_¢, + =1 and A_¢ _ = 0), we investigate how the
electrons can relocate from it to the lower layer, with the amplitude of the interlayer transfer given by

(a.§+,+ - a—s+,+)(X+ - X-) ky

Aye _

B (aye, yoy — B —are —x) = (aye, ra- — )1 —aye _xy) b<kis ke

QY

In the limit where momentum parallel to the interface and the monolayer on-site energy asymmetry are large, k, < k,d, this
indicates that the probability of an electron changing layer is small. In Fig. 2(a) we show how the probability of reflection back

on the same layer,

|Aye, +1°

CAge 1P 1A 1P

varies with wave vector k, as we move around the Dirac cone
at three separate energy cuts for § = U = 0. In agreement
with Eq. (11), we find that for |k,| < |k,| the probability
of reflection back to the same layer approaches P = 1 (that
is, A;¢ — < 1 is also associated with a 7 phase shift of the
reflected wave), whereas peak transmission, P & (.5, onto the
second layer occurs for waves incident at angle /3.

B. Evanescent interface states

In addition to scattered waves, a BLG-2ML interface sup-
ports evanescent modes over the entire energy range |&| < &,.
These are described by Eq. (9) in the BLG region and by Eq. (6)
in the 2ML delamination, but now with g,; = —iA?}'", where

1 8\?
AME — o 22— e —U — 1= (13)
s, v X 2

are real-valued decay rates. Continuity of these evanescent

wave functions across the interface (selecting, e.g., s = —1)
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FIG. 2. (a) Probability of reflection back on the same (upper)
layer as the incoming wave for AB stacking within the bilayers. (b)
Results for the opposite BLG stacking (BA) which exhibits identical
reflection probability dependence under transformation k, — —k,.
(c) and (d) Phase ¢ acquired upon reflection back on the same layer
corresponding to (a) and (b).

(12)
(
produces the matching condition,
oy o_ -1 0 B+
- —a- 0 B_
B+ B + _o. (14)
X+ X- 0 —1 AL
1 1 0 —a_ _ A__
D(e,ky)

To find its solution, we have to require that
det D(e, k) =0,

which sets the dispersion relation ¢(k,) for the evanescent
modes. Figure 3 shows the results of solving numerically
for these one-dimensional states localized near the BLG-2ML
interface for A = 0.2 eV and § = 0. Having noticed an almost
linear dispersion of such states, we also find that the dispersion
of evanescent modes is almost linear for arbitrary values of all
electrostatically controlled parameters in our theory, assuming

-0.04 -0.02 0

FIG. 3. Interface states (solid red curves) and low energy BLG
bands (dashed red curves) at y =0 for A=02eVand§=U =0
in the K (top) and K ~ (bottom) valley. Blue curves depict the bands
for nonzero skew interlayer coupling, y3, for a delamination along the
zig-zag direction, illustrating the negligible effect that this additional
hopping term has on the spectrum at a delamination edge.
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BALLISTIC ELECTRON CHANNELS INCLUDING WEAKLY ...
that vk,,A,5,U < yi,

A
e~ _ka7
Vi

and modes in the opposite valleys, n = &£, propagate in
opposite directions. Exchanging the interlayer stacking con-
figuration in the bilayer region (AB — BA) or swapping the
ordering of the two regions (2ML on the left and BLG on the
right) results in mirror-reflected dispersions equivalent to those
illustrated in Fig. 3.

s)

III. ELECTRONIC SPECTRUM OF
A DELAMINATION IN BLG

Here, we analyze the electronic spectrum of a delamination
(2LG) between two bilayer regions to the left (y < 0) and right
(y = W) sides (see Fig. 1) for the same (AB-2ML-AB) and
opposite (AB-2ML-BA) stacking on the two sides.

A. AB-2ML-BA stacking

Depending on the fabrication process generating the delam-
ination, the layers in a BLG may be shifted from one Bernal
stacking configuration to another, producing the inverted (BA
vs AB) stacking on the opposite side of the delamination. The
resulting deformation, of the order of one lattice constant of
graphene (@ = 1.42 A), is then absorbed by a weak strain/shear
of the delaminated monolayers. The effect of homogeneous
weak strain over a narrow stripe of the upper/lower monolayer
in the 2ML part of the structure consists of an addition of a
vector potential term to the Dirac equation in the monolayers
[22], producing small shifts in the wave numbers and energies
of modes guided by the delamination. In the following, we
neglect these small (~ a/ W) shifts and focus on the qualitative
change in the delamination spectrum brought about by the
stacking order: its gapless character.

