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Effect of isotropic versus anisotropic elasticity on the electronic structure
of cylindrical InP ÕIn0.49Ga0.51P self-assembled quantum dots

M. Tadić,* F. M. Peeters,† and K. L. Janssens
Department of Physics, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Antwerp, Belgium

~Received 15 October 2001; published 12 April 2002!

The electronic structure of disk-shaped InP/InGaP self-assembled quantum dots is calculated within the
effective-mass theory. The strain-dependent 636 multiband Hamiltonian for the valence band is simplified
into an axially symmetric form. Both the continuum mechanical model, discretized by finite elements, and the
isotropic model are used to calculate the strain distribution and their results are critically compared. The
dependence of the electron and the hole energy levels on the dimensions of the quantum dot is investigated. We
found that both the electron and hole energies are underestimated if the strain distribution is calculated by the
isotropic elasticity theory. The agreement between the electron energies for the two approaches is better for
thinner quantum dots. The heavy holes are confined inside the quantum dot, while the light holes are located
outside the disk, but confined by the strain field near the edge of the disk periphery. We found that the\/2 hole
ground state crosses the 3\/2 ground state when the height of the quantum dot increases and becomes the
ground state for sufficiently thick quantum disks. The higher hole levels exhibit both crossings between the
states of the different parity and anticrossings between the states of the same parity.

DOI: 10.1103/PhysRevB.65.165333 PACS number~s!: 73.21.La, 62.20.Dc, 71.35.2y, 85.35.Be
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I. INTRODUCTION

Recently, there has been an increasing interest1 in self-
assembled quantum dots~SAQD’s! in which carriers can be
strongly confined. Various material combinations and
shapes1 have been realized by the Stranski-Krastanow m
of epitaxial growth between lattice-mismatched semicond
tors. The density, size, composition, and shape of the qu
tum dots are determined by the growth conditions~e.g.,
growth temperature, deposition time, flux, etc.!. In view of
this fact we will restrict ourselves to a model system, i.
cylindrically shaped quantum dot,2–4 in order to discuss
trends in, e.g., the position of the electron and hole levels
mixing of the hole bands as function of the dimensions of
quantum dot. As an example, we consider the less-w
studied InP/In0.49Ga0.51P quantum dot system.

The dot and the semiconductor matrix the dot is incor
rated in are made up of lattice-mismatched semiconduct
implying that large strain fields are present in SAQD’s.
general, the distribution of the strain is inhomogeneous
anisotropic. Different theoretical calculation schemes exis
obtain the strain distribution in SAQD’s. The continuum m
chanical~CM! model5 has been recently compared with th
valence force field~VFF! model in pyramidal quantum
dots,6,7 and the two models were found to agree reasona
well. The main discrepancy exists near the dot bound
where strong variations were found in the VFF results. T
VFF method is, however, very slow and its accuracy depe
on the employed interatomic model potential for the elas
energy.8 The simplest description of the strain distribution
achieved by the isotropic elasticity~IE! theory, which, as
recently shown,9 reveals the main features produced by t
CM model, but its usefulness for the electronic structure c
culation has not been assessed as yet. The electron an
hole energy levels in self-assembled quantum dots are
ally calculated by the effective-mass theory, which provid
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a transparent explanation for the experimental results
demands lower computational resources than more elabo
models.10 The complex three-dimensional multiband calcu
tions have already been successfully applied to pyramid5,7

and truncated pyramidal quantum dots.11 Even though
strained cylindrical quantum dots have simpler geome
than pyramidal systems, the conduction band in them
only recently been analyzed.12 However, to the best of ou
knowledge, the electronic structure of the valence band
strained cylindrical quantum dots has not been explored. P
vided the full axial symmetry of the Hamiltonian, the ele
tronic structure may in principle be described by two spa
coordinates in these quantum dots.

In this paper, we calculate the strain distribution in dis
shaped type-II InP/InGaP quantum dots using two differ
methods: the CM model and the IE theory. In the dis
shaped quantum dots the IE approach is expected to w
better than in pyramidal quantum dots. The discretization
the CM elastic energy functional is performed using fir
order finite elements.13 For the IE calculation, Davies’ ap
proach is adopted.9 The strain distribution modifies the elec
tron and hole confinement potentials. The electronic struc
of the valence band is computed using the multiba
effective-mass theory but within the axially symmetric form
Recently, truncated pyramidal InP/InGaP quantum dots w
studied theoretically,11 but the heavy and light hole projec
tions of the valence band states were not resolved. In a
tion to the single-electron and -hole spectra, the depende
of the exciton transition energy on the height of the quant
dot for fixed radius of the disk is determined by a Hartre
type calculation.14,15 These energies are compared with t
photoluminescence measurements on single quantum do2,3

This paper aims to provide a theoretical framework for t
electronic structure of cylindrical quantum dots, to valida
at a heuristic level the axial approximation for the valen
band in strained quantum dots, and to assess the hole lo
ization with the specific contributions of the heavy and lig
©2002 The American Physical Society33-1
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holes to the valence band states. The devised model may
be employed for the fast estimation of the electronic str
ture in SAQD’s having shapes similar to cylindrical, such
truncated conical or truncated hemispherical quantum do

The paper is organized as follows. In Sec. II, the calcu
tion of the strain distribution is described. In Sec. III, th
theory of the electronic structure is explained. In Sec. IV,
numerical results for the electronic structure are given
discussed.

II. STRAIN CALCULATION

The considered quantum disk and sketches of«xx alongx
andy, and«zz along thez direction, as calculated by the CM
method, are depicted in Fig. 1. In reality, the cylindric
quantum dot is formed on a thin wetting layer, shown by
shaded plane in Fig. 1. It is well established that the wett
layer does not affect the strain distribution with
SAQD’s,6,16 and therefore is discarded in our calculation.
explicitly demonstrated below,«xx is compressive in both the
dot and the matrix, with sharp variations at the boundary
both thex and y direction.«zz is tensile in the dot; its sign
alters and exhibits a peak structure in the matrix.

To calculate the anisotropic strain distribution in our sy
tem we used the finite-element method. The elastic energ
our circular disk is given by17

Eel5E
V
dVF1

2
C11~«xx

2 1«yy
2 1«zz

2 !

1C12~«xx«yy1«yy«zz1«zz«xx!

12C44~«xy
2 1«yz

2 1«zx
2 !

22a~«xx1«yy1«zz!«013a«0
2G . ~1!

