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Electric-field-driven Mott metal-insulator transition in correlated thin films:
An inhomogeneous dynamical mean-field theory approach
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Simulations are carried out based on the dynamical mean-field theory (DMFT) in order to investigate the
properties of correlated thin films for various values of the chemical potential, temperature, interaction strength,
and applied transverse electric field. Application of a sufficiently strong field to a thin film at half filling leads to
the appearance of conducting regions near the surfaces of the film, whereas in doped slabs the application of a
field leads to a conductivity enhancement on one side of the film and a gradual transition to the insulating state on
the opposite side. In addition to the inhomogeneous DMFT, a local density approximation (LDA) is considered
in which the particle density n, quasiparticle residue Z, and spectral weight at the Fermi level A(ω = 0) of
each layer are approximated by a homogeneous bulk environment. A systematic comparison between the two
approaches reveals that the less expensive LDA results are in good agreement with the DMFT approach, except
close to the metal-to-insulator transition points and in the layers immediately at the film surfaces. LDA values for
n are overall more reliable than those for Z and A(ω = 0). The hysteretic behavior (memory effect) characteristic
of the bulk doping driven Mott transition persists in the slab.
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I. INTRODUCTION

Due to their interesting and useful properties, strongly
correlated materials have attracted the attention of both theo-
rists [1–3] and experimentalists [4–8] in recent decades. In par-
ticular, the discoveries of high-temperature superconductivity
in cuprates and of colossal magnetoresistance in manganites
spurred interest in the class of materials exhibiting the Mott
metal-to-insulator transition [9,10]. The existence of this
correlation-driven transition in bulk transition-metal oxide sys-
tems has encouraged investigations for potential applications
in electronics [5–7]. Intriguing physics has also been observed
at interfaces between strongly correlated materials [11]; for
example, a metallic or even superconducting phase appears
at the interface between LaTiO3 and SrTiO3, which are
insulating paramagnets in bulk [8,12]. The appearance of such
interface phases can be partially understood at a qualitative
level as the result of charge transfer. A detailed understanding,
however, remains elusive. Due to the difficulties inherent in the
theoretical treatment of strongly-correlated systems, attaining
a detailed understanding may be quite challenging even when
dealing with simpler bulk systems.

The exponential growth of the Hilbert space with the
number of particles makes a direct numerical solution of an
interacting quantum system unfeasible, except for systems
with a very limited number of particles. Standard theoretical
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approaches such as density functional theory (DFT) are known
to fail when electron-electron interactions are strong [13].
This has stimulated the development of alternative methods.
The Gutzwiller approximation [14–16] and slave boson tech-
niques [17,18] have been used to treat the low-energy physics
of bulk materials and—more recently—thin films [19–24] in
the presence of an electric field [21,22]. The slave boson
approach has been extended to allow access to higher-energy
excitations [25], while the Gutzwiller approximation only
provides insight into the metallic state. Other notable ap-
proaches include the density renormalization group (DMRG),
which works best for one-dimensional systems [26]. Over
the last 25 years dynamical mean-field theory (DMFT) has
emerged as one of the most promising frameworks for the
treatment of strongly correlated systems [27,28]. DMFT
involves a mapping of a lattice problem, such as the Hubbard
model [29], onto an interacting quantum impurity model [30]
supplemented by a self-consistency condition. The mapping
is exact in the limit of infinite dimensions. An advantage of
DMFT is that it is formulated in the thermodynamic limit and
that it allows one to nonperturbatively interpolate between the
strong and weak coupling regimes, thereby treating different
interaction regimes on an equal footing. In its simplest version,
single-site DMFT, it neglects spatial correlations, but captures
local temporal correlations. In combination with the local
density approximation (LDA) to DFT it has provided valuable
new insights into the physics of a number of strongly correlated
bulk materials [13,31,32].

A better understanding of the metal-insulator transition
in systems with lower translational symmetry (such as thin
films or interfaces) and in the presence of an electric field is
likely to aid experimental efforts to control the properties of
such systems, which is relevant for possible applications in,
e.g., memory devices and high-speed electronics. Potthoff and
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Nolting [33,34], and later others [35–43], used a spatially re-
solved version of DMFT (inhomogeneous DMFT, or IDMFT)
to study layered systems. Similar techniques were later applied
to inhomogeneous multilayered nanostructures [1,2,44,45].
DMFT-based approaches were recently proposed for the study
of “Mott p-n junctions” [46] and correlated capacitors [47].
In these approaches each layer was approximated by a two-
dimensional bulk system with the appropriate value of the
chemical potential, and a Poisson solver was used to study the
charge redistribution in different regimes.

