toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Peeters, F.M. doi  openurl
  Title Electrostatically confined trilayer graphene quantum dots Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal  
  Volume 95 Issue 15 Pages (up) 155434  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrically gating of trilayer graphene (TLG) opens a band gap offering the possibility to electrically engineer TLG quantum dots. We study the energy levels of such quantum dots and investigate their dependence on a perpendicular magnetic field B and different types of stacking of the graphene layers. The dots are modeled as circular and confined by a truncated parabolic potential which can be realized by nanostructured gates or position-dependent doping. The energy spectra exhibit the intervalley symmetry E-K(e) (m) = -E (h)(K') (m) for the electron (e) and hole (h) states, where m is the angular momentum quantum number and K and K' label the two valleys. The electron and hole spectra for B = 0 are twofold degenerate due to the intervalley symmetry E-K (m) = E-K' [-(m + 1)]. For both ABC [alpha = 1.5 (1.2) for large (small) R] and ABA (alpha = 1) stackings, the lowest-energy levels show approximately a R-alpha dependence on the dot radius R in contrast with the 1/R-3 one for ABC-stacked dots with infinite-mass boundary. As functions of the field B, the oscillator strengths for dipole-allowed transitions differ drastically for the two types of stackings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399797200003 Publication Date 2017-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 6 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152652 Serial 7878  
Permanent link to this record
 

 
Author Masir, M.R.; Matulis, A.; Peeters, F.M. url  doi
openurl 
  Title Quasibound states of Schrödinger and Dirac electrons in a magnetic quantum dot Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 15 Pages (up) 155451,1-155451,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The properties of a two-dimensional electron are investigated in the presence of a circular step magnetic-field profile. Both electrons with parabolic dispersion as well as Dirac electrons with linear dispersion are studied. We found that in such a magnetic quantum dot no electrons can be confined. Nevertheless close to the Landau levels quasibound states can exist with a rather long lifetime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000265944200140 Publication Date 2009-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77026 Serial 2800  
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Chaves, A.; Farias, G.A.; Macedo, R.; Peeters, F.M. pdf  url
doi  openurl
  Title Magnetic field induced vortices in graphene quantum dots Type A1 Journal article
  Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 32 Issue 15 Pages (up) 155501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The energy spectrum and local current patterns in graphene quantum dots (QD) are investigated for different geometries in the presence of an external perpendicular magnetic field. Our results demonstrate that, for specific geometries and edge configurations, the QD exhibits vortex and anti-vortex patterns in the local current density, in close analogy to the vortex patterns observed in the probability density current of semiconductor QD, as well as in the order parameter of mesoscopic superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520149200001 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 5 Open Access  
  Notes ; This work was financially supported by the CAPES foundation and CNPq (Science Without Borders, PQ and FUNCAP/PRONEX programs). ; Approved Most recent IF: 2.7; 2020 IF: 2.649  
  Call Number UA @ admin @ c:irua:167670 Serial 6558  
Permanent link to this record
 

 
Author Trofimova, E.Y.; Kurdyukov, D.A.; Yakovlev, S.A.; Kirilenko, D.A.; Kukushkina, Y.A.; Nashchekin, A.V.; Sitnikova, A.A.; Yagovkina, M.A.; Golubev, V.G. pdf  doi
openurl 
  Title Monodisperse spherical mesoporous silica particles : fast synthesis procedure and fabrication of photonic-crystal films Type A1 Journal article
  Year 2013 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 24 Issue 15 Pages (up) 155601-155611  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A procedure for the synthesis of monodisperse spherical mesoporous silica particles (MSMSPs) via the controlled coagulation of silica/surfactant clusters into spherical aggregates with mean diameters of 250-1500 nm has been developed. The synthesis is fast (taking less than 1 h) because identical clusters are simultaneously formed in the reaction mixture. The results of microscopic, x-ray diffraction, adsorption and optical measurements allowed us to conclude that the clusters are similar to 15 nm in size and have hexagonally packed cylindrical pore channels. The channel diameters in MSMSPs obtained with cethyltrimethylammonium bromide and decyltrimethylammonium bromide as structure-directing agents were 3.1 +/- 0.15 and 2.3 +/- 0.12 nm, respectively. The specific surface area and the pore volume of MSMSP were, depending on synthesis conditions, 480-1095 m(2) g(-1) and 0.50-0.65 cm(3) g(-1). The MSMSP were used to grow opal-like photonic-crystal films possessing a hierarchical macro-mesoporous structure, with pores within and between the particles. A selective filling of mesopore channels with glycerol, based on the difference between the capillary pressures in macro- and mesopores, was demonstrated. It is shown that this approach makes it possible to control the photonic bandgap position in mesoporous opal films by varying the degree of mesopore filling with glycerol. Online supplementary data available from stacks.iop.org/Nano/24/155601/mmedia  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000316988700009 Publication Date 2013-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 49 Open Access  
  Notes Approved Most recent IF: 3.44; 2013 IF: 3.672  
  Call Number UA @ lucian @ c:irua:108462 Serial 2191  
Permanent link to this record
 