HereV denotes the equilibrium volume,C11, C12, andC44
denote elastic moduli~elastic constants!, « i j is the i j com-

FIG. 1. A sketch of the cylindrical quantum dot. The CM ca
culated variations of«xx along thex and y directions and of«zz

along thez axis are shown. The direction of motion of the atoms
thez direction is shown by the thick arrows. Cylindrical coordinat
r, w, and z are also displayed. The wetting layer depicted as
shaded plane is discarded in the calculation.
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ponent of the strain tensor,a5C11/21C12, and«0 denotes
the misfit strain, which is zero in the barrier, while in the d
«05(ad2am)/am , wheread denotes the lattice constant i
the dot andam the lattice constant of the matrix semicondu
tor. The parametera enforces the lattice mismatch betwee
the two semiconductors.6 In our finite-element calculation
the mesh consists of brick elements in the cylindrical co
dinate system, shown in Fig. 1. The first-order~‘‘hat’’ ! shape
function, as it depends on the dimensionless coordinatj
defined on the interval@21,1# is defined by13

f ~j!5H ~11j!/2, 21<j<0,

~12j!/2, 0,j<1.
~2!

Products of these functions in all three directions are e
ployed to discretize the spatial variation of the displaceme
on the elements. Positions of element vertices are denote
i jk , wherei, j, andk correspond to thew, r, andz directions,
respectively. The minimization of the elastic energy redu
to a system of linear equations:16

dEel

dux( i jk )
5

dEel

duy( i jk )
5

dEel

duz( i jk )
50, ~3!

whereuj( i jk ) represents the value of thej (5x,y,z) compo-
nent of the displacement vector at thei jk vertex. In this
approach, the right-hand side of the system of equations c
sists of volume integrals proportional toa, which are conve-
niently modified by Green’s theorem to surface integrals13

Each vertex is coupled with 27 neighboring points,6 which
when multiplied by the three components of the displa
ment vector gives a total of 81 nonzero coefficients in ea
equation. We applied a uniform mesh in thew direction and
in the r direction forr,R. In thez direction and forr.R,
a nonuniform mesh, with increasing density near the d
boundary is used. Due to the symmetry of the structure, o
the first octant is relevant, and the normal components of
displacement are taken equal to zero at the symmetry pla
Furthermore, it is assumed that the structure completely
laxes far away from the dot. In other words all the displac
ment components are equal to zero at the surface of the
cretization cylinder. The mesh comprises 33 vertices in thw
direction and 65 in both ther andz directions, which gives a
system of about 43105 linear equations. As commented b
Pryor et al.,6 if the symmetric differences are employed
the functional relationships between strains and displa
ments, oscillatory solutions appear. In the finite-element
proach, such oscillations are avoided. The system of lin
equations is efficiently solved by the preconditioned con
gate gradient method.

Based on the ideas of Downeset al.,18 Davies recently
proposed an efficient method to calculate the strain distri
tion in an isotropic and homogeneous semiconductor.9 Start-
ing from the analytical expression for the strain distributi
around a spherical inclusion and using the analogy with e
trostatics and applying the superposition principle, a Pois
equation was set up for a scalar potential from which
displacement vector is calculated as the gradient of the
tential. By using the divergence theorem, Davies derived9

e

3-2
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« i j ~r !5«0d i j 2
«0

4p

11n

12n R
S8

~r i2r i8!dSj8

ur2r 8u3
. ~4!

Here,n denotes the Poisson ratio,S8 is the surface of the dot
andr i runs overx, y, andz. If the elastic constantsC11, C12,
andC44 satisfy

C112C1222C4450, ~5!

the strain distribution for the isotropic crystal is expected
be reproduced by the CM model. Moreover, we choose
Poisson ratio equal to 1/3, which results in

C125
C11

2
, C445

C11

4
. ~6!

C12 and C44 are computed for the givenC11 in InGaP~see
Table I! and those elastic constants are also used for the
dot. It may be shown that the average of the in-plane st
tensor components«av5(«xx1«yy)/2 depends only on the
displacement along the radial coordinate:17

«av5
1

2
~«rr1«ww!5

1

2

1

r

]

]r
~rur!. ~7!

In elastically isotropic structures, neitherur nor uz depend
on the polar angle; thus the distributions of both«av and«zz
along w are flat for fixedr and z, hence the calculation o
these strains, as needed for our axially symmetric electro
structure calculation, may be simplified to only these t
coordinates.

In addition to anisotropy, the CM model may straightfo
wardly take into account the difference between the ela
constants in the dot and the matrix. But the IE theory
sumes homogeneous elastic properties.9 In order to separate
the influence of the anisotropy from the influence of the el
tic constants on the electronic structure, the CM calculat

TABLE I. Experimental values of material parameters of I
and In0.49Ga0.51P. All values, except the electron effective mass,
taken from Ref. 11. For the electron effective mass the value fo
in Ref. 31 is used.

Parameter InP In0.49Ga0.51P

me (m0) 0.077 0.125
g1 4.95 5.24
g2 1.65 1.53
g3 2.35 2.21
Eg ~eV! 1.424 1.97
D ~eV! 0.11 0.095
ac ~eV! 27.0 27.5
av ~eV! 0.4 0.4
b ~eV! 22.0 21.9
eR 12.61 12.61
C11 (1010 N/m2) 10.22 12.17
C12 (1010 N/m2) 5.76 6.01
C44 (1010 N/m2) 4.6 5.82
a ~nm! 0.586 87 0.565 32
16533
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is also performed for the case of equal elastic constants in
dot and the barrier. The electronic structure calculated
these strains is hereafter denoted by CM0.

Contour plots of the diagonal components of the str
tensor and«av for a quantum disk with heighth52.5 nm
and radiusR58 nm calculated by the CM model are show
in Figs. 2~a!–2~d!, and cuts of these strain distributions alon
w50 ~@100# direction!, w5p/8, andw5p/4 ~@110# direc-
tion! in thez50 plane are displayed in Figs. 2~e!–2~h!. Due
to the cylindrical symmetry of the dot,«xx is mirror symmet-
ric aroundw5p/4 with respect to«yy . Figures 2~a!, 2~b!,
2~e!, and 2~f! show that neither«xx nor «yy exhibit axial
symmetry which would have resulted in all contour lin
parallel to thew axis.«xx is oscillatory nearw50; it slowly
increases inside the quantum dot and exhibits a posi
bump near the dot boundary atw5p/2. Nevertheless, both
the average of the two in-plane strain components,«av
5(«xx1«yy)/2, and«zz are nearly axially symmetric, as dis
played in Figs. 2~c! and 2~d!, respectively, and also demon
strated by almost coinciding curves for the three chosen
rections in Figs. 2~g! and 2~h!, respectively. Referring to
Figs. 2~a!, 2~b!, 2~e!, and 2~f!, one may conclude from a firs
glance that «xx and «yy differ substantially near (x,y)
5(0,6R) and (x,y)5(6R,0). A more thorough inspection
shows that the difference«xx2«yy has peaks near the do
boundary, while in other parts of the structure it is almo
negligible.

