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Effect of isotropic versus anisotropic elasticity on the electronic structure
of cylindrical InP /Ing 40Gay 5/P self-assembled quantum dots
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The electronic structure of disk-shaped InP/InGaP self-assembled quantum dots is calculated within the
effective-mass theory. The strain-dependemté6 multiband Hamiltonian for the valence band is simplified
into an axially symmetric form. Both the continuum mechanical model, discretized by finite elements, and the
isotropic model are used to calculate the strain distribution and their results are critically compared. The
dependence of the electron and the hole energy levels on the dimensions of the quantum dot is investigated. We
found that both the electron and hole energies are underestimated if the strain distribution is calculated by the
isotropic elasticity theory. The agreement between the electron energies for the two approaches is better for
thinner quantum dots. The heavy holes are confined inside the quantum dot, while the light holes are located
outside the disk, but confined by the strain field near the edge of the disk periphery. We found thathbée
ground state crosses thé /2 ground state when the height of the quantum dot increases and becomes the
ground state for sufficiently thick quantum disks. The higher hole levels exhibit both crossings between the
states of the different parity and anticrossings between the states of the same parity.
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I. INTRODUCTION a transparent explanation for the experimental results and
demands lower computational resources than more elaborate
Recently, there has been an increasing intériesself- models!® The complex three-dimensional multiband calcula-
assembled quantum dotSAQD’S) in which carriers can be tions have already been successfully applied to pyramfdal
strongly confined. Various material combinations and do@nd truncated pyramidal quantum détsEven though
shapeshave been realized by the Stranski-Krastanow modétrained cylindrical quantum dots have simpler geometry
of epitaxial growth between lattice-mismatched semiconducthan pyramidal systems, the conduction band in them has
tors. The density, size, composition, and shape of the qualy recently been analyzéa.However, to the best of our
tum dots are determined by the growth conditioesg., knoyvledge,_ the_ electronic structure of the valence band in
growth temperature, deposition time, flux, &tdn view of spramed cyllndnc_al guantum dots has not t_)eer_n explored. Pro-
this fact we will restrict ourselves to a model system, i.e.,V'de.d the full axial symm.etr.y of the Hamlltoman, the eleq-
cylindrically shaped quantum dt® in order to discuss tronic structure may in principle be described by two spatial

trends in, e.g., the position of the electron and hole levels angoordmates in these quantum dots.

- . . : In thi Iculate the strain distribution in disk-
mixing of the hole bands as function of the dimensions of thesha?)edlsty?)ae?ﬁrinvl\gilr?ggg ?qsantirfl r(ja(;r:sd:]ssir:]%utwg :jr;ﬁc(ielrsem

quantum dot. As an example, we consider the less-wellpyo04s: the CM model and the IE theory. In the disk-
studied InP/1g4¢Ga 5P quantum dot system. shaped quantum dots the IE approach is expected to work
The dot and the semiconductor matrix the dot is incorpopetter than in pyramidal quantum dots. The discretization of
rated in are made up of lattice-mismatched semiconductorghe CM elastic energy functional is performed using first-
implying that large strain fields are present in SAQD's. Ingrder finite elements’ For the IE calculation, Davies’ ap-
general, the distribution of the strain is inhomogeneous an@roach is adoptediThe strain distribution modifies the elec-
anisotropic. Different theoretical calculation schemes exist taron and hole confinement potentials. The electronic structure
obtain the strain distribution in SAQD’s. The continuum me-of the valence band is computed using the multiband
chanical(CM) modeP has been recently compared with the effective-mass theory but within the axially symmetric form.
valence force field(VFF) model in pyramidal quantum Recently, truncated pyramidal InP/InGaP quantum dots were
dots®” and the two models were found to agree reasonablgtudied theoretically* but the heavy and light hole projec-
well. The main discrepancy exists near the dot boundaryions of the valence band states were not resolved. In addi-
where strong variations were found in the VFF results. Theion to the single-electron and -hole spectra, the dependence
VFF method is, however, very slow and its accuracy dependsf the exciton transition energy on the height of the quantum
on the employed interatomic model potential for the elastiadot for fixed radius of the disk is determined by a Hartree-
energy? The simplest description of the strain distribution is type calculation**® These energies are compared with the
achieved by the isotropic elasticityE) theory, which, as photoluminescence measurements on single quantunf-dots.
recently showr, reveals the main features produced by theThis paper aims to provide a theoretical framework for the
CM model, but its usefulness for the electronic structure calelectronic structure of cylindrical quantum dots, to validate
culation has not been assessed as yet. The electron and thiea heuristic level the axial approximation for the valence
hole energy levels in self-assembled quantum dots are ustrand in strained quantum dots, and to assess the hole local-
ally calculated by the effective-mass theory, which provideszation with the specific contributions of the heavy and light
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ponent of the strain tensow,=C;4/2+ C,,, andey denotes

z the misfit strain, which is zero in the barrier, while in the dot
ego=(ag—am)/a,, whereay denotes the lattice constant in
the dot anda,,, the lattice constant of the matrix semiconduc-
tor. The parametetr enforces the lattice mismatch between
the two semiconductofsin our finite-element calculation

&z the mesh consists of brick elements in the cylindrical coor-
dinate system, shown in Fig. 1. The first-ordérat” ) shape
function, as it depends on the dimensionless coordigate
defined on the intervdl—1,1] is defined by’

- = = == = - -

3 (1+86)/2, —1<¢é<0,
Cl(1-92, o<és1.

f(£) 2

FIG. 1. A sketch of the cylindrical quantum dot. The CM cal- Products of these functions in all three directions are em-
culated variations of,, along thex andy directions and of:,,  ployed to discretize the spatial variation of the displacements
along thez axis are shown. The direction of motion of the atoms in on the elements. Positions of element vertices are denoted by
thez direction is shown by the thick arrows. Cylindrical coordinatesijk, wherei, j, andk correspond to the, p, andz directions,

p, ¢, andz are also displayed. The wetting layer depicted as therespectively. The minimization of the elastic energy reduces
shaded plane is discarded in the calculation. to a system of linear equatioﬁ%:

holes to the valence band states. The devised model may also dE, dEg dEg
be employed for the fast estimation of the electronic struc-
ture in SAQD'’s having shapes similar to cylindrical, such as
truncated conical or truncated hemispherical quantum dOtSwhereug(ijk) represents the value of thie(=x,y,z) compo-

The paper is organized as follows. In Sec. II, the calculanent of the displacement vector at thig vertex. In this
tion of the strain distribution is described. In Sec. Ill, the approach, the right-hand side of the system of equations con-
theory of the electronic structure is explained. In Sec. IV, thesists of volume integrals proportional &g which are conve-
numerical results for the electronic structure are given anghiently modified by Green’s theorem to surface integtals.
discussed. Each vertex is coupled with 27 neighboring poifitshich

when multiplied by the three components of the displace-
II. STRAIN CALCULATION ment vector gives a total of 81 nonzero coefficients in each