The continuous model for the system with AB-2ML-BA
stacking, written in the basis (A}, By ,By,A)T, is described by
the Hamiltonian

Vi(y) v O(=n 0
. vt Vi(y) 0 Oy — Win

n= N ) (16)

=y 0 V_(») vt

0 Oy — Winy, v V_(y)
where on-site energies on the upper (4) and lower (—) layers are
+2 ify<Oory>W,

Vi) =47 b ~ an

U+ if0<y<W.

For y < 0and 0 < y < W, the wave functions retain the form given in Eqgs. (6) and (9), whereas for y > W (BA stacked BLG)

parameters in ¥PLC in Eq. (9) should be substituted with

4y v(A + 26)(k, — ABLO)

20k, + M)A — 267 — 407(k2 - GEOP)]

o+ = Xi
N 271(A + 26)(A — 2¢)
Bxr = —
Xy
Xx =

Xy =(A+28)[(A—268) —

)

X4

4v? (k2 — A9 (18)

Wave-matching conditions applied at both interfaces, ¥ (y — 07) = ¥(y — 0") and ¥ (y — W) = ¥ (y — W), result in

ar o 1 1 0 0 0 B,
B+ B- Ay, + a—,+ 0 0 0 0 B_
M 0 0 I I 0 0 A

11 0 0 a_ a._ 0 0 A

3 MLG 17 JMLG 17 _ _MBLGy . _3BiGy ' =0. (19)

0 0 e+ -+ 0 0 aype ™+ a_e - Al _

0 0 ay W g 2NV 0 0 Bre W B W L L AL

0 0 0 0 MW MV e W g eV By

0 o0 0 0 ay TV g _HNEW AW e W B_

D(e, ki)

045301-5



T.L. M. LANE et al.

PHYSICAL REVIEW B 97, 045301 (2018)

As with the single-interface system, we require that
det D(e,k,) = 0.

Solving this equation numerically, we generate the dispersion
curves &(k, ) shown in Fig. 4, which represent the main features
of the delamination spectra.

Figure 4 illustrates the bands [Figs. 4(e)—4(h)] and wave
functions [Figs. 4(a)-4(d)] for a range of monolayer band
offsets, calculated from the continuum model. These plots
show the spectra for electrons in valley K. Dispersions in
valley K~ can be obtained using the time reversal, (K ~,k,) =
e(K*, — k). Wave functions for the interface states are dis-
played in Figs. 4(a) and 4(c), which demonstrate localization
of these valley-polarized modes at both interfaces. Note that
although an increasing number of bands becomes available
as we open up the 2ML gap §, there are only these two
interface states which span the entire region. Therefore, tuning
the Fermi level of the system such that it lies close to zero
will select states corresponding to one-dimensional ballistic
channels propagating simultaneously along each interface. The
gap &, between the lowest “conduction” and “valence” bands
is shown to decrease as £, W~! with delamination width
(see the Appendix).

We also employ a numerical TB approach by modeling the
considered structure as a semi-infinite zigzag BLG nanoribbon
of lattice sites with a delaminated region separating two BLG
regions with opposite stacking. We incorporate a mismatch of
one carbon-carbon bond length into the widths of the layers in
the 2ML region [23]. Modifying the standard TB Hamiltonian
for BLG to include the desired structure produces

=33 e
L))

- Z{[@(—yi) + 00 — W)]ych{’icz,,' +H.c.}
(@)

+ Z Vi(}’i)cjci , (20)

with 9 = 3.1 being the intralayer nearest-neighbor coupling,
y1 = 0.39 eV being the interlayer nearest-neighbor coupling,

and clT’ ; (c,;) being the creation (annihilation) operator for elec-

trons at site R; = (x;,y;) in layer /. On-site potentials V. (y;)
[V_(y;)] on the upper (lower) layer are given by Eq. (17). The
sum in the first line runs over all nearest neighbors (i, j), the
second line runs over all the coupled dimer sites (i), and the
final term sums over all lattice sites i. The difference between
the AB and BA regions is taken into account as a change of
the dimer sites, meaning that the coupling is present between
sites A1-B; [O(—y;)] and B-A, [O(y; — W)], respectively.

For numerical diagonalization, we used 2000 A for the
total width of the AB-2ML-BA nanoribbon along the y axis
and zigzag edges. To prevent states localized along these
terminating edges [20,24,25] from obscuring the states in the
delaminated region, we apply a large positive (negative) on-site
potential on the edge atoms which pushes these states to higher
(lower) energies.