 
Author Li, Q.N.; Xu, W.; Xiao, Y.M.; Ding, L.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Optical absorption window in Na₃Bi based three-dimensional Dirac electronic system Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 128 Issue 15 Pages (up) 155707  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study of the optoelectronic properties of a Na3Bi based three-dimensional Dirac electronic system (3DDES). The optical conductivity is evaluated using the energy-balance equation derived from a Boltzmann equation, where the electron Hamiltonian is taken from a simplified k . p approach. We find that for short-wavelength irradiation, the optical absorption in Na3Bi is mainly due to inter-band electronic transitions. In contrast to the universal optical conductance observed for graphene, the optical conductivity for Na3Bi based 3DDES depends on the radiation frequency but not on temperature, carrier density, and electronic relaxation time. In the radiation wavelength regime of about 5 mu m, < lambda < 200 mu m, an optical absorption window is found. This is similar to what is observed in graphene. The position and width of the absorption window depend on the direction of the light polarization and sensitively on temperature, carrier density, and electronic relaxation time. Particularly, we demonstrate that the inter-band optical absorption channel can be switched on and off by applying the gate voltage. This implies that similar to graphene, Na3Bi based 3DDES can also be applied in infrared electro-optical modulators. Our theoretical findings are helpful in gaining an in-depth understanding of the basic optoelectronic properties of recently discovered 3DDESs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000585807400004 Publication Date 2020-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.2 Times cited 1 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (NNSFC Nos. U1930116, U1832153, 11764045, 11574319, and 11847054) and the Center of Science and Technology of Hefei Academy of Science (No. 2016FXZY002). Applied Basic Research Foundation of Department of Science and Technology of Yunnan Province (No. 2019FD134), the Department of Education of Yunnan Province (No. 2018JS010), the Young Backbone Teachers Training Program of Yunnan University, and the Department of Science and Technology of Yunnan Province are acknowledged. ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:173591 Serial 6571  
Permanent link to this record
 

 
Author Benedet, M.; Andrea Rizzi, G.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Maccato, C.; Barreca, D. pdf  url
doi  openurl
  Title Functionalization of graphitic carbon nitride systems by cobalt and cobalt-iron oxides boosts solar water oxidation performances Type A1 Journal article
  Year 2023 Publication Applied surface science Abbreviated Journal  
  Volume 618 Issue Pages (up) 156652  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The ever-increasing energy demand from the world population has made the intensive use of fossil fuels an overarching threat to global environment and human health. An appealing alternative is offered by sunlight-assisted photoelectrochemical water splitting to yield carbon-free hydrogen fuel, but kinetic limitations associated to the oxygen evolution reaction (OER) render the development of cost-effective, eco-friendly and stable electrocatalysts an imperative issue. In the present work, OER catalysts based on graphitic carbon nitride (g-C3N4) were deposited on conducting glass substrates by a simple decantation procedure, followed by functionalization with low amounts of nanostructured CoO and CoFe2O4 by radio frequency (RF)-sputtering, and final annealing under inert atmosphere. A combination of advanced characterization tools was used to investigate the interplay between material features and electrochemical performances. The obtained results highlighted the formation of a p-n junction for the g-C3N4-CoO system, whereas a Z-scheme junction accounted for the remarkable performance enhancement yielded by g-C3N4-CoFe2O4. The intimate contact between the system components also afforded an improved electrocatalyst stability in comparison to various bare and functionalized g-C3N4-based systems. These findings emphasize the importance of tailoring g-C3N4 chemico-physical properties through the dispersion of complementary catalysts to fully exploit its applicative potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000950654300001 Publication Date 2023-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 11 Open Access OpenAccess  
  Notes The authors gratefully acknowledge financial support from CNR (Progetti di Ricerca @CNR – avviso 2020 – ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO – NANOMAT, INSTM21PDBARMAC – ATENA) and the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. The FWO-Hercules fund G0H4316N 'Direct electron detector for soft matter TEM' is also acknowledged. Many thanks are due to Prof. Luca Gavioli (Università Cattolica del Sacro Cuore, Brescia, Italy) and Dr. Riccardo Lorenzin (Department of Chemical Sciences, Padova University, Italy) for their invaluable technical support.; esteem3reported; esteem3TA Approved Most recent IF: 6.7; 2023 IF: 3.387  
  Call Number EMAT @ emat @c:irua:196150 Serial 7376  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.; Mátéfi-Tempfli, S.; Michotte, S. url  doi
openurl 
  Title Current-voltage characteristics of quasi-one-dimensional superconductors: an S-shaped curve in the constant voltage regime Type A1 Journal article
  Year 2003 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 91 Issue 15 Pages (up) 157001,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000185862500037 Publication Date 2003-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 90 Open Access  
  Notes Approved Most recent IF: 8.462; 2003 IF: 7.035  
  Call Number UA @ lucian @ c:irua:69418 Serial 595  
Permanent link to this record
 