Since«av and «zz are symmetric around thez50 plane,

e
d

FIG. 2. Contour plot of the strain tensor components in thez
50 plane:~a! «xx , ~b! «yy , ~c! «av5(«xx1«yy)/2, and ~d! «zz.
Cuts of these contour plots alongr for three different values of the
polar anglew are shown in the right figures~e!–~h!. The distribu-
tions of «av and «zz shown in~g! and ~h! almost coincide for the
three chosen polar angles.
3-3
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FIG. 3. The distribution of the strain compo
nents and their angular averages calculated fr
the two different strain models.~a! ^«av& calcu-
lated by the CM model.~b! ^«zz& calculated by
the CM model. ~c! «av calculated by the IE
theory.~d! «zz calculated by the IE theory.
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the results of the IE and CM calculations for those strains
displayed in Figs. 3~a!–3~d! only for z>0. The subsequen
electronic structure calculation presented in Sec. III relies
«av and«zz averaged overw:

^«av&5
1

2pE0

2p

«avdw ~8!

and

^«zz&5
1

2pE0

2p

«zzdw. ~9!

The IE results for«av and«zz, which do not depend onw as
explained above, are shown in Figs. 3~c! and 3~d!. Figures
3~a!–3~d! show the strain distributions for 2.5-nm-hig
quantum dots, but the same shapes are found for other q
tum dot heights. One may notice the qualitative similarity
the strains calculated by the two methods.«av (^«av&) is
compressive inside the quantum disk, but tensile in the
rier material. On the contrary,«zz (^«zz&) is tensile in the dot
and compressive in the barrier. Both«av and ^«av& slowly
increase along ther direction, while both«zz and ^«zz& ex-
hibit sharp discontinuities atr5R. A slight increase of̂«av&
in the matrix along thez axis near the center of the quantu
dot, as shown in Fig. 3~a!, is not present in the IE result fo
«av as shown in Fig. 3~c!. In the latter case, the strain exhib
its a steady decay along thez axis. The difference betwee
the two approaches is also demonstrated in the calcul
«zz, where a monotonic decrease of the strain along thz
direction in Fig. 3~d! is replaced by a small peak structu
in Fig. 3~b!. However, both approaches indicate that the
agonal components of the strain tensor propagate a sub
tially larger distance along thez direction than along the
r direction.
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III. ELECTRONIC STRUCTURE CALCULATION

Mixing between the conduction and the valence ba
states due to bothk•p and strain terms should be taken in
account within the 838 or more complex multiband
effective-mass models.19–21 It has been well established tha
the k•p coupling terms between the conduction and valen
bands depend on the strain,19 and the proper treatment of th
nanostructures based on low-band-gap semiconductors~such
as InAs! should take these effects into account.20 However,
in InP/InGaP quantum dots both semiconductors have la
band gaps, which implies that the mixing between the th
topmost valence bands and the conduction band can be
glected without substantial loss of accuracy. Hence, the
ergy levels originating from theG6 point in the cylindrical
InP/InGaP quantum dots are extracted from the single-b
Hamiltonian

Hc52
\2

2 F S 1

me
D ]2

]z2
1

]

]z S 1

me
D ]

]zG
2

\2

2 H S 1

me
D F ]2

]r2
1

1

r

]

]r
1

1

r2

]2

]w2G
1

]

]r S 1

me
D ]

]rJ 1ac^«hyd&~r,z!1Vc~r,z!, ~10!

wherew, r, andz denote the coordinates of the cylindric
system,me is the electron effective mass, andac is the hy-
drostatic deformation potential for the conduction band. T
potentialVc(r,z)5Ecd for (r,R,uzu,h) and Ecm , other-
wise, is due to the conduction band offset between the
and the matrix. For cylindrical quantum dots, whose sha
lacks sharp features, the piezoelectric potential is expecte
be small and to alter the energy levels only in the order
3-4
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meV22; hence, it is neglected in our calculation. Related
the small in-plane anisotropy of«av and«zz discussed in Sec
II, the angular average of the hydrostatic strain^«hyd& is
employed in the calculation of the electron energy levels.
such axially symmetric effective potential, the envelope
gular quantum numberl e is a good quantum number.

For the valence bands, the$G8 ,G7% states are describe
by the 636 multiband Hamiltonian

Hv5Hk1Hs1Vv , ~11!

whereHk denotes the kinetic part,Hs the strain-dependen
part, andVv is the diagonal matrix containing the potentia
for heavy holes, light holes, and the holes in the split-
band. The offset of the heavy and the light hole bands
245 meV.11 Both the kinetic and the strain-dependent p
have the same form

H

53
Ehh A2S 2S 0 2R 2A2R

A2S† Elh A2Q R 0 A3S

2S† A2Q Eso A2R 2A3S 0

0 R† A2R† Ehh A2S† 2S†

2R† 0 2A3S† A2S Elh A2Q

2A2R† A3S† 0 2S A2Q Eso

4 .

~12!

The matrix elements of the kinetic part, labeled by the s
script k, are given by

Ehhk5Pk1Qk , Elhk5Pk2Qk , Esok5Pk1D,
~13a!

Pk52
\2

2m0
g1~kx

21ky
21kz

2!, ~13b!

Qk52
\2

2m0
g2~kx

21ky
222kz

2!, ~13c!

Rk5
\2

2m0
A3Fg21g3

2
k2

2 1
g22g3

2
k1

2 G , ~13d!

Sk5
\2

2m0
A6g3k2kz . ~13e!

Here kx , ky , and kz denote the components of the wa
vector along the crystallographic directions@100#, @010#, and
@001#, respectively,k65kx6 iky , g1 , g2, and g3 are the
Luttinger parameters, andD is the spin-orbit split-off energy
The matrix elements of the strain-dependent Hamiltonian
having the subscripts, are given by

Ehhs5Ps1Qs , Elhs5Ps2Qs , Esos5Ps , ~14a!

Ps5av~2«av1«zz!, Qs5b~«av2«zz!, ~14b!
16533
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Rs52
A3

2
b~«xx2«yy!1 id«xy , ~14c!

Ss52
d

A2
~«zx2 i«yz!, ~14d!

where« i j denotes thei j component of the strain tensor, an
av , b, andd are the deformation potentials for the valen
band. The Hamiltonian given by Eq.~12! is written in the
basis of periodic parts of Bloch functions in the center of t
Brillouin zone uJ, j &, denoted by the angular quantum num
ber J and its projection on thez axis j:

u3/2,3/2&5
i

A2
u~X1 iY!↑&, ~15a!

u3/2,1/2&5
i

A6
@ u~X1 iY!↓&22uZ↑&], ~15b!

u1/2,1/2&5
i

A3
@ u~X1 iY!↓&1uZ↑&], ~15c!

u3/2,23/2&52
i

A2
u~X2 iY!↓&, ~15d!

u3/2,21/2&5
i

A6
@ u~X2 iY!↑&12uZ↓&], ~15e!

u1/2,21/2&5
i

A3
@ u~X2 iY!↑&2uZ↓&]. ~15f!