Using TB Hamiltonian (20), we find the spectrum of
states guided by the delamination by solving the equation
[7:[(kx) — e(kx)f]\ll = 0 for different values of wave vector
k. Additionally, using the Kernel Polynomial Method (KPM)

method [26] implemented in the PYBINDING package [27], we
investigate the density of states (DOS) and local DOS (LDOS).

The spectra found using the TB approach are shown in
Figs. 4(i)-4(k) for the same parameters as in continuum
theory [Figs. 4(f)—4(h)] [28]. As with the AB-2ML-AB system,
the delamination exhibits both localized channels along the
interface and standing-wave modes across the delaminated
monolayers, but the interface states now span the full range
of the BLG gap [identified in red in Figs. 4(e)—4(k)]. Note that
the spectra obtained with the two methods coincide in all de-
tails, including all avoided and nonavoided crossings between
interface states and standing-wave states. Also confirmed by
both calculation methods is that the change in stacking order
breaks the (k) = e(—k,) symmetry for the states in one valley
and that ex+(k,) = ex-(—ky).

B. AB-2ML-AB stacking

Having established a good agreement between the prop-
erties of ballistic electron channels evaluated using the TB
approach and wave matching, we study a delamination with
the same stacking in the outer BLG regions using only the
continuous theory, with the Hamiltonian

Vi(y) it Dy 0

. vt V. 0 0
1, = . + () . . @1
Vi 0 V_(y) vt
0 0 vt V()

Here, ® = O(—y)+ O®(y — W) and Vi(y) take the same
values as in Eq. (17). Electron states for 0 <y < W are
described by Eq. (6), where wave vectors g, ; may take both
real and imaginary values. For energies |¢| < &,, states in the
left bilayer remain evanescent, Eq. (9), with states in the right
bilayer obtained by the substitution y — W — y.

Matching these wave functions at the two interfaces,
we recover Eq. (19), where oy, B+, and x4 are defined
in Eq. (9) and ax = as(—ABL9), BL = BL(—ABLO), and
%+ = x+(—ABLO) such that the same AB-stacked BLG
states decay to the right of the delamination. As with the
AB-2ML-BA system we require that det D = 0, producing
dispersions across the delamination shown in Fig. 5.

These spectra are formed by the hybridization of evanescent
modes coming from the opposite edges of the delamination
and standing waves bouncing between the edges. For wider
delaminations or larger §, we find more subbands that can fit the
BLG asymmetry gap. Higher subbands correspond to bouncing
modes within the monolayers. Note that the spectra shown in
Fig. 5 are gapped. As with the AB-2ML-BA system, the val-
ues of energy gaps between bands exhibit &, oc (W + W)™
dependence with delamination width (see the Appendix).

The gaps in the delamination spectrum also depend on the
interlayer asymmetry §, which is controlled by the displace-
ment field E,. Wave functions in Figs. 6(i)-6(1) demonstrate
that, for large §, electronic states just above and below
the avoided crossings are localized on different delaminated
monolayers. The crossing occurs at momentum &, = §/2v, and
the standing-wave states within the delamination have k, =
/W « §/2v. Using Eq. (11) for the interlayer transmission
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FIG. 4. (a)—(d) Wave function across the 2ML channel for specific energy and momenta [indicated on (e)] in the sublattice basis. (e)—(h)
Permitted energy bands calculated from the continuum model within the bilayer gap and (i)—(k) the results of an equivalent TB calculation
approach including continuum bands which extend above the bilayer band edge. Interface modes (red curves) are identified crossing between
the low-energy bilayer band edges (orange shaded regions). Plotted with green (blue) dashed lines are the conical dispersions of the upper
(lower) monolayer with energy difference § between their Dirac points. (1) and (m) Top and side profiles of the LDOS for the same parameters
as in (c) and (d). Calculations were performed for W = 200 A, A=02eV,and U = 0 around the K+ valley.
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FIG. 5. (a)-(d) and (i)—(1) Electron wave functions across the delamination (gray shaded region) for specific energy and momenta indicated
in (e) and (h) in sublattice basis (A, B, B, A,)". (e)—(h) Energy structure of the delamination for increasing interlayer energy gap & within the
monolayer region. Green (blue) dashed lines denote the upper (lower) monolayer Dirac cones in the 2ML region, and the orange region denotes
the low-energy bulk bilayer band edge. Calculations are for W = 200 A, A = 0.2 eV, and U = 0 around the K * valley.

amplitude, we estimate for the size of the gap

ur/ W

g, X |A _| &~ ,
g |+S_,| S

(22)

which is in agreement with our numerical data.