 
Author Gou, H.; Dubrovinskaia, N.; Bykova, E.; Tsirlin, A.A.; Kasinathan, D.; Schnelle, W.; Richter, A.; Merlini, M.; Hanfland, M.; Abakumov, A.M.; Batuk, D.; Van Tendeloo, G.; Nakajima, Y.; Kolmogorov, A.N.; Dubrovinsky, L.; url  doi
openurl 
  Title Discovery of a superhard iron tetraboride superconductor Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 15 Pages (up) 157002-157005  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Single crystals of novel orthorhombic (space group Pnnm) iron tetraboride FeB4 were synthesized at pressures above 8 GPa and high temperatures. Magnetic susceptibility and heat capacity measurements demonstrate bulk superconductivity below 2.9 K. The putative isotope effect on the superconducting critical temperature and the analysis of specific heat data indicate that the superconductivity in FeB4 is likely phonon mediated, which is rare for Fe-based superconductors. The discovered iron tetraboride is highly incompressible and has the nanoindentation hardness of 62(5) GPa; thus, it opens a new class of highly desirable materials combining advanced mechanical properties and superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000325371500011 Publication Date 2013-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 127 Open Access  
  Notes Countatoms Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:110820 Serial 729  
Permanent link to this record
 

 
Author Muys, M.; González Cámara, S.J.; Derese, S.; Spiller, M.; Verliefde, A.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dissolution rate and growth performance reveal struvite as a sustainable nutrient source to produce a diverse set of microbial protein Type A1 Journal article
  Year 2023 Publication The science of the total environment Abbreviated Journal  
  Volume 866 Issue Pages (up) 161172-161179  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To provide for the globally increasing demand for proteinaceous food, microbial protein (MP) has the potential to become an alternative food or feed source. Phosphorus (P), on the other hand, is a critical raw material whose global reserves are declining. Growing MP on recovered phosphorus, for instance, struvite obtained from wastewater treatment, is a promising MP production route that could supply protein-rich products while handling P scarcity. The aim of this study was to explore struvite dissolution kinetics in different MP media and characterize MP production with struvite as sole P-source. Different operational parameters, including pH, temperature, contact surface area, and ion concentrations were tested, and struvite dissolution rates were observed between 0.32 and 4.7 g P/L/d and a solubility between 0.23 and 2.22 g P-based struvite/L. Growth rates and protein production of the microalgae Chlorella vulgaris and Limnospira sp. (previously known as Arthrospira sp.), and the purple non‑sulfur bacterium Rhodopseudomonas palustris on struvite were equal to or higher than growth on conventional potassium phosphate. For aerobic heterotrophic bacteria, two slow-growing communities showed decreased growth on struvite, while the growth was increased for a third fast-growing one. Furthermore, MP protein content on struvite was always comparable to the one obtained when grown on standard media. Together with the low content in metals and micropollutants, these results demonstrate that struvite can be directly applied as an effective nutrient source to produce fast-growing MP, without any previous dissolution step. Combining a high purity recovered product with an efficient way of producing protein results in a strong environmental win-win.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000922040000001 Publication Date 2022-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.8; 2023 IF: 4.9  
  Call Number UA @ admin @ c:irua:192943 Serial 7297  
Permanent link to this record
 