] ) equation. We applied a uniform mesh in thedirection and
The considered quantum disk and sketches,Qfalongx i the 5 direction forp<R. In the z direction and forp>R,

andy, ande, along thez direction, as calculated by the CM 5 nonuniform mesh, with increasing density near the disk
method, are depicted in Fig. 1. In reality, the cylindrical houndary is used. Due to the symmetry of the structure, only
quantum dot is formed on a thin wetting layer, shown by theine first octant is relevant, and the normal components of the
shaded plane in Fig. 1. It is well established that the Wettingyisplacement are taken equal to zero at the symmetry planes.

layer does not affect the strain distribution within gyrthermore, it is assumed that the structure completely re-
SAQD's, " and therefore is discarded in our calculation. AS|ayes far away from the dot. In other words all the displace-

explicitly demonstrated below,, is compressive in both the ment components are equal to zero at the surface of the dis-
dot and the matrix, with sharp variations at the boundary irretization cylinder. The mesh comprises 33 vertices inghe
both thex andy direction. e, is tensile in the dot; its sign  girection and 65 in both the andz directions, which gives a
alters and exhibits a peak structure in the matrix. system of about % 10° linear equations. As commented by
To calculate the anisotropic strain distribution in our SyS-pryor et al.® if the symmetric differences are employed in
tem we used the finite-element method. The elastic energy qhe functional relationships between strains and displace-
our circular disk is given by ments, oscillatory solutions appear. In the finite-element ap-
proach, such oscillations are avoided. The system of linear

= = :O, 3
duygij)  dUyijky  dUgije ®

EeI:j dv| §C11(8>2<x+ egytel) equations is efficiently solved by the preconditioned conju-
v gate gradient method.

Based on the ideas of Downes al,*® Davies recently
+Craexeyyt eyyezrt 2280 proposed an efficient method to calculate the strain distribu-
+2Cyy(e5yt el el) tion in an isotropic and homogeneous semmopdd’;&xlart—.

ing from the analytical expression for the strain distribution
) around a spherical inclusion and using the analogy with elec-
—2a(exxt eyt e )e0t 3agy. (D) trostatics and applying the superposition principle, a Poisson

equation was set up for a scalar potential from which the
HereV denotes the equilibrium volum€&,,, C4», andC,,  displacement vector is calculated as the gradient of the po-
denote elastic modulielastic constanjse;; is theij com-  tential. By using the divergence theorem, Davies defived
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TABLE |. Experimental values of material parameters of InP 41 -35 -29 -23 -17

and Iny ,§Ga, 5P. All values, except the electron effective mass, are -1_:7 11 05 01 07 ‘ 9=0 ‘_‘fz/fi _‘__9=__Tf_/_4__
taken from Ref. 11. For the electron effective mass the value found 16 1
in Ref. 31 is used. @0 (©) &y,

S -1
Parameter InP budGa 5P o i
me (M) 0.077 0.125 fg = g
Y1 4.95 5.24 g S
Y2 1.65 1.53 o B2
Y3 2.35 2.21 3
= (eV) 1.424 1.97 0
A (eV) 0.11 0.095 i |
a. (ev) -7.0 -75 &2
a, (eV) 0.4 0.4 i © g © 2
b (eV) —920 ~1.9 0 n/8 w4 3n/8 w2 0 5 10 15 20 25 30

¢ (rad) p (nm)
€R 12.61 12.61
C11 (10°° N/m?) 10.22 12.17 342822161004-02.08 %0 ¢8| o4
Cy, (101° N/m?) 5.76 6.01 16 " ‘ g
Cas (101 N/m?) 4.6 5.82 ’glz — ; = &2
a (nm) 0.586 87 0.565 32 = f:% :’;} 3
d) e, i) e,
% n/8 w/4 3n/8 w2 _20 5 10 15 20 25 30
&o 1+v (ri_ri’)d%’ (P(rad) p(nm)
gij(r)=geodi;— . (4)

El—v % |r—r’|3

Here, v denotes the Poisson rati®), is the surface of the dot,
andr; runs ovelrx, y, andz. If the elastic constant§;;, C5,

FIG. 2. Contour plot of the strain tensor components in zhe
=0 plane:(@) eyx, (0) eyy, (€) 4, =(exxTeyy)/2, and(d) &,,.
Cuts of these contour plots alopgfor three different values of the
polar anglee are shown in the right figure@)—(h). The distribu-

and C,, satisfy tions of £,, ande,, shown in(g) and (h) almost coincide for the

three chosen polar angles.
C11—C12—2C44=0, ©)

the strain distribution for the isotropic crystal is expected to
be reproduced by the CM model. Moreover, we choose th
Poisson ratio equal to 1/3, which results in

is also performed for the case of equal elastic constants in the
dot and the barrier. The electronic structure calculated for
fhese strains is hereafter denoted by €™M

Contour plots of the diagonal components of the strain
tensor ande,, for a quantum disk with height=2.5 nm
and radiusR=8 nm calculated by the CM model are shown
in Figs. 2a)—2(d), and cuts of these strain distributions along

Cy, and C,, are computed for the giveB4, in InGaP(see  ©=0 ([100] direction, ¢==/8, and ¢=m/4 ([110] direc-
Table ) and those elastic constants are also used for the Infion) in thez=0 plane are displayed in Figs(e?-2(h). Due
dot. It may be shown that the average of the in-plane straitQ the cylindrical symmetry of the dat,, is mirror symmet-
tensor components,,=(s,,+&,,)/2 depends only on the ¢ arounde=m/4 with respect tce,, . Figures 2a), 2(b),

symmetry which would have resulted in all contour lines

parallel to thep axis. e,y is oscillatory neak =0; it slowly
increases inside the quantum dot and exhibits a positive
bump near the dot boundary at= /2. Nevertheless, both
In elastically isotropic structures, neithep nor u, depend the average of the two in-plane strain componenis,
on the polar angle; thus the distributions of betfy ande,,  =(e.*eyy)/2, ande,, are nearly axially symmetric, as dis-
along ¢ are flat for fixedp andz hence the calculation of played in Figs. &) and 2d), respectively, and also demon-
these strains, as needed for our axially symmetric electronistrated by almost coinciding curves for the three chosen di-
structure calculation, may be simplified to only these tworections in Figs. @) and 2Zh), respectively. Referring to
coordinates. Figs. 4a), 2(b), 2(e), and Zf), one may conclude from a first
In addition to anisotropy, the CM model may straightfor- glance thate,, and e, differ substantially near xy)
wardly take into account the difference between the elastie=(0,+R) and ,y)=(=R,0). A more thorough inspection
constants in the dot and the matrix. But the |E theory asshows that the difference,,—e,, has peaks near the dot
sumes homogeneous elastic properties.order to separate boundary, while in other parts of the structure it is almost
the influence of the anisotropy from the influence of the elasnegligible.
tic constants on the electronic structure, the CM calculation Sincee,, ande,, are symmetric around the=0 plane,

Cu
2 1

Cu
Cio= Cus= 4 (6)

19

8av:§(8pp+8(p<p):2 p%(pup) (7)
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FIG. 3. The distribution of the strain compo-
nents and their angular averages calculated from
the two different strain modelda) (¢,,) calcu-
lated by the CM model(b) (e,, calculated by
the CM model. (c) e,, calculated by the IE
theory.(d) &,, calculated by the IE theory.