Additionally, we studied how an offset U between the BLG
and 2ML regions affects the energy dispersions of both the AB-
2ML-AB and AB-2ML-BA structures. Figure 6 depicts this for
two different offsets in both the AB-2ML-AB and AB-2ML-
BA interlayer stackings: in Figs. 6(a)—6(d) are bands calculated
using the continuum model, and in Figs. 6(e) and 6(f) are bands
found using the TB model in the form of the DOS maps. Figure
6 shows that an increase in either U or § (or both) brings more
subbands into the delamination spectrum inside the BLG gap.

IV. DELAMINATION SPECTRUM IN A PERPENDICULAR
MAGNETIC FIELD

To investigate the effects of a perpendicular magnetic field
on the interface states, we use the TB model and apply a Peierls
substitution to the in-plane coupling terms in Eq. (20),

H=- Z Z(Voeiznq)i’/q}”Cz,iTCl,j)
L))

— YOG + BOlyic] jea; + Hel
(i)

+ Z V;t(yi)cjch (23)
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FIG. 6. Interband states for different symmetry-breaking energy
of-sets U for both (a) and (b) AB-2ML-AB and (c)—(f) AB-2ML-BA
stacking with W = 200 Aand A = § = 0.2 eV. In (a)—(d), calculated
using the continuum model, the red dashed line indicates the 2ML
region energy midpoint, and green and blue dashed lines indicate the
positions of the bulk 2ML Dirac cones. (e) and (f) Density of states
of the system calculated from the TB model.

Here, &) = % is the magnetic flux quantum, and ®;; = f Adl
is the flux accumulated between atomic sites i and j due to the
external magnetic field. Using the Landau gauge, A = Byx,
we find ®;; = 0.5B(y; + yi)(x; — x;).

Figures 7(a)-7(d) show that a perpendicular magnetic field
increases [18] the visibility of the interface states. The wave
functions of the standing wave states are delocalized over
the relatively wide delaminated region and therefore readily
form Landau levels when the radius of the cyclotron orbit
of monolayer graphene drops below half the delamination
width (rg ~ I = /li/eB < W/2).ForaW = 200 A structure
[Figs. 7(a)-7(d)], this corresponds to a magnetic field of
B~ 7 T and results in the energies of these states being
pushed out of the energy range of the band gap in bilayer
graphene. In contrast, the interface states are less susceptible to
Landau-level formation as their unidirectional propagation and

confinement near the edges inhibit the formation of cyclotron
orbits. Nevertheless, as the magnetic field strength increases
from 0 to 30 T, a clear precursor to a zeroth Landau level is seen
in the flattening of the dispersions near k, = € = 0 and a con-
comitant localization of the wave function in the center of the
delaminated region [compare Figs. 7(a)-7(c) and 7(e)-7(g)].
Similar flattening of the interface bands is found for a finite
interlayer shift near k, = 0, ¢ = £0.045 eV [e.g., yellow dot,
Fig. 7(d)]. The energies of these features are well approximated
by the first Landau-level energy counted from the Dirac cone
in the appropriate layer, € = +(vv/2/lz — 8/2) = 0.041 eV,
and the corresponding wave function [Fig. 7(h)] displays
characteristics of the first graphene Landau level.

For energies away from these band flattenings [e.g., red dots
in Figs. 7(b)-7(d)] the wave function is found to be pushed
towards the left interface [Figs. 7(j)-7(1)], rather than in the
center of the delamination, as is found for the Landau-level-like
features in Figs. 7(f)-~7(h). This behavior can be interpreted
as the result of a Lorentz force, ev x B, for an electron with
velocity in the x direction. As the velocity of the interface states
is reversed for the other (K ™) valley, the corresponding states
there are pushed towards the opposite edge. This produces a
spatial separation of the wave functions in the two valleys and,
consequently, an enhanced robustness of these states against
intervalley scattering disorder [12].