 
Author Wang, Y.J.; Leem, Y.A.; McCombe, B.D.; Wu, X.G.; Peeters, F.M.; Jones, E.D.; Reno, J.R.; Lee, X.Y.; Jiang, H.W. doi  openurl
  Title Strong three-level resonant magnetopolaron effect due to the intersubband coupling in heavily modulation-doped GaAs/AlxGa1-xAs single quantum wells at high magnetic-fields Type A1 Journal article
  Year 2001 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 64 Issue 16 Pages (up) 161303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electron cyclotron resonance CR) measurements have been carried out in magnetic fields up to 32 T to study electron-phonon interaction in two heavily modulation-delta -doped GaAs/Al0.3Ga0.7As single-quantum-well samples. No measurable resonant magnetopolaron effects were observed in either sample in the region of the GaAs longitudinal optical (LO) phonons. However, when the CR frequency is above LO phonon frequency, omega (LO)=E-LO/(h) over bar, at high magnetic fields (B>27 T), electron CR exhibits a strong avoided-level-crossing splitting for both samples at frequencies close to (omega (LO)+ (E-2-E-1)1 (h) over bar, where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large with the minimum separation of 40 cm(-1) occurring at around 30.5 T. A detailed theoretical analysis, which includes a self-consistent calculation of the band structure and the effects of electron-phonon interaction on the CR, shows that this type of splitting is due to a three-level resonance between the second Landau level of the first electron subband and the lowest Landau level of the second subband plus one GaAs LO phonon. The absence of occupation effects in the final states and weak screening or this three-level process yields large energy separation even in the presence of high electron densities. Excellent agreement between the theory and the experimental results is obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000171866400009 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:37278 Serial 3184  
Permanent link to this record
 

 
Author Wu, Z.; Peeters, F.M.; Chang, K. doi  openurl
  Title Spin and momentum filtering of electrons on the surface of a topological insulator Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 16 Pages (up) 162101,1-162101,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically the transport properties of Dirac fermions on the surface of a three-dimensional topological insulator. Dirac electrons can be totally reflected in front of a magnetic/electric p-n junction. For a p-n-p structure, multiple total internal reflections at the interfaces result in the bound states in the channel, which behaves like an electronic waveguide. This p-n-p like structure exhibits spin and momentum filtering features and could be used as a spin and/or charge diode.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000289842700032 Publication Date 2011-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 33 Open Access  
  Notes ; ; Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:89971 Serial 3076  
Permanent link to this record
 

 
Author Barbier, M.; Papp, G.; Peeters, F.M. doi  openurl
  Title Snake states and Klein tunneling in a graphene Hall bar with a pn-junction Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 16 Pages (up) 163121-163121,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Hall (R-H) and bend (R-B) resistances of a graphene Hall bar structure containing a pn-junction are calculated when in the ballistic regime. The simulations are done using the billiard model. Introducing a pn-junction-dividing the Hall bar geometry in two regions-leads to two distinct regimes exhibiting very different physics: (1) both regions are of n-type and (2) one region is n-type and the other p-type. In regime (1), a “Hall plateau”-an enhancement of the resistance-appears for R-H. On the other hand, in regime (2), we found a negative R-H, which approaches zero for large B. The bend resistance is highly asymmetric in regime (2) and the resistance increases with increasing magnetic field B in one direction while it reduces to zero in the other direction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704667]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000303128500064 Publication Date 2012-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 20 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:99129 Serial 3047  
Permanent link to this record
 