(byCM (d)IE

the results of the IE and CM calculations for those strains are 1. ELECTRONIC STRUCTURE CALCULATION
displayed in Figs. @—-3(d) only for z=0. The subsequent

electronic structure calculation presented in Sec. Il relies on Mixing between the condycuon and the valence k_Jand
. states due to botk- p and strain terms should be taken into
€4, @nde,, averaged ovep:

account within the &8 or more complex multiband
1 o effective-mass modef$-21 It has been well established that
<8au>:_f £a,do (8)  thek-p coupling terms between the conduction and valence
2mJo bands depend on the strdihand the proper treatment of the
nanostructures based on low-band-gap semicondutoch

and as InA9 should take these effects into accotthtowever,
in InP/InGaP quantum dots both semiconductors have large
(£,)= if”s do. 9) band gaps, which implies that the mixing between the three
o 2mlo F topmost valence bands and the conduction band can be ne-

glected without substantial loss of accuracy. Hence, the en-
The IE results foe,, ande,,, which do not depend op@ as  ergy levels originating from th&g point in the cylindrical
explained above, are shown in FiggciBand 3d). Figures  InP/InGaP quantum dots are extracted from the single-band
3(a)—3(d) show the strain distributions for 2.5-nm-high Hamiltonian
guantum dots, but the same shapes are found for other quan-

tum dot heights. One may notice the qualitative similarity of 52l 1V02 a9/ 1)\a
the strains calculated by the two methodg, ({ea,)) IS He=——+ (—)—24——(—)—
compressive inside the quantum disk, but tensile in the bar- 2 [\Mef oz 92\ Me] 02
rier material. On the contrary,,, ((&,5,)) is tensile in the dot 2 2 2
L ; h 11\| a 19 1 9
and compressive in the barrier. Both, and(e,,) slowly SR O ) | I
increase along the direction, while bothe,, and{s,,) ex- 2 |1\me/|gp? pdp  p? g2
hibit sharp discontinuities at=R. A slight increase ofe ) L
in the matrix along the axis near the center of the quantum J(1)9
dot, as shown in Fig.(8), is not present in the IE result for * dp\me) dp Tac(enya) (P2 FVe(p.2), (10

€4, @S shown in Fig. ). In the latter case, the strain exhib-

its a steady decay along tlzeaxis. The difference between whereg, p, andz denote the coordinates of the cylindrical
the two approaches is also demonstrated in the calculategystem,m, is the electron effective mass, aad is the hy-

£,,, Where a monotonic decrease of the strain alongzthe drostatic deformation potential for the conduction band. The
direction in Fig. 3d) is replaced by a small peak structure potential V(p,z) =E.q for (p<R,|z|<h) and E.,, other-

in Fig. 3(b). However, both approaches indicate that the di-wise, is due to the conduction band offset between the dot
agonal components of the strain tensor propagate a substamad the matrix. For cylindrical quantum dots, whose shape
tially larger distance along the direction than along the lacks sharp features, the piezoelectric potential is expected to
p direction. be small and to alter the energy levels only in the order of
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meV?% hence, it is neglected in our calculation. Related to 3

the small in-plane anisotropy ef,, ande,, discussed in Sec. Rs=— 7b(8xx— gyy) Hideyy, (149
Il, the angular average of the hydrostatic strdin,,q) is

employed in the calculation of the electron energy levels. For

such axially symmetric effective potential, the envelope an- s,
gular quantum numbdy, is a good quantum number.

For the valence bands, tHé'g,I';} states are described B )
by the 6x6 multiband Hamiltonian whereg;; denotes thej component of the strain tensor, and

a,, b, andd are the deformation potentials for the valence
H,=H+Hs+V,, (11)  band. The Hamiltonian given by E@12) is written in the
basis of periodic parts of Bloch functions in the center of the
whereH denotes the kinetic partis the strain-dependent Brillouin zone|J,j), denoted by the angular quantum num-
part, andV, is the diagonal matrix containing the potentials berJ and its projection on the axis j:
for heavy holes, light holes, and the holes in the split-off
band. The offset of the heavy and the light hole bands is i
—45 meV2! Both the kinetic and the strain-dependent part 13/2,312 = T|(X+iY)T>, (153
have the same form 2

:_i(szx_isyz)v (149
V2

i 32,02 = = [|(X+iY))-2Z1)], (15D

[ Enn \/ES -S 0 —R —\/ER- \/E
V2s' Ein V2Q R 0 J3s i
-t \2Q Ew 2R —\3s 0 |1/2’1/3=EH(X“YNHIZT)], (150
oo R"  V2R" Ey V28T -S' | _
R 0 -3s' s E, 420 1312~ 312) = — ——|(X—iY)]), (150
| -V2R' JBS' 0 -s Q  Es | V2
(12

i
3/2,—1/2y= —[|[(X=iY)1)+2|Z])], (158
The matrix elements of the kinetic part, labeled by the sub- | ) \/5 | 2zl

scriptk, are given by

i
Ennk= Pkt Qx,  Emk=Pk—Qx, Esok=PiTA4, 11/2,-1/2)= —[|[(X=iY)1)—|Z])]. (15f)

(138 v
52 Aside from being simpler, the 66 Hamiltonian used here
21,20 1.2 does not contain the cumbersome strain derivatives, existing
=— +KkZ+ . : L)
Pi 2mq ra(Ketkytka), 13D i1 the more comprehensive X8 model?* The in-plane
warping of the constant energy surfaces depends on the
2 s s s square of 3~ v,)/y1,2> which amounts to 14.1% and
Q= — 5 r2(ktky—2ky), (130 13.0%, in InP and InGaP, respectively, implying that only a
0 small deviation of the band structure from axial sym-
52 Yoty Yoy metry is expected, and therefore the term proportional
Rk=2 J3! 22 k2 + 22 3ki } (139 0 yz—7y2 in the Ry matr_ix e!ement, Eq(13d), is _negl-
Mo ected. Suchaxial approximation supplemented with the