In some of these earlier studies [40,41] Okamoto used a
combination of DMFT with the Keldysh Green’s function
approach to study the transport properties of a system of
Hubbard-interacting layers coupled to metallic leads and found
that such structures exhibit strongly nonlinear current-voltage
characteristics. When the applied bias was comparable to the
on-site interaction U , Okamoto also observed the formation
of quasiparticlelike features in the spectrum of the correlated
part of the system.

Other studies focused on interacting heterostructures in
the static limit (i.e., zero current) and employed the spinless
Falicov-Kimball model for the interaction [44]. This model,
which involves interactions between spinless conduction
electrons with spinless localized electrons and exhibits a Mott-
like metal-to-insulator transition, allows extremely accurate
numerical solutions [44], but—unlike the Hubbard model—is
not a Fermi liquid in the metallic phase.

In this paper we use the IDMFT to investigate the effect
of an applied electric field on the properties of a slab (a
stack of coupled Hubbard-correlated two-dimensional layers)
at various temperatures and doping levels in the static limit.
We also approximate the properties of each layer in the
slab by a three-dimensional bulk system in which the value
of the chemical potential is equal to the local value of the
potential in that layer. We refer to this approach as the local
density approximation, a name which is used in the cold atom
community (not to be confused with the LDA used in the
context of DFT), and we carry out a systematic comparison
between the LDA and the full DMFT calculation. This
comparison is of some interest, since the LDA is significantly
faster than the full calculation. We investigate the effect of
screening by considering the Coulomb interaction between
planes in the slab at a mean-field level.

The structure of this paper is as follows. We describe the
model and method in Sec. II. Our results are discussed in
Sec. III. Section IV provides a summary.

II. MODEL AND METHOD

The general approach that we use is described in detail
elsewhere [33,34], and we only give a brief description here.
Our starting point is the single-band Hubbard Hamiltonian:

H = Hkin + HU + HCP

= −
∑
ijγ δσ

t
ij

γ δc
†
iγ σ cjδσ + U

∑
iγ

niγ↓niγ↑

−μ
∑
iγ σ

niγ σ , (1)

where c
†
iγ σ (ciγ σ ) is a fermionic creation (annihilation)

operator for a particle of spin σ (σ = ↑,↓) at site γ in plane
i, niγ σ = c

†
iγ σ ciγ σ , t

ij

γ δ is a hopping matrix, U is the on-site
Coulomb repulsion, μ is the chemical potential. We work with
a simple cubic lattice and assume that only nearest-neighbor
hopping takes place, and that the intra- and interplane hopping
parameters are equal, i.e., all hopping matrix elements vanish
except t ii〈γ δ〉 = t ii±1

γ γ ≡ t , where the angular brackets indicate
that sites γ and δ are next neighbors. We take t = 1, which
sets the energy scale in the problem. In order to include the
effect of an externally applied electric field, we include the
following term:

HEP =
∑
iγ σ

viniγ σ , (2)

where vi = −V (i/(L − 1) − 1/2) is the on-site potential for
plane i (V is the overall potential drop across the slab and L

is the number of planes in the slab; L = 24 throughout this
paper). This form assumes that the charge in the slab does not
screen the externally applied field and neglects any Coulomb
interaction between the layers themselves. We also include
the effects of screening by including a correction to the bare
potential of the form [46,48]:

vCoulomb,i = α
∑
j �=i

(nj − nbulk)|i − j |, (3)

where nbulk is the number of electrons per site in the neutral
solid, nj = nj,↑ + nj,↓ is the average number of electrons at
sites in plane j (site index γ is suppressed, since density does
not vary within a plane), and α determines the interaction
strength between charges, α = e2d

2εr ε0A
. In the last expression e

is the elementary charge, εr is the relative dielectric constant of
the solid, d is the distance between planes in our thin film, and
A is the area per atom within each plane. For example, taking
d = 10−9 m, A = d2, and εr = 10, one has α ≈ 2 eV. The
approximate form, Eq. (3), corresponds to the assumption that
the charge in each plane is uniformly distributed. It is used
here for simplicity, as it is likely to capture the qualitative
effects of screening (more accurate forms have also been
used previously [36–39,43]). Moreover, it is in qualitative
agreement with recent calculations based on the constrained
random phase approximation in few-layer SrVO3 systems [49].