 
Author Baskurt, M.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H. pdf  doi
openurl 
  Title Stable single-layers of calcium halides (CaX₂, X = F, Cl, Br, I) Type A1 Journal article
  Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 152 Issue 16 Pages (up) 164116-164118  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By means of density functional theory based first-principles calculations, the structural, vibrational, and electronic properties of 1H- and 1T-phases of single-layer CaX2 (X = F, Cl, Br, or I) structures are investigated. Our results reveal that both the 1H- and 1T-phases are dynamically stable in terms of their phonon band dispersions with the latter being the energetically favorable phase for all single-layers. In both phases of single-layer CaX2 structures, significant phonon softening occurs as the atomic radius increases. In addition, each structural phase exhibits distinctive Raman active modes that enable one to characterize either the phase or the structure via Raman spectroscopy. The electronic band dispersions of single-layer CaX2 structures reveal that all structures are indirect bandgap insulators with a decrease in bandgaps from fluorite to iodide crystals. Furthermore, the calculated linear elastic constants, in-plane stiffness, and Poisson ratio indicate the ultra-soft nature of CaX2 single-layers, which is quite important for their nanoelastic applications. Overall, our study reveals that with their dynamically stable 1T- and 1H-phases, single-layers of CaX2 crystals can be alternative ultra-thin insulators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000531819100001 Publication Date 2020-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited 14 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the TUBITAK under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 4.4; 2020 IF: 2.965  
  Call Number UA @ admin @ c:irua:169543 Serial 6615  
Permanent link to this record
 

 
Author Bakalov, P.; Esfahani, D.N.; Covaci, L.; Peeters, F.M.; Tempere, J.; Locquet, J.-P. url  doi
openurl 
  Title Electric-field-driven Mott metal-insulator transition in correlated thin films : an inhomogeneous dynamical mean-field theory approach Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages (up) 165112  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Simulations are carried out based on the dynamical mean-field theory (DMFT) in order to investigate the properties of correlated thin films for various values of the chemical potential, temperature, interaction strength, and applied transverse electric field. Application of a sufficiently strong field to a thin film at half filling leads to the appearance of conducting regions near the surfaces of the film, whereas in doped slabs the application of a field leads to a conductivity enhancement on one side of the film and a gradual transition to the insulating state on the opposite side. In addition to the inhomogeneous DMFT, a local density approximation (LDA) is considered in which the particle density n, quasiparticle residue Z, and spectral weight at the Fermi level A(ω=0) of each layer are approximated by a homogeneous bulk environment. A systematic comparison between the two approaches reveals that the less expensive LDA results are in good agreement with the DMFT approach, except close to the metal-to-insulator transition points and in the layers immediately at the film surfaces. LDA values for n are overall more reliable than those for Z and A(ω=0). The hysteretic behavior (memory effect) characteristic of the bulk doping driven Mott transition persists in the slab.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000373572700002 Publication Date 2016-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; This work was partially funded by the Flemish Fund for Scientific Research (FWO Belgium) under FWO Grant No. G.0520.10 and the joint FWF (Austria)-FWO Grant No. GOG6616N, and by the SITOGA FP7 project. Most of the calculations were performed on KU Leuven's ThinKing HPC cluster provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:132872 Serial 4167  
Permanent link to this record
 

 
Author Matsubara, M.; Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B. url  doi
openurl 
  Title Attracting shallow donors : hydrogen passivation in (Al,Ga,In)-doped ZnO Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 16 Pages (up) 165207  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The hydrogen interstitial and the substitutional AlZn, GaZn, and InZn are all shallow donors in ZnO and lead to n-type conductivity. Although shallow donors are expected to repel each other, we show by first-principles calculations that in ZnO these shallow donor impurities attract and form a complex, leading to a donor level deep in the band gap. This puts a limit on the n-type conductivity of (Al,Ga,In)-doped ZnO in the presence of hydrogen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310131300008 Publication Date 2012-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101780 Serial 202  
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue 16 Pages (up) 165217  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ballistic spin transport through waveguides, with symmetric or asymmetric double stubs attached to them periodically, is studied systematically in the presence of a weak spin-orbit coupling that makes the electrons precess. By an appropriate choice of the waveguide length and of the stub parameters injected spin-polarized electrons can be blocked completely and the transmission shows a periodic and nearly-square-type behavior, with values 1 and 0, with wide gaps when only one mode is allowed to propagate in the waveguide. A similar behavior is possible for a certain range of the stub parameters even when two modes can propagate in the waveguide and the conductance is doubled. Such a structure is a good candidate for establishing a realistic spin transistor. A further modulation of the spin current can be achieved by inserting defects in a finite-number stub superlattice. Finite-temperature effects on the spin conductance are also considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000175325000061 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 112 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:95128 Serial 3082  
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M. url  doi
openurl 
  Title Time-dependent simulations of electron transport through a quantum ring: effect of the Lorentz force Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue Pages (up) 165301,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000232934900050 Publication Date 2005-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 46 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:69617 Serial 3666  
Permanent link to this record
 