block-diagonalizatioff of the multiband Hamiltonian is suc-
h? cessfully applied to both unstrained and strained quantum
Sk:z_%\/673k—k2' (139 \ells 2528 where the strain exists only in the well and is
homogeneously distributed there. Recently, it has been ap-
Here k., ky, andk, denote the components of the wave plied to the unstrained quantum dots with parabolic in-plane
vector along the crystallographic directigri®0], [010], and  confinement potenti&f For thin strained cylindrical quan-
[001], respectively,k.=k,*ik,, y1, v,, and y; are the tum dots, this approximation requires further justification. As
Luttinger parameters, anl is the spin-orbit split-off energy. a matter of fact, we found that the shear strains are small in
The matrix elements of the strain-dependent Hamiltonian, althe whole structure, except near the dot boundary; therefore,
having the subscrips, are given by we neglected the corresponding terms in E@stc and
(14d). Being small as discussed above, the in-plane anisot-
Enhs=PstQs,  Ens=Ps—Qs, Esos=Ps, (148 ropy of ¢,, ande,, is neglected in our calculation by aver-
aging the diagonal strain components oyerFurthermore,
Ps=a,(2e,,1T 2,2, Qs=b(ez,—¢;,,), (14b  since the difference,,— ey, is appreciable only in the vi-
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cinity of the dot boundary, we neglect it in EqL40). Along  while the parity of the envelope functions in the hole spinor
with the assumed cylindrical shape of the quantum dot, alls reversed for the case of the odd hole states. Héree-
these approximations make up the axially symmetric multi-notes the heavy holéh the light hole, ando the spin-orbit
band Hamiltonian, which has the form as given in ELp), split-off band. The eigenvalues for the given quantum num-
with berf are denoted by X{, wheren is the label of the state for
the givenf, X denotes the minimum value @ in the chosen

h? Y2+ v, , basis set for the valence band states, anid the parity of
Rk=2m0\/§ 2 k=, (168 the state in the direction: + for even-parity states ane
for odd-parity states. The contribution of each band to the
R.=0, S,=0, (16b) probability densityP is a sum over the two spin states, e.g.,

Phh=32_,|Fnnil% for the heavy holes. The relative contri-

; ; bution of bandi to the total probability is given byp;
while &,, and &,, are respectively replaced ky,,) and ™ o i
(£, in Eq. (14b). The form of the other matrix elements, = JvPidV, where i is hh, 1h, or so. Only the s shell
given by Eqgs(133—(139 and (138, is not modified, since (I=0) electron states, denoted byg”, are computed and
they do not break the axial symmetry. The formed axially@nalyzed. y
symmetric Hamiltonian for the holes commutes with the  Different boundary conditions for even and odd states

component of the total angular momentuf=f#, com- produce different secular equations of the single-band
posed of the Bloch pard,=j# and the envelopé pait Hamiltonian for the conduction band. Not only the number
z z

—I#, ie.,F,=J,+L,. This Hamiltonian is converted to cy- of zeros in thez direction matters for the ordering of the

lindrical coordinates by noting that the kinetic part depend?tates’ but th? spatial Iocahzatl_on in the p_Iane of the quantum
only onk. , k,, and their productsk.. expressed through dot layers brings about nontrivial ordering patterns of the
andz hasit,hezf,orm - electron states. For example, a single zero exists in the wave

functions of the 8" and 1s~ states, positioned along the
PR and z directions, respectively. Therefore, depending on the
_i'_ _) _ (17) dimensions of the quantum dot, the2energy level mayn

k.=—ie™'®
- dpp ¢ principle lie below 1s™ level or vice versa. The classification

) 5 o of the valence band states by the number of zeros is not
Sincek, andk, commute, we havé, +kj=k,k_. easily manageable. However, the crossings between states of
Andreaniet al. included the parity into the description of the same parity and the sarhare forbidderf

the I'y valence band states in symmetric quantum wélls.  The envelope functions in both the valence and conduc-
Edwardset al. subsequently extended this treatment to 6tjon bands are expanded into

X 6 Luttinger-Kohn Hamiltoniari® and Sercel and Vahala

employed the same approach to describe the valence band 1

states in quantum wires and détOrdering of the even and Xinm(®:0,2) =—=expil @)gna)(p)fn(2). (19
odd hole states depends on the width of the quantum well or V2m

the period of the superlattice, the effective confinement potpe p-dependent part of the basis function is given by
tentials, and effective masses of holes in different bands. Due

to the action of the off-diagonal matrix elements of the V2

Hamiltonian, the ordering pattern determined in the center Ony(p)= ?W‘]'(k“(l)p)' (20
of the two-dimensional Brillouin zone does not vary with the ¢ ik Rl

in-plane momentum. In other words, band mixing sup-The zdependent part of the basis function consists of the
presses crossings between different subbands in quantugfanding waves of a well-defined parity:

well structures.

In quantum dots, the transversal symmetry is removed by 1 mar
the finite and spatially variable potential in the plane of the fo(z)= —co{—z), m=135..., (2138
guantum dot layer, and a range of in-plane wave vectors \/H—z 2H;
contribute to the quantum dot state. However, if the quantum
dot is symmetric in the direction, parity of the wave func- _ 1  (mm
tion may be introduced as a good quantum number. The or- fn(2)= \/?S'n(z_sz)’ m=246.... (21b
z

dering of the even and odd states depends on the dimensions
of the quantum dot, and crossings between the states of difn Egs.(20), (213, and(21b), R, andH, denote the radius
ferent parity may occtf’ Due to the neglect of the wetting and the half-height of the expansion cylinde,R; is the
layer, a reflection symmetry around the plarse0 is recov-  nth zero of the Bessel function of orderandm the order of
ered in our cylindrically symmetric quantum dots. From thethe z-dependent cos/sin basis functidris computed for the
structure of the multiband effective-mass Hamiltonian, wegivenf andj. Matrix elements betweegp functions due to all
may easily determine that the even states in the valence bamgherators in Eq(12) are given in the Appendix. We assumed
have the form a step variation of the material parameters; thus, all matrix
elements are composed of products of six different types of
Fi=[Fnns Fin-Fso ,Fhn_sFins ;Fsor]’, (18)  matrix elements betweegy, functions, shown in Table II,
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TABLE Il. Matrix elements betweemy functions used in the TABLE lll. Three different types of matrix elements betweign

calculation of the Hamiltonian matrix. functions employed in the calculation of the Hamiltonian matrix.
Type Expression Type Expression
J Mz,0 (Frrl )
Mo (gn’(l’)|%|gn(l)> d
1 Mz1 <fmr|d—z|fm>
Mp2 <gn'(l’)|;|gn(l)> f RG f
2 o {forl 1Mo
Mp3 <gn'(|f)|(9—p2|gn(|)>
19
Hoa <g“’<")|,3%|g“(')> the Fourier transform® but we found it to be convenient to
1 complete the calculation in real spacaVhen the iteration is
Hp5 (9w anl =190 completed, the exciton transition energy is computed as
p
Mp6 (9nr)lGnay) 2
’ Eexc= E(e:?_ ESTJF 4 :
TEQYER
and three different types of matrix elements between sin/cos 6
functions, displayed in Table Ill, and are also supplemented I‘Ifcllzz [Fi.|?
by the boundary terms, which are explicitly given in the Xf thj d0 =1 (24)
Appendix. Due to the Kramers degeneracy and the Hermitic- Qp 0 [Fe—rhl

ity of the multiband Hamiltonian, out of 36 only 13 blocks of ] o
the different matrix elements should be stored in the comYve determine the binding energy as
puter memory. A peculiar characteristic of the zone center
basis states of Eqé15a—(15f) is that real symmetric Hamil- Epbin=(Ec1—Ey1) — Eexc, (25
tonian matrices are formed. Those are diagonalized by th
appropriate routine from therpack package?® +f and
—f states exhibit Kramers degeneracy; therefore, states of
single—say, positive—sign may only be considered.