Aside from being simpler, the 636 Hamiltonian used here
does not contain the cumbersome strain derivatives, exis
in the more comprehensive 838 model.21 The in-plane
warping of the constant energy surfaces depends on
square of (g32g2)/g1,23 which amounts to 14.1% and
13.0%, in InP and InGaP, respectively, implying that only
small deviation of the band structure from axial sym
metry is expected, and therefore the term proportio
to g32g2 in the Rk matrix element, Eq.~13d!, is negl-
ected. Suchaxial approximation supplemented with the
block-diagonalization24 of the multiband Hamiltonian is suc
cessfully applied to both unstrained and strained quan
wells,25,26 where the strain exists only in the well and
homogeneously distributed there. Recently, it has been
plied to the unstrained quantum dots with parabolic in-pla
confinement potential.23 For thin strained cylindrical quan
tum dots, this approximation requires further justification.
a matter of fact, we found that the shear strains are sma
the whole structure, except near the dot boundary; theref
we neglected the corresponding terms in Eqs.~14c! and
~14d!. Being small as discussed above, the in-plane ani
ropy of «av and«zz is neglected in our calculation by ave
aging the diagonal strain components overw. Furthermore,
since the difference«xx2«yy is appreciable only in the vi-
3-5
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cinity of the dot boundary, we neglect it in Eq.~14c!. Along
with the assumed cylindrical shape of the quantum dot,
these approximations make up the axially symmetric mu
band Hamiltonian, which has the form as given in Eq.~12!,
with

Rk5
\2

2m0
A3

g21g3

2
k2

2 , ~16a!

Rs50, Ss50, ~16b!

while «av and «zz are respectively replaced bŷ«av& and
^«zz& in Eq. ~14b!. The form of the other matrix element
given by Eqs.~13a!–~13c! and ~13e!, is not modified, since
they do not break the axial symmetry. The formed axia
symmetric Hamiltonian for the holes commutes with thez
component of the total angular momentumFz5 f \, com-
posed of the Bloch partJz5 j \ and the envelope partLz
5 l\, i.e.,Fz5Jz1Lz . This Hamiltonian is converted to cy
lindrical coordinates by noting that the kinetic part depen
only on k6 , kz , and their products.k6 expressed throughr
andz has the form

k652 ie6 iwS ]

]r
6

i

r

]

]w D . ~17!

Sincekx andky commute, we havekx
21ky

25k1k2 .
Andreaniet al. included the parity into the description o

the G8 valence band states in symmetric quantum well27

Edwardset al. subsequently extended this treatment to
36 Luttinger-Kohn Hamiltonian,28 and Sercel and Vahal
employed the same approach to describe the valence
states in quantum wires and dots.29 Ordering of the even and
odd hole states depends on the width of the quantum we
the period of the superlattice, the effective confinement
tentials, and effective masses of holes in different bands.
to the action of the off-diagonal matrix elements of t
Hamiltonian, the ordering pattern determined in the cen
of the two-dimensional Brillouin zone does not vary with t
in-plane momentum. In other words, band mixing su
presses crossings between different subbands in qua
well structures.

In quantum dots, the transversal symmetry is removed
the finite and spatially variable potential in the plane of t
quantum dot layer, and a range of in-plane wave vec
contribute to the quantum dot state. However, if the quan
dot is symmetric in thez direction, parity of the wave func
tion may be introduced as a good quantum number. The
dering of the even and odd states depends on the dimen
of the quantum dot, and crossings between the states of
ferent parity may occur.23 Due to the neglect of the wettin
layer, a reflection symmetry around the planez50 is recov-
ered in our cylindrically symmetric quantum dots. From t
structure of the multiband effective-mass Hamiltonian,
may easily determine that the even states in the valence
have the form

F15@Fhh1 ,Flh2 ,Fso2 ,Fhh2 ,Flh1 ,Fso1#T, ~18!
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while the parity of the envelope functions in the hole spin
is reversed for the case of the odd hole states. Herehh de-
notes the heavy hole,lh the light hole, andso the spin-orbit
split-off band. The eigenvalues for the given quantum nu
ber f are denoted bynXf

s , wheren is the label of the state fo
the givenf, X denotes the minimum value ofu l u in the chosen
basis set for the valence band states, ands is the parity of
the state in thez direction: 1 for even-parity states and2
for odd-parity states. The contribution of each band to
probability densityP is a sum over the two spin states, e.
Phh5( i 51

2 uFhhiu2, for the heavy holes. The relative contr
bution of band i to the total probability is given bypi
5*VPidV, where i is hh, lh, or so. Only the s shell
( l e50) electron states, denoted bynss, are computed and
analyzed.

Different boundary conditions for even and odd sta
produce different secular equations of the single-ba
Hamiltonian for the conduction band. Not only the numb
of zeros in thez direction matters for the ordering of th
states, but the spatial localization in the plane of the quan
dot layers brings about nontrivial ordering patterns of t
electron states. For example, a single zero exists in the w
functions of the 2s1 and 1s2 states, positioned along ther
and z directions, respectively. Therefore, depending on
dimensions of the quantum dot, the 2s1 energy level mayin
principle lie below 1s2 level or vice versa. The classificatio
of the valence band states by the number of zeros is
easily manageable. However, the crossings between stat
the same parity and the samef are forbidden.23

The envelope functions in both the valence and cond
tion bands are expanded into

x lnm
6 ~w,r,z!5

1

A2p
exp~ i l w!gn( l )~r! f m

6~z!. ~19!

The r-dependent part of the basis function is given by

gn( l )~r!5
A2

Rt

1

uJu l u11~kn( l )Rt!u
Jl~kn( l )r!. ~20!

The z-dependent part of the basis function consists of
standing waves of a well-defined parity:

f m
1~z!5

1

AHz

cosS mp

2Hz
zD , m51,3,5, . . . , ~21a!

f m
2~z!5

1

AHz

sinS mp

2Hz
zD , m52,4,6. . . . ~21b!

In Eqs. ~20!, ~21a!, and ~21b!, Rt and Hz denote the radius
and the half-height of the expansion cylinder,kn( l )Rt is the
n th zero of the Bessel function of orderl, andm the order of
the z-dependent cos/sin basis function.l is computed for the
given f andj. Matrix elements betweenx functions due to all
operators in Eq.~12! are given in the Appendix. We assume
a step variation of the material parameters; thus, all ma
elements are composed of products of six different types
matrix elements betweengn( l ) functions, shown in Table II,
3-6
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and three different types of matrix elements between sin
functions, displayed in Table III, and are also supplemen
by the boundary terms, which are explicitly given in th
Appendix. Due to the Kramers degeneracy and the Herm
ity of the multiband Hamiltonian, out of 36 only 13 blocks o
the different matrix elements should be stored in the co
puter memory. A peculiar characteristic of the zone cen
basis states of Eqs.~15a!–~15f! is that real symmetric Hamil-
tonian matrices are formed. Those are diagonalized by
appropriate routine from theARPACK package.30 1 f and
2 f states exhibit Kramers degeneracy; therefore, states
single—say, positive—sign may only be considered.