 
Author Földi, P.; Benedict, M.G.; Kalman, O.; Peeters, F.M. url  doi
openurl 
  Title Quantum rings with time-dependent spin-orbit coupling: Spintronic Rabi oscillations and conductance properties Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 16 Pages (up) 165303,1-165303,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The strength of the (Rashba-type) spin-orbit coupling in mesoscopic semiconductor rings can be tuned with external gate voltages. Here we consider the case of a periodically changing spin-orbit interaction strength in time as induced by sinusoidal voltages. In a closed one dimensional quantum ring with weak spin-orbit coupling, Rabi oscillations are shown to appear. We find that the time evolution of initially localized wave packets exhibits a series of collapse and revival phenomena. Partial revivalsthat are typical in nonlinear systemsare shown to correspond to superpositions of states localized at different spatial positions along the ring. These spintronic Schrödinger-cat states appear periodically, and similarly to their counterparts in other physical systems, they are found to be sensitive to disturbances caused by the environment. The time-dependent spin transport problem, when leads are attached to the ring, is also solved. We show that the sideband currents induced by the oscillating spin-orbit interaction strength can become the dominant output channel, even in the presence of moderate thermal fluctuations and random scattering events.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000271352100078 Publication Date 2009-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80002 Serial 2784  
Permanent link to this record
 

 
Author Linard, F.J.A.; Moura, V.N.; Covaci, L.; Milošević, M.V.; Chaves, A. url  doi
openurl 
  Title Wave-packet scattering at a normal-superconductor interface in two-dimensional materials : a generalized theoretical approach Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 16 Pages (up) 165306-165309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A wave-packet time evolution method, based on the split-operator technique, is developed to investigate the scattering of quasiparticles at a normal-superconductor interface of arbitrary profile and shape. As a practical application, we consider a system where low-energy electrons can be described as Dirac particles, which is the case for most two-dimensional materials, such as graphene and transition-metal dichalcogenides. However, the method is easily adapted for other cases such as electrons in few-layer black phosphorus or any Schrodinger quasiparticles within the effective mass approximation in semiconductors. We employ the method to revisit Andreev reflection in mono-, bi-, and trilayer graphene, where specular-and retro-reflection cases are observed for electrons scattered by a steplike superconducting region. The effect of opening a zero-gap channel across the superconducting region on the electron and hole scattering is also addressed, as an example of the versatility of the technique proposed here.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000974675700006 Publication Date 2023-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:196709 Serial 8954  
Permanent link to this record
 

 
Author Shakouri, K.; Szafran, B.; Esmaeilzadeh, M.; Peeters, F.M. url  doi
openurl 
  Title Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 16 Pages (up) 165314-165314,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effective Hamiltonian for an electron in a quasi-one-dimensional quantum ring in the presence of spin-orbit interactions is derived. We demonstrate that, when both coupling types are simultaneously present, the effective Hamiltonian derived by the lowest-radial-state approximation produces energy spectra and charge densities which deviate strongly from the exact ones. For equal Rashba and Dresselhaus coupling constants the lowest-radial-state approximation opens artifactal avoided crossings in the energy spectra and deforms the circular symmetry of the confined charge densities. In this case, there does not exist a ring thin enough to justify the restriction to the lowest radially quantized energy state. We derive the effective Hamiltonian accounting for both the lowest and the first excited radial states, and show that the inclusion of the latter restores the correct features of the exact solution. Relation of this result to the states of a quantum wire is also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303068800006 Publication Date 2012-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 32 Open Access  
  Notes ; This work was partially supported by Polish Ministry of Science and Higher Education and its grants for Scientific Research. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98258 Serial 855  
Permanent link to this record
 

 
Author Reijniers, J.; Peeters, F.M. doi  openurl
  Title Resistance effects due to magnetic guiding orbits Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 63 Issue Pages (up) 165317  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Engineering Management (ENM)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000168343400067 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:37293 Serial 2878  
Permanent link to this record
 