V. DISCUSSION

In this paper we have studied the electronic properties of de-
laminations in bilayer graphene with a gate-induced band gap.
Starting with a single boundary between a bilayer graphene
region and two decoupled monolayer graphene sheets, we
have shown that there exist evanescent states localized at
the interface which span the bilayer energy gap and have
opposite carrier velocity in each of graphene’s two valleys.
In a delamination stripe with opposite stacking of the outer
BLG, these evanescent states give rise to the gapless channels
counterpropagating in opposite valleys. The delaminations,
with both AB-2ML-BA and AB-2ML-AB stacking, also
support channels produced by bouncing modes in the two
delaminated monolayers. The number of such modes increases
with delamination width W, as well as with the transverse
electric field E,, which controls the difference, § = ¢E,d’,
between on-layer electron energies in the delamination.

The above results have been obtained for the delamination
with an almost arbitrary crystallographic direction, except for
the orientation where the delamination edge exactly coincides
with the armchair direction in graphene. In the latter case, the
armchair edge mixes states in graphene’s two valleys, and the
spectrum of an AB-2ML-BA delamination, obtained by TB
model calculation and shown in Fig. 8, has modes inside the
BLG gap which are not protected against anticrossing by the
valley structure of electron states. Such states seem to retain
linear dispersion similar to the case of a generic orientation of
delamination edges.

Another point to mention is related to the role of y3 hopping
terms in the TB model, which were neglected in modeling
the electronic spectra. Those terms produce [3] only weak
trigonal warping effects in BLG and can be neglected but
also (together with the variation of y; coupling along the
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FIG. 7. (a)-(d) Band structure and (e)—(1) LDOS maps at specific values of energy and wave vector for the nanoribbon in the presence of
a perpendicular magnetic field. (e-h) and (i-1) depict the distribution of the states at the value of ¢ and k, marked on the band structure plots
with yellow circles and red squares, respectively. Calculations are for W = 200 A, A=02¢eV,and U = 0in the vicinity of the K valley.

FIG. 8. Energy dispersion for an AB-2ML-BA delamination with
armchair edges, calculated using the TB model for A =0.2 eV,
8§ =U=0,and W =200 A.

delamination edge) may generate a source of scattering at the
exact delamination edge with arbitrary (different from exact
zigzag) orientation. The analysis of such disorder will be a
subject for a separate study.
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FIG. 9. Dependence of energy gaps on delamination width. Open
squares and dashed curves show data and fitting for the AB-2ML-AB
system, respectively, while solid squares and solid curves show data
for the AB-2ML-BA system. Black points represent data extracted
from the TB model for the AB-2ML-BA system. (a)-(c) Band
structures at W = 200 A, W = 400 A, and W = 600 A, respectively
for the AB-2ML-AB system. (d)—(f) Band structures at W = 200
A, W =400 A, and W = 600 A, respectively, for the AB-2ML-BA
system. Plots are calculated for A = 0.2 eV and § = U = 0 around
the K valley.

TABLE I. Fitting parameters for curves in Fig. 9.

Curve a b

Dashed blue 12.2 53.6
Dashed orange 30.1 72.3
Dashed green 54.2 61.2
Dashed red 74.5 102.5
Solid orange 22.7 55.9
Solid green 59.2 123.1
Solid red 68.2 52.7

APPENDIX: ENERGY GAPS IN DELAMINATED SYSTEMS

The number of available states within the BLG gap and
their corresponding energies is highly sensitive, not only
to the electrostatic parameters (as demonstrated in Figs. 4 and
5) but also to the width of the stacked monolayer channel.
Decreasing the width W of the delamination opens up larger
energy gaps between subsequent bands and pushes them out
of our energy range of interest.

Figure 9 illustrates how the energy gaps of the band minima
vary with increasing delamination width for both AB-2ML-AB
and AB-2ML-BA interlayer stacking, calculated assuming § =
0 for simplicity (although this is not experimentally viable).
Fittings are of the form

£ = a(W + by, (A1)

with fitting parameters given in Table I. Dashed curves are fit
to data from systems with the same interlayer stacking in each
bilayer (open squares), while solid lines are fit to data from
systems with different interlayer stackings to either side of
the delamination (solid squares). Black circles show data from
the AB-2ML-BA TB model to be in good agreement with the
corresponding wave-matching model.

The lowest-energy (dashed blue) curve corresponds to
minima arising from avoided crossings of counterpropagating
evanescent states localized at each interface in the AB-2ML-
AB system. There is no complementary curve for the AB-2ML-
BA system since the localized channels for this configuration
are copropagating and the resulting low-energy bands span
the entire gap. The energy gap between higher-energy bands
follows the same general form, with especially close agreement
between green and red curves in each system.
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