In our Hartree-type exciton state calculation we assu
that the Coulomb interaction between the electrons and
holes depends only on the probability densities of the gro
states in the conduction and the valence bands. The mod
effective-mass equations for the electrons and the holes
given by

S Hc2
q2

4pe0eR
E

Vh

(
i 51

6

uFi1u2

ure2rhu
dVh

D Cc
eh5Ec

ehCc
eh

~22!

and

S Hv1I
q2

4pe0eR
E

Ve

uCc1u2

ure2rhu
dVeDFeh5Ev

ehFeh, ~23!

respectively. HereFi1 and Cc1 denote the envelope func
tions of the ground states in the valence and conduc
bands, respectively, the superscripteh indicates that the Cou
lomb interaction between electrons and holes is taken
account,Vh and Ve denote the spaces defined by the h
and the electron coordinates, respectively,q is the electron
charge,eR is the relative permittivity, andI is the unity ma-
trix. Equation~22! and ~23! are solved iteratively until the
prescribed tolerance forEc1

eh2Ev1
eh is achieved. The expan

sion into the basis, Eq.~19!, may suggest the application o

TABLE II. Matrix elements betweeng functions used in the
calculation of the Hamiltonian matrix.

Type Expression

mr,1 ^gn8(l8)u
]

]r
ugn(l)&

mr,2 ^gn8(l8)u
1

r
ugn(l)&

mr,3 ^gn8(l8)u
]2

]r2
ugn(l)&

mr,4 ^gn8(l8)u
1

r

]

]r
ugn(l)&

mr,5 ^gn8(l8)u
1

r2
ugn(l)&

mr,6 ^gn8( l 8)ugn( l )&
16533
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the Fourier transform,23 but we found it to be convenient to
complete the calculation in real space.15 When the iteration is
completed, the exciton transition energy is computed as

Eexc5Ec1
eh2Ev1

eh1
q2

4pe0eR

3E
Vh

dVhE
Ve

dVe

uCc1u2(
i 51

6

uFi1u2

ure2rhu
. ~24!

We determine the binding energy as

Ebin5~Ec12Ev1!2Eexc, ~25!

where (Ec12Ev1) denote the difference between the sing
electron and -hole energies uncorrelated by the Coulo
interaction.

IV. NUMERICAL RESULTS AND DISCUSSION

For the calculation of the electronic structure, all para
eters, except the electron effective mass in InGaP, are ta
from Ref. 11 and are given in Table I. For the electron effe
tive mass in the InGaP matrix, the more recent value ofme
50.125m0 is used.31 The experimental value of the relativ
permittivity eR in InP is adopted for both InP and InGa
Both the radius and half-height of the expansion cylind
~i.e., the simulation region! were assumed to be 32 nm. Te
Bessel and 50 sin or cos functions are employed in
calculation. Our expansion parameters are very similar
those for the conical quantum dots used in Ref. 32. T
Hartree procedure is iterated until the difference of t
ground-state energiesEc1

eh2Ev1
eh in the two subsequent itera

tions deviate by less than 0.1 meV, which is achieved ty
cally in 3 iterations.

The effective potentials for the electrons and heavy a
light holes along thez andr directions are displayed in Figs
4~a!–4~c! and 4~d!–4~f!, respectively, for a quantum do
with radiusR58 nm and heighth52.5 nm. Because the IE
strain distribution is uniformly sampled with the step si
0.25 nm, the effective potentials at thez56h interfaces are
not completely abrupt, while in the CM calculation a mo
refined mesh is applied near the boundary. We consider
slight difference between the two strain distributions uni
portant for the conclusions derived in this section. Wh

TABLE III. Three different types of matrix elements betweenf m

functions employed in the calculation of the Hamiltonian matrix

Type Expression

mz,0 ^ f m8u f m&

mz,1 ^fm8u
d

dz
ufm&

mz,2
^fm8u

d2

dz2
ufm&
3-7
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compared with the CM model, the IE theory leads to
deeper effective potential well for the electrons and a sh
lower one for the heavy holes. As a matter of fact, the C
calculated value of the conduction band potential in the c
ter of the dot with respect to the bottom of the conduct
band in the matrix amounts to 306.3 meV, whereas the s
quantity calculated from the IE theory is equal to 324.5 m
For the heavy holes, the CM computed effective potentia
the center of the dot equals 80.3 meV, while 56.9 meV
found from the IE theory. The vanishing hydrostatic strain
the IE calculation provides the minimum of the elastic e
ergy, but it gives an incorrect effective potential in the b
rier, as shown in Figs. 4~a! and 4~d!. Notice that the effective
potential wells for the electrons and the heavy holes fa
confinement inside the dot, while the light holes are expe
from the dot to regions in InGaP near the dot boundary. T
barrier for the light holes in the dot is higher within the C
model as compared to the result from the IE calculation.
already explained,«av and ^«av& depicted in Figs. 3~a! and
3~c! have different shapes, which accounts for the differe
between the effective potentials for the heavy and the li
holes calculated by the two strain models outside the do
shown in Figs. 4~b! and 4~c!. It seems that the effective po
tential for the conduction band shown in Fig. 4~a! is not
affected by the peculiar distribution of^«av&. Since the hy-
drostatic part in the effective potentials for the holes is mu
smaller ~cf. ac;27 eV with av50.4 eV; see Table I!, the
‘‘wavy’’ shapes of the effective potentials for the heavy a
light holes occur due to the tetragonal strain.1 In the IE cal-

FIG. 4. ~The left panel.! The effective potentials for the electro
and heavy and light holes along thez axis in a 2.5-nm-high quan
tum dot with radius 8 nm for the two different strain distribution
~a! The bottom of the conduction band (cb). ~b! The heavy-hole
(hh) effective potential.~c! The light-hole (lh) effective potential
~right panel!. The effective potentials for the electrons, heavy a
light holes along the radial axis forz50 in a 2.5-nm-high quantum
dot with radius 8 nm for the two different strain distributions.~d!
The bottom of the conduction band (cb). ~e! The effective potential
for the heavy holes (hh). ~f! The effective potential for the ligh
holes (lh). The solid lines in all figures denote the CM calculat
effective potentials and the dotted lines the effective potential
tained by the IE theory, while the dashed lines in~b!, ~c!, ~e!, and~f!
represent the effective potentials for ah55 nm high quantum dot.
16533
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culation of the effective potentials for the holes, the slig
variations near the dot boundary are smeared out. But b
strain calculations gives electrons and heavy holes loca
inside the dot, while the light holes are confined in the s
rounding InGaP matrix near thez56h/2 interfaces. For the
r direction, the effective potentials for the electrons, hea
and light holes differ substantially, as shown in Figs. 4~d!–
4~f!. The discontinuity of the effective potential for the hea
holes shown in Fig. 4~e! indicates that some small part of th
heavy-hole envelope function can be found in the narr
quantum well located in InGaP near the boundary, but
calculation indicates that this part is rather negligible, at le
in the ground hole states withS3/2

1 andS1/2
1 symmetries. The

effective potential for the light holes shown in Fig. 4~f! con-
sists of the relatively flat region near the center and the c
tinuous decay in the vicinity of the dot boundary. Figur
4~b!, 4~c!, 4~e!, and 4~f! also show the effective potentia
wells for the heavy and the light holes in theh55 nm thick
quantum disk. When compared with theh52.5 nm case, the
effective potential well for the heavy holes is shallower a
the effective potential wells for the light holes deeper. F
thermore, the height of the barrier for the heavy holes in
matrix increases, while for the light holes in the dot d
creases. These changes have a profound influence on
electronic structure, as illustrated below.