 
Author Sidor, Y.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Exciton in a quantum wire in the presence of parallel and perpendicular magnetic fields Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 71 Issue Pages (up) 165323,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000228763100075 Publication Date 2005-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:62437 Serial 1112  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. url  doi
openurl 
  Title Size effects and strain state of Ga1-xInxAs/GaAs multiple quantum wells: Monte Carlo study Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 78 Issue 16 Pages (up) 165326,1-165326,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The effect of the size of the GaAs barrier and the Ga1−xInxAs well on the structural properties of a Ga1−xInxAs/GaAs multiple quantum well structure is investigated using the Metropolis Monte Carlo approach based on a well-parametrized Tersoff potential. It is found that within the well the Ga-As and In-As bond lengths undergo contractions whose magnitude increases with increasing In content in sharp contrast with bond-length variations in the bulk Ga1−xInxAs systems. For fixed barrier size and In content, the contraction of the bonds is also found to increase with increasing size of the well. Using the local atomic structure of the heterostructures, a more local analysis of the strain state of the systems is given and comparison with the prediction of macroscopic continuum elasticity theory shows deviations from the latter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000260574500084 Publication Date 2008-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:72920 Serial 3036  
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Janssens, K.L. url  doi
openurl 
  Title Effect of isotropic versus anisotropic elasticity on the electronic structure of cylindrical InP/In0.49Ga0.51P self-assembled quantum dots Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue 16 Pages (up) 165333-13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of disk-shaped InP/InGaP self-assembled quantum dots is calculated within the effective-mass theory. The strain-dependent 6x6 multiband Hamiltonian for the valence band is simplified into an axially symmetric form. Both the continuum mechanical model, discretized by finite elements, and the isotropic model are used to calculate the strain distribution and their results are critically compared. The dependence of the electron and the hole energy levels on the dimensions of the quantum dot is investigated. We found that both the electron and hole energies are underestimated if the strain distribution is calculated by the isotropic elasticity theory. The agreement between the electron energies for the two approaches is better for thinner quantum dots. The heavy holes are confined inside the quantum dot, while the light holes are located outside the disk, but confined by the strain field near the edge of the disk periphery. We found that the (h) over bar /2 hole ground state crosses the 3 (h) over bar /2 ground state when the height of the quantum dot increases and becomes the ground state for sufficiently thick quantum disks. The higher hole levels exhibit both crossings between the states of the different parity and anticrossings between the states of the same parity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000175325000097 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 72 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:103361 Serial 819  
Permanent link to this record
 

 
Author Cunha, S.M.; da Costa, D.R.; Pereira, J.M., Jr.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Tunneling properties in α-T₃ lattices : effects of symmetry-breaking terms Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 16 Pages (up) 165402-165414  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The alpha-T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3 (also known as dice) lattice via the parameter alpha. These lattices are made up of three atoms per unit cell. This gives rise to an additional dispersionless flat band touching the conduction and valence bands. Electrons in this model are analogous to Dirac fermions with an enlarged pseudospin, which provides unusual tunneling features like omnidirectional Klein tunneling, also called super-Klein tunneling (SKT). However, it is unknown how small deviations in the equivalence between the atomic sites, i.e., variations in the alpha parameter, and the number of tunnel barriers changes the transmission properties. Moreover, it is interesting to learn how tunneling occurs through regions where the energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion. In this paper we investigate these properties, its dependence on the number of square barriers and the alpha parameter for either gapped and gapless cases. Furthermore, we compare these results to the case where electrons tunnel from a region with linear dispersion to a region with a bandgap. In the latter case, contrary to tunneling through a potential barrier, the SKT is no longer observed. Finally, we find specific cases where transmission is allowed due to a symmetry breaking of sublattice equivalence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000805195200001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:188614 Serial 7222  
Permanent link to this record
 