In our Hartree-type exciton state calculation we assume
that the Coulomb interaction between the electrons and the V. NUMERICAL RESULTS AND DISCUSSION

holes depends only on the probability densities of the ground o the calculation of the electronic structure, all param-

states in the conduction and the valence bands. The modifigge g except the electron effective mass in InGaP, are taken
effective-mass equations for the electrons and the holes akeom ’Ref. 11 and are given in Table I. For the electr’on effec-

\Uhere E..— E,1) denote the difference between the single-
electron and -hole energies uncorrelated by the Coulomb
ifiteraction.

given by tive mass in the InGaP matrix, the more recent valuengf
6 =0.125n, is used®® The experimental value of the relative
E |Fiq|? permittivity e in InP is adopted for both InP and InGaP.
q? - oh —eheeh Both the radius and half-height of the expansion cylinder
c 477606an [=rN dQy | ¥¢ :Ech‘l’c (i.e., the simulation regionwere assumed to be 32 nm. Ten
h

(22) Bessel and 50 sin or cos functions are employed in the
calculation. Our expansion parameters are very similar to
and those for the conical quantum dots used in Ref. 32. The
Hartree procedure is iterated until the difference of the
q° Lk 40, | pen—getpen (2 ground-state energi e{‘— EUe'f in the two subsequent itera-
f e v . (23 tions deviate by less than 0.1 meV, which is achieved typi-
cally in 3 iterations.
respectively. Hereé;; and ¥, denote the envelope func-  The effective potentials for the electrons and heavy and
tions of the ground states in the valence and conductiolight holes along the andp directions are displayed in Figs.
bands, respectively, the superscejptindicates that the Cou- 4(a)—4(c) and 4d)—4(f), respectively, for a quantum dot
lomb interaction between electrons and holes is taken int@ith radiusR=8 nm and heighh=2.5 nm. Because the IE
account,(), and (), denote the spaces defined by the holestrain distribution is uniformly sampled with the step size
and the electron coordinates, respectivelys the electron 0.25 nm, the effective potentials at the: = h interfaces are
charge,ey is the relative permittivity, andl is the unity ma-  not completely abrupt, while in the CM calculation a more
trix. Equation(22) and (23) are solved iteratively until the refined mesh is applied near the boundary. We consider this
prescribed tolerance foES!— Ef? is achieved. The expan- slight difference between the two strain distributions unim-
sion into the basis, Eq19), may suggest the application of portant for the conclusions derived in this section. When

H,+

Ameger)a|re— Tl
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culation of the effective potentials for the holes, the slight

variations near the dot boundary are smeared out. But both
strain calculations gives electrons and heavy holes located
inside the dot, while the light holes are confined in the sur-

rounding InGaP matrix near the= +h/2 interfaces. For the

p direction, the effective potentials for the electrons, heavy

and light holes differ substantially, as shown in Fig&d)4

4(f). The discontinuity of the effective potential for the heavy

— —.CM, =5 i ——-CM, h=5 nm holes shown in Fig. @) indicates that some small part of the
S 000 o= ma O ® h heavy-hole envelope function can be found in the narrow
o : : quantum well located in InGaP near the boundary, but our
gs'o 10 _ICEM I calculation indicates that this part is rather negligible, at least

0.20/_ _ oM, h=5L'nm in the ground hole states wits;, and S, symmetries. The
-30 -20 -IOZ ((l)m)lo 20 5 10 lgnnZl;) 25 30 effective potential for the light holes shown in Figfycon-
p sists of the relatively flat region near the center and the con-
FIG. 4. (The left pane). The effective potentials for the electron tinuous decay in the vicinity of the dot boundary. Figures
and heavy and light holes along tkexis in a 2.5-nm-high quan- 4(b), 4(c), 4(e), and 4f) also show the effective potential
tum dot with radius 8 nm for the two different strain distributions. wells for the heavy and the light holes in the=5 nm thick
(@ The bottom of the conduction banelf). (b) The heavy-hole  quantum disk. When compared with the=2.5 nm case, the
(hh) effective potential(c) The light-hole (h) effective potential  effective potential well for the heavy holes is shallower and
(right pane). The effective potentials for the electrons, heavy andine effective potential wells for the light holes deeper. Fur-
light holes along the radial axis fa=0 in a 2.5-nm-high quantum  {harmore, the height of the barrier for the heavy holes in the

dot with radius 8 nm for the two different strain distributiortd) matrix increases, while for the light holes in the dot de-
The bottom of the conduction bandlf). (e) The effective potential creases. These changes have a profound influence on the

for the heavy holeshh). (f) The effective potential for the light electronic structure, as illustrated below.

holes (h). The solid lines in all figures denote the CM calculated We are interested in the enerdies near the too of the va-
effective potentials and the dotted lines the effective potential ob- 9 P

. . L lence band, where the split-off part in the mixed hole state is
tained by the IE theory, while the dashed lineghi (c), (e), and(f) . )
represer):t the ef'fectiv)é potentials foh&5 nm high quantum dot. negligible, and the heavy-hple and the light-hole zone center