We are interested in the energies near the top of the
lence band, where the split-off part in the mixed hole state
negligible, and the heavy-hole and the light-hole zone cen
states govern the electronic structure. It turns out that
ground state hasf 53/2. For this value off, the heavy holes
have l 50 and l 523 and the light holesl 521 and l 5
22. The main parts in the probability density belong to t
envelope functions with the smallest absolute values of
velope quantum numbers,u l u50 and u l u51 in the f 53/2
case, and those envelope functions will only be discus
below. Due to the smalleru l u ~smaller kinetic energy! and
deeper effective potential well for the heavy holes, the 1S3/2

1

state is dominated by the heavy-hole part, as shown in
left part of Fig. 5~a!. The light-hole part is displayed in th
right part of Fig. 5~a!. The separation between the consec
tive contour lines in the right part is 100 times smaller th
the separation in the left part, indicating a negligible con
bution of the light-hole part in this state. The heavy-hole p
amounts tophh50.855, while the light-hole part isplh
50.129. Since the effective potential wells for the light hol
created by the inhomogeneous strain distribution are loca
on the top and the bottom of the quantum disk, the light-h
part is located below and above the disk, butplh,phh due to
the larger envelope angular momentum of the light hol
The location of the light-hole states is similar to the locati
of the B states in the notation of Pryoret al.11 for truncated
pyramidal quantum dots. As a consequence of the differ
envelope angular momenta, shapes of the probability de
ties are quite different for the two bands. The light-ho
cloud is positioned atrÞ0, while the peak of the heavy-hol
cloud is in the center of the dot.

For the 1S1/2
1 state, the envelope angular quantum num

of the lowest magnitudel 50 belongs to the light hole; thus

-

3-8
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two peaks of the light-hole probability density occur, as
dicated in Fig. 5~b!. On the other hand, the peak of the rin
shaped heavy-hole cloud (l 521 andl 52) is located inside
the dot, but shifted towards ther5R boundary. The heavy
hole envelope orbital momentum is larger in this state tha
the 1S3/2

1 state, and consequently the heavy-hole part
smaller in the 1S1/2

1 state (phh50.718 andplh50.246). A
noticeable effect is the increase of the width of the hea
hole cloud nearr50. This effect is due to the finite penetra
tion depth of the light-hole cloud in the dot region, whic
effectively increases the width of the probability density
the z direction. Due to the shallow effective potential we
for the light holes@see Figs. 4~b!, 4~c!, 4~e!, and 4~f!# the
heavy-hole part dominates also in the 1S1/2

1 state. The prob-
ability densities of the 1S3/2

1 and 1S1/2
1 states for the IE cal-

culated strain distributions are similar to the diagrams
picted in Figs. 5~a! and 5~b!. Due to the simultaneou
deepening of the effective potential well for the heavy ho
and shallowing of the effective potential wells for the lig
holes, as explained above, the ground state in theh55 nm
thick quantum dot hasS1/2

1 symmetry. The probability density
consists of two light-hole clouds, positioned above and

FIG. 5. The probability densities of the 1S3/2
1 and 1S1/2

1 states as
calculated from the CM determined strain distributions in a qu
tum dot with radius 8 nm. Darker regions denote higher probab
density. ~a! The probability density of the 1S3/2

1 state for ah
52.5 nm high quantum dot. The light-hole part in this state is d
played in the right panel. Note that the separation between the
consecutive contour lines in the main figure equals 1.531023

nm23/2, while in the right panel it corresponds to a 100 tim
smaller interval. ~b! The 1S1/2

1 probability density in theh
52.5 nm high quantum dot. The heavy-hole and the light-hole p
are explicitly indicated in the figure.~c! The probability density of
the 1S1/2

1 state in ah55 nm high quantum dot. For 5 nm hig
quantum dots, the ground hole state has aS1/2

1 symmetry.
16533
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low the quantum disk, as shown in Fig. 5~c!. In this quantum
dot the effective potential wells for the light holes are dee
(;46 meV near thez56h boundaries! than the effective
potential well for the heavy holes (;41 meV in the center of
the dot!. Furthermore, due to the increased width of the
fective potential wells for the light holes, the heavy-ho
contribution to the probability density in the 1S1/2

1 state is
negligible for h55 nm. We found thatplh50.803 andphh
50.102 in the ground state forh55 nm high quantum dot.

The electronic structure for the strain distributions calc
lated for the two models are compared for a set of quan
dots, having the same radiusR58 nm and heights in the
range 2–5 nm. In the multiband effective-mass calculat
applied to self-assembled quantum dots, all dimensions
usually mutually scaled.7 Since the strain distribution is vir
tually independent of this scaling,16 the electronic structure
modification is brought about only by the size variation. If
single dimension is scaled, however, the strain fields chan
influencing the electronic structure in a nontrivial way. T
values of«av and «zz in the center of the quantum dot ar
shown in Fig. 6. One may notice that«zz decreases much
faster than«av increases when the height of the quantum d
increases and also that the magnitudes of all diagonal s
components are larger if calculated by the CM method.

The energies of the two lowests shell states are displaye
in Fig. 7~a!. The energies of theS1/2

1 and S3/2
1 ground states

are shown in Fig. 7~b!, the energies of the higher hole stat
of even and odd parity calculated by the CM model are d
played in Figs. 7~c! and 7~d!, respectively, and the compar
son of the exciton energies computed for the three st
calculations is shown in Fig. 7~e!. We found that the aniso
tropic strain distributions produce the same features in
electronic structure as the strain distributions calculated fr
the IE theory. The similarities and differences between
two calculations are summarized below.

First, as a consequence of the zero hydrostatic strain
InGaP and the smaller effective potential for the electro
shown in Fig. 4~a!, the ground electron energy is underes
mated when the IE calculated strain distributions are us
Energies of the 1S3/2

1 and 1S1/2
1 states are also underestimat

by the IE theory, since the main part in the probability de

-
y

-
o

ts

FIG. 6. The dependence of the average of the in-plane st
components«av5(«xx1«yy)/2 and«zz in the center of the quantum
dot as a function of the dot height.
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sity belongs to the heavy holes, and the effective poten
for the heavy holes is lower if calculated by the IE theory

Second, due to the smaller effective potential barrier f
the electrons in InGaP and larger increase of«hyd calculated
by the IE theory, the IE-calculated separation between
two lowests shell states becomes larger than the separa
between the CM-calculated energy levels when the heigh
the quantum dot increases.