 
Author Pauwels, B.; Van Tendeloo, G.; Zhurkin, E.; Hou, M.; Verschoren, G.; Kuhn, L.T.; Bouwen, W.; Lievens, P. doi  openurl
  Title Transmission electron microscopy and Monte Carlo simulations of ordering in Au-Cu clusters produced in a laser vaporization source Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 63 Issue Pages (up) 165406,1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000168343400086 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 64 Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:54737 Serial 3705  
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Peeters, F.M. url  doi
openurl 
  Title Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages (up) 165406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of the number of stacking layers and the type of stacking on the electronic and optical properties of bilayer and trilayer black phosphorus are investigated by using first-principles calculations within the framework of density functional theory. We find that inclusion of many-body effects (i.e., electron-electron and electron-hole interactions) modifies strongly both the electronic and optical properties of black phosphorus. While trilayer black phosphorus with a particular stacking type is found to be a metal by using semilocal functionals, it is predicted to have an electronic band gap of 0.82 eV when many-body effects are taken into account within the G(0)W(0) scheme. Though different stacking types result in similar energetics, the size of the band gap and the optical response of bilayer and trilayer phosphorene are very sensitive to the number of layers and the stacking type. Regardless of the number of layers and the type of stacking, bilayer and trilayer black phosphorus are direct band gap semiconductors whose band gaps vary within a range of 0.3 eV. Stacking arrangements that are different from the ground state structure in both bilayer and trilayer black phosphorus exhibit significant modified valence bands along the zigzag direction and result in larger hole effective masses. The optical gap of bilayer (trilayer) black phosphorus varies by 0.4 (0.6) eV when changing the stacking type. The calculated binding energy of the bound exciton hardly changes with the type of stacking and is found to be 0.44 (0.30) eV for bilayer (trilayer) phosphorous.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000362435300005 Publication Date 2015-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 127 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges support from Turkish Academy of Sciences (TUBA-GEBIP). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128320 Serial 4242  
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Two-dimensional graphitic carbon nitrides: strain-tunable ferromagnetic ordering Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 16 Pages (up) 165407-165408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principle calculations, we systematically study strain tuning of the electronic properties of two- dimensional graphitic carbon nitride nanosheets with empirical formula CnNm. We found the following: (i) the ferromagnetic ordered state in the metal-free systems (n, m) = (4,3), (10,9), and (14,12) remains stable in the presence of strain of about 6%. However, the system (9,7) loses its ferromagnetic ordering when increasing strain. This is due to the presence of topological defects in the (9,7) system, which eliminates the asymmetry between spin up and spin down of the p(z) orbitals when strain is applied. (ii) By applying uniaxial strain, a band gap opens in systems which are initially gapless. (iii) In semiconducting systems which have an initial gap of about 1 eV, the band gap is closed with applying uniaxial strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523630200012 Publication Date 2020-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 27 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:168560 Serial 6643  
Permanent link to this record
 

 
Author Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F.M. url  doi
openurl 
  Title Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 16 Pages (up) 165409-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Typical Raman spectra of transition-metal dichalcogenides (TMDs) display two prominent peaks, E-2g and A(1g), that are well separated from each other. We find that these modes are degenerate in bulk WSe2 yielding one single Raman peak in contrast to other TMDs. As the dimensionality is lowered, the observed peak splits in two. In contrast, our ab initio calculations predict that the degeneracy is retained even for WSe2 monolayers. Interestingly, for minuscule biaxial strain, the degeneracy is preserved, but once the crystal symmetry is broken by a small uniaxial strain, the degeneracy is lifted. Our calculated phonon dispersion for uniaxially strained WSe2 shows a good match to the measured Raman spectrum, which suggests that uniaxial strain exists in WSe2 flakes, possibly induced during the sample preparation and/or as a result of the interaction between WSe2 and the substrate. Furthermore, we find that WSe2 undergoes an indirect-to-direct band-gap transition from bulk to monolayers, which is ubiquitous for semiconducting TMDs. These results not only allow us to understand the vibrational and electronic properties of WSe2, but also point to effects of the interaction between the monolayer TMDs and the substrate on the vibrational and electronic properties. DOI: 10.1103/PhysRevB.87.165409  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317195400007 Publication Date 2013-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 365 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. is supported by the FWO Pegasus Marie Curie Long Fellowship program. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108471 Serial 134  
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; Ketabi, S.A.; da Costa, D.R.; Peeters, F.M. url  doi
openurl 
  Title Energy levels of hybrid monolayer-bilayer graphene quantum dots Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages (up) 165410  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373572700004 Publication Date 2016-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO)-CNPq project between Flanders and Brazil and the Brazilian Science Without Borders program. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133261 Serial 4174  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: