|
Record |
Links |
|
Author |
Wu, S.-M.; Liu, X.-L.; Lian, X.-L.; Tian, G.; Janiak, C.; Zhang, Y.-X.; Lu, Y.; Yu, H.-Z.; Hu, J.; Wei, H.; Zhao, H.; Chang, G.-G.; Van Tendeloo, G.; Wang, L.-Y.; Yang, X.-Y.; Su, B.-L. |
|
|
Title |
Homojunction of oxygen and titanium vacancies and its interfacial n-p effect |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Advanced materials |
Abbreviated Journal |
Adv Mater |
|
|
Volume |
30 |
Issue |
32 |
Pages |
1802173 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D H-1 TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new homojunction of oxygen and titanium vacancies concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Weinheim |
Editor |
|
|
|
Language |
|
Wos |
000440813300022 |
Publication Date |
2018-06-27 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0935-9648 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
19.791 |
Times cited |
39 |
Open Access |
Not_Open_Access |
|
|
Notes |
; This work was supported by National Key R&D Program of China (2017YFC1103800), National SFC (U1662134, U1663225, 51472190, 51611530672, 21711530705, 51503166, 21706199), ISTCP (2015DFE52870), PCSIRT (IRT_15R52), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; |
Approved |
Most recent IF: 19.791 |
|
|
Call Number |
UA @ lucian @ c:irua:153106 |
Serial |
5105 |
|
Permanent link to this record |