states govern the electronic structure. It turns out that the

compared with the CM model, the IE theory leads to adround state hab=3/2. For this value of, the heavy holes
deeper effective potential well for the electrons and a shalbavel=0 andl=—3 and the light holed=—1 and|=
lower one for the heavy holes. As a matter of fact, the CM-—2- The main parts in the probability density belong to the
calculated value of the conduction band potential in the cenenvelope functions with the smallest absolute values of en-
ter of the dot with respect to the bottom of the conductionvelope quantum numbergl|=0 and|[I[=1 in the f=3/2
band in the matrix amounts to 306.3 meV, whereas the sanfe@se, and those envelope functions will only be discussed
quantity calculated from the IE theory is equal to 324.5 mevbelow. Due to the smalleji| (smaller kinetic energyand
For the heavy holes, the CM computed effective potential irdeeper effective potential well for the heavy holes, tigg1
the center of the dot equals 80.3 meV, while 56.9 meV isstate is dominated by the heavy-hole part, as shown in the
found from the IE theory. The vanishing hydrostatic strain inleft part of Fig. %a). The light-hole part is displayed in the
the IE calculation provides the minimum of the elastic en-right part of Fig. %a). The separation between the consecu-
ergy, but it gives an incorrect effective potential in the bar-tive contour lines in the right part is 100 times smaller than
rier, as shown in Figs.(4) and 4d). Notice that the effective the separation in the left part, indicating a negligible contri-
potential wells for the electrons and the heavy holes favobution of the light-hole part in this state. The heavy-hole part
confinement inside the dot, while the light holes are expellecamounts top,,=0.855, while the light-hole part i,
from the dot to regions in InGaP near the dot boundary. The=0.129. Since the effective potential wells for the light holes
barrier for the light holes in the dot is higher within the CM created by the inhomogeneous strain distribution are located
model as compared to the result from the IE calculation. A®n the top and the bottom of the quantum disk, the light-hole
already explaineds ,, and(e,,) depicted in Figs. @ and  partis located below and above the disk, pit<pp, due to
3(c) have different shapes, which accounts for the differencéhe larger envelope angular momentum of the light holes.
between the effective potentials for the heavy and the lighiThe location of the light-hole states is similar to the location
holes calculated by the two strain models outside the dot, agf the B states in the notation of Pryet al* for truncated
shown in Figs. &) and 4c). It seems that the effective po- pyramidal quantum dots. As a consequence of the different
tential for the conduction band shown in Figagis not  envelope angular momenta, shapes of the probability densi-
affected by the peculiar distribution ¢t,,). Since the hy- ties are quite different for the two bands. The light-hole
drostatic part in the effective potentials for the holes is muckcloud is positioned g # 0, while the peak of the heavy-hole
smaller (cf. a,~—7 eV with a,=0.4 eV; see Table)] the cloud is in the center of the dot.
“wavy” shapes of the effective potentials for the heavy and  For the 1S]), state, the envelope angular quantum number
light holes occur due to the tetragonal straim. the IE cal-  of the lowest magnitude=0 belongs to the light hole; thus,

165333-8



EFFECT OF ISOTROPIC VERSUS ANISOTRGCPI . . PHYSICAL REVIEW B 65 165333

0.00 T T T T T T T 0.04
- v, (CM)
. o—e ¢, (IE
001, N =(E) 10.03 _
777777777777777777 , 0 \.\'\-\_ S
| o o= |
------------------ | L -0.02f e S 002 1
~— ™~ &
1 u; = nsav(CM) o\. “F
@18, + —g(E) |
» h=2.5 nmf V03 = 10.01
-6 S 4 . : o ]
0 2 4 6 8 2 4 6 8 10 I
nm nm
By pnm) -0.04 0.00

2.0 2.5 3.0 3.5 40 45 5.0

h (am)
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vy FIG. 6. The dependence of the average of the in-plane strain

components ,, = (exxt+ &yy)/2 ande,, in the center of the quantum

dot as a function of the dot height.

______________

©187 low the quantum disk, as shown in Figch In this quantum
P 1111/121 dot the effective potential wells for the light holes are deeper
T (~46 meV near the=*h boundaries than the effective
2 S(nn?) ¢ 10 potential well for the heavy holes{(41 meV in the center of

the do}. Furthermore, due to the increased width of the ef-
FIG. 5. The probability densities of thes],, and 1S;), states as ~ fective potential wells for the light holes, the heavy-hole
calculated from the CM determined strain distributions in a quan-contribution to the probability density in theS], state is
tum dot with radius 8 nm. Darker regions denote higher probabilitynegligible forh=5 nm. We found thap,,=0.803 andp;,
density. (8 The probability density of the S, state for ah  =0.102 in the ground state fér=5 nm high quantum dot.
=2.5 nm high quantum dot. The light-hole part in this state is dis-  The electronic structure for the strain distributions calcu-
played in the right panel. Note that the separation between the tWiyted for the two models are compared for a set of quantum
consecutive contour lines in the main figure equalsxig 3 dots, having the same raditl®=8 nm and heights in the
nm- % while in the right panel it corresponds to a 100 times ;ange 2_5 nm. In the multiband effective-mass calculation
smaller interval. (b) The 1Sj,, probability density in theh applied to self-assembled quantum dots, all dimensions are
=2.5 nm high quantum dot. The heavy-hole and the light-hole partg,q o1 mutually scaled Since the strain distribution is vir-
are exel'cmy 'nqwated in the flguréc) The probability density 9f tually independent of this scaliri§,the electronic structure
;hueanltsulr/; thtse t'ﬂea;rgfngngorég;a?girggS?/(;E'mz(t)r;5 M high - 1 odification is brought about only by the size variation. If a
' ' single dimension is scaled, however, the strain fields change,

. o ) . influencing the electronic structure in a nontrivial way. The
two peaks of the light-hole probability density occur, as in-, 5 es ofe,, ande,, in the center of the quantum dot are

dicated in Fig. #b). On the other hand, thg peak of the .ring- shown in Fig. 6. One may notice that, decreases much
shaped heavy-hole cloud — 1 andl =2) is located inside  ¢;qter thare ,, increases when the height of the quantum dot
the dot, but shifted towards the=R boundary. The heavy- i,creases and also that the magnitudes of all diagonal strain
hole envelope orbital momentum is larger in this state than IRomponents are larger if calculated by the CM method.

the 153+/2_ state, i‘”d consequently the heavy-hole part is The energies of the two lowesshell states are displayed
smaller in the B, state p,,=0.718 andp;,=0.246). A iy Fig. 7(a). The energies of th&,,, and S, ground states
noticeable effect is the increase of the width of the heavyzre shown in Fig. ), the energies of the higher hole states
hole cloud neap=0. This effect is due to the finite penetra- of even and odd parity calculated by the CM model are dis-
tion depth of the light-hole cloud in the dot region, which played in Figs. %) and 7d), respectively, and the compari-
effectively increases the width of the probability density inggn of the exciton energies computed for the three strain
the z direction. Due to the shallow effective potential wells ~giculations is shown in Fig.(@. We found that the aniso-
for the light holes[see Figs. &), 4(c), 4(€), and 4f)] the  tropic strain distributions produce the same features in the
heavy-hole part dominates also in th/3 state. The prob- electronic structure as the strain distributions calculated from
ability densities of the $;, and 1S, states for the IE cal- the IE theory. The similarities and differences between the
culated strain distributions are similar to the diagrams detwo calculations are summarized below.

picted in Figs. %) and 8b). Due to the simultaneous  First, as a consequence of the zero hydrostatic strain in
deepening of the effective potential well for the heavy holesnGaP and the smaller effective potential for the electrons
and shallowing of the effective potential wells for the light shown in Fig. 4a), the ground electron energy is underesti-
holes, as explained above, the ground state inhth& nm  mated when the IE calculated strain distributions are used.
thick quantum dot haS;;, symmetry. The probability density Energies of the $;,, and 1S;,, states are also underestimated
consists of two light-hole clouds, positioned above and beby the IE theory, since the main part in the probability den-
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ig‘; —~——_. @] =15t (CM% tfe IE and the CM strain. distributions exhibit peaksdat
—ooe—se |15+t (CM") 2.5 nm. Ford<dy, the influence of the decrease of the
% L90r °~—0—o |5 15+ (IE) effective potential is smaller, and the hole ground state en-
5 1.85 ﬁ‘i"\-ﬁ. * 257 (CM) ergy increases in response to the increase of the SAQD’s
1.80 P~ T 257 (CMY) height. The situation reverses far>d,, where the hole
s, ., ?\? o 25* (IE) ground-state energy decreases as a result of the decrease of
’s _/"'\_\ ()| = 153322 (CM% the confining potential for the heavy holes.
o ->'4; 183, (CM") Fourth, due to the different confining potentials for the
2 20 u—‘ﬂta—'/./oﬁﬂ c }gsj_z Eg)/f) heavy holes and the light holes, taeomponent of the total
e 15 s e 1 S:,i (CMY) orbital momentum of the ground hole state amounts$-}0

