|
Record |
Links |
|
Author |
Tong, Y.; Yao, E.-P.; Manzi, A.; Bladt, E.; Wang, K.; Doeblinger, M.; Bals, S.; Mueller-Buschbaum, P.; Urban, A.S.; Polavarapu, L.; Feldmann, J. |
|
|
Title |
Spontaneous self-assembly of Perovskite nanocrystals into electronically coupled supercrystals : toward filling the green gap |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Advanced materials |
Abbreviated Journal |
Adv Mater |
|
|
Volume |
30 |
Issue |
30 |
Pages |
1801117 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Self-assembly of nanoscale building blocks into ordered nanoarchitectures has emerged as a simple and powerful approach for tailoring the nanoscale properties and the opportunities of using these properties for the development of novel optoelectronic nanodevices. Here, the one-pot synthesis of CsPbBr3 perovskite supercrystals (SCs) in a colloidal dispersion by ultrasonication is reported. The growth of the SCs occurs through the spontaneous self-assembly of individual nanocrystals (NCs), which form in highly concentrated solutions of precursor powders. The SCs retain the high photoluminescence (PL) efficiency of their NC subunits, however also exhibit a redshifted emission wavelength compared to that of the individual nanocubes due to interparticle electronic coupling. This redshift makes the SCs pure green emitters with PL maxima at approximate to 530-535 nm, while the individual nanocubes emit a cyan-green color (approximate to 512 nm). The SCs can be used as an emissive layer in the fabrication of pure green light-emitting devices on rigid or flexible substrates. Moreover, the PL emission color is tunable across the visible range by employing a well-established halide ion exchange reaction on the obtained CsPbBr3 SCs. These results highlight the promise of perovskite SCs for light emitting applications, while providing insight into their collective optical properties. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Weinheim |
Editor |
|
|
|
Language |
|
Wos |
000438709400019 |
Publication Date |
2018-06-05 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0935-9648 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
19.791 |
Times cited |
161 |
Open Access |
OpenAccess |
|
|
Notes |
; This research work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech),” by the China Scholarship Council (Y.T. and K.W.), by the European Union's Horizon 2020 research and innovation program under the Marie Skodowska-Curie Grant Agreement COMPASS No. 691185 and by LMU Munich's Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative (L.P., J.F. and A.S.U.). E.B. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors would like to thank Alexander Richter for helpful discussions. ; ecas_Sara |
Approved |
Most recent IF: 19.791 |
|
|
Call Number |
UA @ lucian @ c:irua:152413UA @ admin @ c:irua:152413 |
Serial |
5129 |
|
Permanent link to this record |