Third, the energies of the ground electron state and
exciton energy decrease monotonically with the height of
quantum dot. On the contrary, the hole ground states for b

FIG. 7. The electron and the hole energies calculated for
strain distributions determined by the three types of the strain
culation. The quantum dot height varies in the range 2–5 nm, w
the radius is fixed atR58 nm.~a! The energies of the two lowests
shell electron states.~b! The dependence of the energies of the 1S1/2

1

and 1S3/2
1 hole states on the height of the quantum dot. Note

reversal of the angular momentum of the hole ground state f
3\/2 to \/2. ~c! Higher hole energy levels ofS3/2

1 andS1/2
1 symme-

tries for the strain distributions calculated by the CM method.~d!
The first two hole levels ofS3/2

2 and S1/2
2 symmetry, as they vary

with the height of the quantum dot. In both~c! and ~d!, there exist
anticrossings between subsequent hole levels of the same sym
try, but the two states of different parity may cross.~e! The depen-
dence of the exciton energy on the height of the quantum dot f
fixed dot radiusR58 nm. The result of the CM0 calculation, shown
by the dashed line, does not deviate much from the CM calculat
16533
al

e
n
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e
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the IE and the CM strain distributions exhibit peaks atd0

;2.5 nm. Ford,d0, the influence of the decrease of th
effective potential is smaller, and the hole ground state
ergy increases in response to the increase of the SAQ
height. The situation reverses ford.d0, where the hole
ground-state energy decreases as a result of the decrea
the confining potential for the heavy holes.

Fourth, due to the different confining potentials for th
heavy holes and the light holes, thez component of the tota
orbital momentum of the ground hole state amounts toFz

53\/2 for d,4.5 nm, while it isFz5\/2 for thicker quan-
tum dots. This crossover occurs below 4 nm if the IE theo
is used for the calculation of the strain distribution. T
1P5/2

1 state@not shown in Fig. 7~b!# is nearly parallel to the
1S3/2

1 state and displaced by approximately 10 meV towa
lower energies. It crosses the 1S1/2

1 state at approximately 2.5
nm; thus, the two lowest hole states inh52 nm high quan-
tum dot are 1S3/2

1 and 1P5/2
1 . The deviations from axial sym

metry might be assessed by the diagonalization of the
multiband Hamiltonian, Eq.~12!, and the three-dimensiona
Schrödinger equation, given by Eq.~10!, but with ^«hyd&
replaced by«hyd in the CM approach. Since 1S3/2

1 , 1S1/2
1 ,

and 1P5/2
1 are the lowest electron energies in the axially sy

metric description for the 2–3-nm-thick quantum dots, t
weights of those states maya priori be largest in the full
three-dimensional description of the hole spectra.

Fifth, CM0 and CM calculated electron energies exhibi
very good agreement for the whole explored range of qu
tum dot heights, as indicated in Fig. 7~a! by the dashed lines
The hole energies determined by the CM0 calculation, how-
ever, deviate from the CM result in a more complex way,
displayed in Fig. 7~b! for the ground 1S3/2

1 ~long dashed line!
and 1S1/2

1 ~short dashed line! states. For thin quantum dot
the 1S3/2

1 and 1S1/2
1 states calculated for the same elastic co

stants in the dot and barrier are close to the energies
tracted from the IE calculation, but whenh increases, they
approach the CM calculated hole levels and almost coinc
with those levels for 5-nm-high quantum dots. Such behav
indicates that the proper description of the hole spectra
cylindrical quantum dots should encompass both anisotr
and the spatial variation of the elastic constants. The cro
over between 1S3/2

1 and 1S1/2
1 states found by the CM and IE

calculation is also reproduced for the elastically anisotro
structure consisting of the semiconductors with the sa
elastic constants. Its position, indicated by the crossing
tween the dashed lines in Fig. 7~b!, almost coincides with the
crossover found for the strains computed by the IE theo
i.e., it is shifted towards smaller heights in respect to the C
result.

Sixth, higher hole states show anticrossings, as shown
Figs. 7~c! and 7~d! for the even- and odd-parity states, r
spectively. Only the CM calculated curves are displayed,
the same qualitative behavior was found for both the IE a
CM0 calculations. In addition to the crossings of the states
the different angular momenta, there also exist crossings
tween the odd and even parity states, which may be dem
strated by comparing Fig. 7~c! with Fig. 7~d!. For example,
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we found that the 1S3/2
1 state crosses the 2S3/2

2 state at ap-
proximately 2.5 nm.

Seventh, due to the increase of the localization in the wi
quantum wells for the light holes on the top and the botto
S1/2

1 states in theh55 nm high quantum dot appear as do
blets. In other words, the system behaves as two cou
quantum dots for the light holes. Since the separation
tween those ‘‘strain-induced’’ quantum dots is rather lar
the levels are nearly degenerate. The envelope functions
fer by the parity, but their probability densities almost co
cide.

Eighth, the exciton transition energy calculated by the tw
strain models decreases with increasingh. For 2-nm-high
quantum dots, the IE computed exciton energy is larger,
decreases faster with an increase of the quantum dot he
than the exciton energy calculated by means of the
method. The exciton binding energy for the CM strain d
tributions varies between 4.8 and 6.0 meV forh between 2
and 5 nm, and its influence on the obtained trends is sma
than the behavior of the ground electron and hole energ
In other words, the difference between the slopes of the
and IE calculated curves shown in Fig. 7~e! mainly arises
from the different slopes of the CM and IE curves f
E1s1(h) in Fig. 7~a!. A slight increase of the slope of th
exciton transition energy versus the quantum dot height
h.4.5 nm is provided by the crossover of 1S3/2

1 and 1S1/2
1

and the increase of the energy of the 1S1/2
1 state. Due to the

higher electron energies forh,3 nm and lower hole ener
gies in the whole range ofh, the CM0 calculated exciton
transition energy is higher than the CM determined one
h<4 nm. However, reversal of the sign of electron energ
and a vanishing difference between the ground hole st
obtained by the two calculations, reverses the sign of
difference between the CM and CM0 calculated exciton tran
sition energies forh.4 nm.

The experimental photoluminescence line located2 at
1.800 eV agrees with our result for the 4-nm-thick quant
dots, while for theh53 nm high quantum dot2 we found
1.814 eV. For ah52 nm thick quantum dot, the center o
mass of the photoluminescence line is 40 meV lower than
theoretical result.3 Our calculated energies are higher th
those found experimentally which may be due to either
limited applicability of the continuum mechanical model f
thin cylindrical quantum dots or experimental uncertaint
in the determination of the dot height. In InAs/GaAs qua
tum dots it was found that the VFF model produces dee
confining potentials for both the electrons and the ho
thereby offering a few tens of meV smaller free electron-h
transition energies than the CM model.7 This may provide
the explanation for the difference between the experim
and the theory found here, but the comparison with a VF
type calculation is out of the scope of the present pa
Moreover, as recently noticed, the choice of the Lutting
parameters and the electron effective mass might be cru
for the accuracy of the electronic structure calculation by
multiband effective-mass theory,33 which delivers
;100 meV higher transition energies in InAs/GaAs qua
tum dots than found by the pseudopotential theory.34 There-
16533
,

ed
e-
,
if-

-

ut
ht

-

er
s.

M

r

r
s
es
e

e

e

s
-
er
s,
e

nt
-
r.
r
ial
e

-

fore, our theoretical results provide rather trends and orde
magnitude estimates of the electron and hole energies.

Finally, the dependence of the electron and the hole e
gies on the radius of the quantum dot for a fixed heighh
52.5 nm is explored. Only the electron and hole energ
without Coulomb interaction are calculated. These are sho
in Figs. 8~a! and 8~b!, respectively. Due toR.h, the 1s1

state in the conduction band exhibits a weaker depende
on the quantum dot radius than on the quantum dot he
@compare Fig. 8~a! with Fig. 7~a!#. The two curves depicting
1S3/2

1 and 1S1/2
1 states have a different curvature. As for th

case of increasing height, the variation of the strain fi
results into a crossing of the 1S3/2

1 and 1S1/2
1 states when the

radius of the dot decreases.

V. SUMMARY

In conclusion, the multiband effective-mass approach
disk-shaped InP/InGaP self-assembled quantum dots
presented in this paper. Based on the small in-plane warp
term of the kinetic Hamiltonian, the axial approximation w
adopted for the kinetic part of the Hamiltonian. We foun
that the average of the in-plane strain tensor compon
(«xx1«yy)/2 and «zz exhibits negligible deviations from
axial symmetry, whereas the shear strains are negligible
erywhere except near the boundary. Based on these find
the strain-dependent Hamiltonian was replaced by an axi
symmetric one. The electron and hole energy levels w
calculated for isotropic and anisotropic strain distributio
and compared for a range of quantum dot heights. We fo
similar qualitative behavior for the two strain calculation
with both the electron and hole energies slightly lower
the IE calculated strain distribution. A crossover of thef
53/2 to af 51/2 hole ground state was found for both stra
models. The obtained exciton energies are in reason
agreement with the experimental results.

FIG. 8. The dependence of the electron~a! and hole~b! levels
on the radius in ah52.5 nm high quantum dot. Due toR.h, the
decrease of the electron energy is rather small, while the gro
hole energies exhibit a crossing atR'5.1 nm.
3-11
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APPENDIX

Luttinger parameters and their linear combinations in
multiband effective-mass Hamiltonian are constant in b
the dot and the matrix, but vary abruptly at the dot bounda
Matrix elements between differentx functions, Eq.~19!,
consist of boundary terms originating from the derivatives
h and those whereh is the scaling function. The latter ar
calculated as

Mh,i , j5hmmrm,imzm, j1~hd2hm!mrd,imzd, j , ~A1!

where the first letter in the subscript of the one-dimensio
matrix elementsm on the right-hand side denotes the dire
tion (r or z), the second subscript refers to the domain of
integration (m is for the whole expansion cylinder andd for
the dot!, and the third letter is the label of the type of th
matrix element. Six different types of matrix elements in t
r direction, and three types for thez direction are shown in
Tables II and III, respectively.

Furthermore, it may be shown that all boundary ter
depend on one of the following functions:

Dr,052Rgn8( l 8)~R!gn( l )~R!, ~A2a!

Dr,152Rgn8( l 8)~R!
dgn( l )

dr U
r5R

, ~A2b!

Dz,05 f m8~2d! f m~2d!2 f m8~1d! f m~1d!, ~A2c!

Dz,15 f m8~2d!
d fm

dz U
2d

2 f m8~d!
d fm

dz U
1d

. ~A2d!

1. Diagonal terms andQk matrix element in the multiband
effective-mass Hamiltonian

All diagonal andQk matrix elements of the kinetic part o
the Hamiltonian~12!, generally denoted byDk , have the
form

Dk5Dr1Dz5hr~kx
21ky

2!1hzkz
2 . ~A3!

h r and hz are linear combinations of the Luttinger param
eters multiplied by\2/(2m0). The r dependent part of this
operator is equal to
16533
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Dr52hr

]2

]r2
2

hr

r

]

]r
2

hr

r2

]2

]w2
2

]hr

]r

]

]r
. ~A4!

The matrix element between thex l 8n8m8 and x lnm states is
expressed as

MDr
5d l 2 l 8@2Mhr,3,02Mhr,4,01 l 2Mhr,5,0

2~hrd2hrm!Dr,1mzd,0#. ~A5!

The z-dependent part ofDk is given by

Dz52
]hz

]z

]

]z
2hz

]2

]z2
. ~A6!

The matrix element betweenx l 8n8m8 andx lnm reads

MDz
5d l 2 l 8@2Mhz,6,22~hzd2hzm!Dz,1mrd,6#. ~A7!

2. Sk matrix element of the multiband effective-mass
Hamiltonian

In cylindrical coordinates, theSk term in Eq.~12! has the
form

sk5
\2

2m0

A6

2
e2 iwS 2

]g3

]z

]

]r
1

i

r

]g3

]z

]

]w
2

]g3

]r

]

]z

1
2i

r
g3

]2

]w]z
22g3

]2

]r]zD , ~A8!

and the matrix element is given by

^ l 8n8m8uSku lnm&5
\2

2m0

A6

2
d l 212 l 8(

i 51

5

MSi , ~A9!

where

MS152~g3d2g3m!Dz,0mrd,1 , ~A10a!

MS252 l ~g3d2g3m!Dz,0mrd,2 , ~A10b!

MS352~g3d2g3m!Dr,0mzd,1 , ~A10c!

MS4522Mg3,1,1, ~A10d!

MS5522lM g3,2,1. ~A10e!

3. Rk matrix element of the axially symmetric multiband
effective-mass Hamiltonian

The Rk matrix element in Eq.~12! in cylindrical coordi-
nates is given by

Rk5
\2

2m0
A3e2 i2wS 1

r
ḡ

]

]r
2

]ḡ

]r

]

]r
2ḡ

2i

r2

]

]w
1

i

r

]gav

]r

]

]w

2ḡ
]2

]r2
1

ḡ

r2

]2

]w2
1

2i

r
ḡ

]2

]w]r D , ~A11!
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whereḡ5(g21g3)/2. Matrix elements due to theRk opera-
tor in the multiband Hamiltonian are therefore

^ l 8n8m8uRku lnm&5
\2

2m0
A3d l 222 l 8(

i 51

5

MRi , ~A12!

where

MR152~ ḡd2ḡm!Dr,1mzd,0 , ~A13a!
n
s

il-

d

i,

J

-

16533
MR252~ ḡd2ḡm!
l

R
Dr,0mzd,0 , ~A13b!

MR352M ḡ,3,0, ~A13c!

MR45~122l !M ḡ,4,0, ~A13d!

MR55 l ~22 l !M ḡ,5,0. ~A13e!
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