=37%/2 for d<4.5 nm, while it isF,=#/2 for thicker quan-

o187, (IE
i (E) tum dots. This crossover occurs below 4 nm if the IE theory

~15 e | %285, (CM) is used for the calculation of the strain distribution. The
E 10 o /Z-——g/f e 35+ (CM) 1PZ, state[not shown in Fig. #)] is nearly parallel to the
Ei/ 5l 5 45; D/Qi./ u 28, (CM) 1S§,2 state and displaced by approximately 10 meV towards
ol o 0T ¢—* © o 387, (CM) lower energies. It crosses thsﬂL2 state at approximately 2.5
g nm; thus, the two lowest hole stateshis-2 nm high quan-
20 /D/o 1S5, (CM) tum dot are B, and 1P.,,. The deviations from axial sym-
2 15 ; /Z/o/ e 25, (CM) metry might be assessed by the diagonalization of the full
g 10 5/849/ —" B multiband Hamiltonian, Eq(12), and the three-dimensional
R 2’/'2;-1,/0/ ° 15y, (CM) Schralinger equation, given by Eq10), but with (epyq)
ol I=—° (@)| ° 257, (CM) replaced byepyq in the CM approach. SinceSf,, 1S;,,
1.86f g ®© s oM and 1P5+,2 are the lowest electron energies in the axially sym-
S 183 \u\ metric description for the 2—3-nm-thick quantum dots, the
N 1.80 \;\.\1\ - cM? weights of those states may priori be largest in the full
R 1'77 \u\ T three-dimensional description of the hole spectra.
) D\\:\ Fifth, CM® and CM calculated electron energies exhibit a
174 20 25 30 35 40 45 5'-30 2 IE very good agreement for the whole explored range of quan-
R h(ﬁm) o tum dot heights, as indicated in Fig.a¥ by the dashed lines.

The hole energies determined by the £d&lculation, how-
FIG. 7. The electron and the hole energies calculated for thever, deviate from the CM result in a more complex way, as

strain distributions determined by the three types of the strain caldisplayed in Fig. ) for the ground B;), (long dashed line
culation. The quantum dot height varies in the range 2—5 nm, whilegnd 15;2 (short dashed linestates. For thin quantum dots
the radius is fixed aR=8 nm.(a) The energies of the two lowest  ipe 15;/2 and 13132 states calculated for the same elastic con-
shell electron statesh) The dependence of the energies of 81 giants in the dot and barrier are close to the energies ex-
and 1Sy, hole states on the height of the quantum dot. Note theyacteq from the IE calculation, but whenincreases they
reversal of the angular momentum of the hole ground state fron?ipproach the CM calculated ho'Ie levels and almost, coincide
37i/2 t0 /2. (c) Higher hole energy levels &, andSy, symme- iy those fevels for 5-nm-high quantum dots. Such behavior
tries f_or the strain distributions calculated by the CM meth@@l. indicates that the proper description of the .hole spectra in
The first two hole levels 0By, andS,, symmetry, as they vary cylindrical quantum dots should encompass both anisotropy

with the height of the quantum dot. In botb) and(d), there exist . L. .
anticrossings between subsequent hole levels of the same symm%rJd the spatial variation of the elastic constants. The cross-

try, but the two states of different parity may croga. The depen-  OVer between $3, and 1S,, states found by the CM and IE
dence of the exciton energy on the height of the quantum dot for &alculation is also reproduced for the elastically anisotropic
fixed dot radiusR=8 nm. The result of the CRicalculation, shown  Structure consisting of the semiconductors with the same
by the dashed line, does not deviate much from the CM calculationglastic constants. Its position, indicated by the crossing be-
tween the dashed lines in FigibJ, almost coincides with the
sity belongs to the heavy holes, and the effective potentiatrossover found for the strains computed by the IE theory;
for the heavy holes is lower if calculated by the IE theory. i.e., itis shifted towards smaller heights in respect to the CM
Second due to the smaller effective potential barrier for result.
the electrons in InGaP and larger increase gf; calculated Sixth higher hole states show anticrossings, as shown in
by the IE theory, the IE-calculated separation between th&igs. 1c) and qd) for the even- and odd-parity states, re-
two lowests shell states becomes larger than the separatioapectively. Only the CM calculated curves are displayed, but
between the CM-calculated energy levels when the height dhe same qualitative behavior was found for both the IE and
the quantum dot increases. CM?O calculations. In addition to the crossings of the states of
Third, the energies of the ground electron state and théhe different angular momenta, there also exist crossings be-
exciton energy decrease monotonically with the height of théween the odd and even parity states, which may be demon-
guantum dot. On the contrary, the hole ground states for botktrated by comparing Fig.(@) with Fig. 7(d). For example,
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we found that the $, state crosses theS3, state at ap- . ' ' ' ' '
proximately 2.5 nm. 1.92f \ @ |
Seventhdue to the increase of the localization in the wide S 1.90} . )
guantum wells for the light holes on the top and the bottom, < \
1, States in then=5 nm high quantum dot appear as dou- " 188 \_
blets. In other words, the system behaves as two coupled 1.86} 1+ T~
guantum dots for the light holes. Since the separation be- ls: (CM): : : :\7
tween those “strain-induced” quantum dots is rather_ Iarge_, 30--—-1S;72 M) -/.
the levels are nearly degenerate. The envelope functions dif- ! h -
fer by the parity, but their probability densities almost coin- S0} o185y, (CM)/' /°
. (5} O
cide. E15) —
Eighth the exciton transition energy calculated by the two K 10} VA/
strain models decreases with increasimgFor 2-nm-high 5t 07 T
guantum dots, the IE computed exciton energy is larger, but or * . . . (.b) ]
decreases faster with an increase of the quantum dot height 4 5 % (nm)7 9

than the exciton energy calculated by means of the CM

method. The exciton binding energy for the CM strain dis- g g The dependence of the electr@h and hole(b) levels
tributions varies between 4.8 and 6.0 meV fobetween 2 on the radius in @=2.5 nm high quantum dot. Due ®>h, the

and 5 nm, and its influence on the obtained trends is smallefecrease of the electron energy is rather small, while the ground
than the behavior of the ground electron and hole energie$wole energies exhibit a crossingRt=5.1 nm.

In other words, the difference between the slopes of the CM

and IE calculated curves shown in Figie)/ mainly arises
from the different slopes of the CM and IE curves for

Eas+(N) in Fig. 7(a). A slight increase of the slope of the  Fjnay the dependence of the electron and the hole ener-
exciton tran5|t|on energy versus the quantum dot helght fobies on the radius of the quantum dot for a fixed height
h>4.5 nm is provided by the crossover 083, and 1Sj, =25 nm is explored. Only the electron and hole energies
and the increase of the energy of th§;} state. Due to the jthout Coulomb interaction are calculated. These are shown
higher electron energies fé&r<3 nm and lower hole ener- i Figs. §a) and 8b), respectively. Due tR>h, the 1s*

gies in the whole range df, the CM calculated exciton state in the conduction band exhibits a weaker dependence
transition energy is higher than the CM determined one fopn the quantum dot radius than on the quantum dot height
h=4 nm. Hov_vever., reversal of the sign of electron energie§compare Fig. &) with Fig. 7(a)]. The two curves depicting
and a vanishing difference between the ground hole stategs; and 1S/, states have a different curvature. As for the
obtained by the two calculations, reverses the sign of th@ase of increasing height, the variation of the strain field
difference between the CM and CMalculated exciton tran- results into a crossing of theSk, and 1S}, states when the

sition energies foh>4 nm. _ , radius of the dot decreases.
The experimental photoluminescence line locatexd

1.800 eV agrees with our result for the 4-nm-thick quantum

dots, while for theh=3 nm high quantum détwe found V. SUMMARY

1.814 eV. For éh=2 nm thick quantum dot, the center of

mass of the photoluminescence line is 40 meV lower than the In conclusion, the multiband effective-mass approach for
theoretical resulf. Our calculated energies are higher thandisk-shaped InP/InGaP self-assembled quantum dots was
those found experimentally which may be due to either thgresented in this paper. Based on the small in-plane warping
limited applicability of the continuum mechanical model for term of the kinetic Hamiltonian, the axial approximation was
thin cylindrical quantum dots or experimental uncertaintiesadopted for the kinetic part of the Hamiltonian. We found
in the determination of the dot height. In InAs/GaAs quan-that the average of the in-plane strain tensor components
tum dots it was found that the VFF model produces deepefs,,+&y,)/2 and ¢,, exhibits negligible deviations from
confining potentials for both the electrons and the holesaxial symmetry, whereas the shear strains are negligible ev-
thereby offering a few tens of meV smaller free electron-holeerywhere except near the boundary. Based on these findings,
transition energies than the CM modeThis may provide the strain-dependent Hamiltonian was replaced by an axially
the explanation for the difference between the experimensymmetric one. The electron and hole energy levels were
and the theory found here, but the comparison with a VFF¢alculated for isotropic and anisotropic strain distributions
type calculation is out of the scope of the present paperand compared for a range of quantum dot heights. We found
Moreover, as recently noticed, the choice of the Luttingersimilar qualitative behavior for the two strain calculations,
parameters and the electron effective mass might be crucialith both the electron and hole energies slightly lower for
for the accuracy of the electronic structure calculation by thehe IE calculated strain distribution. A crossover of the
multiband  effective-mass  theofy, which delivers =3/2 to af =1/2 hole ground state was found for both strain
~100 meV higher transition energies in InAs/GaAs quan-models. The obtained exciton energies are in reasonable
tum dots than found by the pseudopotential thédfjhere-  agreement with the experimental results.

fore, our theoretical results provide rather trends and order of
magnitude estimates of the electron and hole energies.
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APPENDIX

Luttinger parameters and their linear combinations in the
multiband effective-mass Hamiltonian are constant in both
the dot and the matrix, but vary abruptly at the dot boundary. 2. S, matrix element of the multiband effective-mass
Matrix elements between different functions, Eq.(19), Hamiltonian
consist of boundary terms originating from the derivatives of
7 and those where; is the scaling function. The latter are for
calculated as

In cylindrical coordinates, th§, term in Eq.(12) has the
m

h? 6 dys d i dys d  dys 0
M 0= TmipmiMzmj+ (74— Tm) MpdiMzdj, (AL Skz_\/_—e*w _0vs 2 19 9 7Y 9
. . . . . 2my 2 dz dp p 9z d¢ dp Iz
where the first letter in the subscript of the one-dimensional
matrix elementse on the right-hand side denotes the direc- 2i 92 92
tion (p or z), the second subscript refers to the domain of the +; Y3900z 273 apdz)’ (A8)

integration (n is for the whole expansion cylinder awnidfor

the doj, and the third letter is the label of the type of the and the matrix element is given by

matrix element. Six different types of matrix elements in the 5 5

p direction, and three types for thledirection are shown in ('n'm’|SInm) = ﬁ_ @5 E Ms.  (A9)

Tables Il and IlI, respectively. 2m, 2 'TitlE se
Furthermore, it may be shown that all boundary terms

depend on one of the following functions: where
A, 0= =Ry 11 (R)Gn)(R), (A2a) Ms1=—(¥3d— ¥3m)Azotpd,1- (A10a
ddng M= —1(¥3d— Y3m) Az oM pd,2: (A10Db)
A, 1= ~Rgyn(R) d;‘ S (A2b) mmese
=R Mss=—(¥3d— Yam) A, 04241 (A100)
Ayo= (= d)fp(=d) = fr (+d)fy(+d), (A2c) Mg==2M, .1, (A10d)
df df
Azi=fm(=d) 5, 7d—fmf(d)E y (A2d) Mgs=—2IM, 5. (A10¢)

3. Ry matrix element of the axially symmetric multiband

1. Diagonal terms andQ, matrix element in the multiband X AR
effective-mass Hamiltonian

effective-mass Hamiltonian
The R, matrix element in Eq(12) in cylindrical coordi-

All diagonal andQ, matrix elements of the kinetic part of K
nates is given by

the Hamiltonian(12), generally denoted byp,, have the

form 5 — _ .
R f B2 19 dy d —2i 9 i dys 9
= —_— e —_—Af————— — f—— —— — —_—
Dy=D,+D,= 77p(k>2<+ k§)+ Uzkg- (A3) K7 2m, py&p dp dp  "p2de p dp d¢
7, and », are linear combinations of the Luttinger param- Rl
eters mulltiplied byk2/(2m,). The p dependent part of this _;_ZJF 12 —+ _; , (A11)
operator is equal to ap? p?ag? P dedp
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where?= (y2t y3)/2. Matrix elements due to the, opera-
tor in the multiband Hamiltonian are therefore
#2 >
<|,n,m,|Rk||nm>:_\/§5|,2,|/z MRi! (A12)
2mq i=1

where

Mr1=—(Ya— Ym)A 142404 (A133)
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Mgo=— (;d_;m)ﬁAp,Olu‘zd,Ov (A13b)
M R3: - M;3,0' (A13C)
Mgs=(1-21)M7 4, (A13d)
MR5:|(2_I)M;5’0. (A13e)
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