In the absence of screening, we use the standard DMFT
loop: Starting from a guess for the slab self-energy, �̂σ (iωn) =
Diag(�σ1(iωn),�σ2(iωn), . . . ), we obtain the bare Green’s
function (also referred to as the Weiss field) of the effective
action for each layer in the slab, G0,iσ (iωn):

G−1
0,iσ (iωn) = [Giiσ (iωn)]−1 + �σi(iωn), (4)

where ωn = (2n + 1)π/β are the fermionic Matsubara fre-
quencies at temperature T = 1/β, the index i = 1,2, . . . L,
and Giiσ is a diagonal element of the k-integrated slab Green’s
function corresponding to �̂σ (iωn):

Ĝσ (iωn) = 1

Nk

∑
k∈BZ

1

(iωn + μ)1 − Ĥσ (k) − �̂σ (iωn)
,

where 1 is a L × L unit matrix (L is the number of layers
in the slab), Nk = Nkx

× Nky
, Nkx

and Nky
are the number
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of k points in the x and y directions of the Brillouin zone,
respectively, and Ĥσ (k) is a tridiagonal L × L matrix in a
mixed (Fourier/real-space) basis obtained from the sum of
Hkin and HEP:

Ĥσ (k) =

⎛
⎜⎜⎜⎜⎝

εk + v1 −t 0 . . .

−t εk + v2 −t . . .

0 −t εk + v3 . . .
...

...
. . .

⎞
⎟⎟⎟⎟⎠,

εk = −2t(cos kx + cos ky) being the in-plane dispersion. The
impurity Green’s function for each layer, Gimp,iσ (iωn), is ob-
tained by solving the respective impurity problem determined
byG0,iσ . From the impurity Green’s function a new �σi(iωn) is
obtained using Eq. (4) with Giiσ replaced by Gimp,iσ . Ĝσ (iωn)
is only recalculated once the solver has swept through all
the layers and all �̂σ i are updated. This is repeated until
convergence.

To include screening, we adjust the potential according to
Eq. (3) after each solver sweep [just before the recalculation
of Gimp,iσ (iωn)]. For the doped calculations (not screened) it
is also necessary to adjust the chemical potential of the slab
between solver sweeps in order to keep the density fixed.

To solve the resulting DMFT equations we use the
hybridization expansion continuous-time quantum Monte
Carlo solver provided as a part of TRIQS (a toolbox for
research on interacting quantum systems) [50–53]. In the
segment picture [52] the on-site densities are obtained directly
from the solver. We estimate the quasiparticle weight Z =
(1 − ∂Im�(iω)/∂ω)−1

ω→0+ from the imaginary frequency self-
energy at the lowest Matsubara frequency [54]:

Z ≈
(

1 − Im�(iω0)

ω0

)−1

. (5)

The simple estimate in Eq. (5) assumes that the imaginary part
of the self-energy at zero frequency vanishes, i.e., Im�(ω =
0) = 0. This assumption is not justified in a Fermi liquid at
finite temperature (where Im�(ω = 0) ∝ T 2) and in the Mott
insulating phase (where Im�(ω = 0) diverges). This should
be kept in mind when interpreting the significance of the Z

factor calculated on the basis of Eq. (5). Equation (5) is still
useful for presentation purposes, as a proxy of the MIT. For
completeness, we include in the Appendix (Sec. A) an estimate
for Z based on a polynomial fit to the Matsubara self-energy
at the lowest Matsubara frequencies.

To estimate A(ω = 0), the spectral weight at the Fermi
level, we use the relation [54]:

βG(β/2)
β→∞−−−→ −πA(0). (6)

Aside from the full DMFT calculation described above, we
also calculate the expected density distribution in the slab
assuming that the density of electrons per site in each layer,
ni , is determined solely by the local value of the chemical
potential and independently of the rest of the layers. Within
this approach, we assume that

ni = n3D(μi), (7)

where n3D(μ) is the density per site of the three-dimensional
Hubbard model on a cubic lattice with nearest-neighbor

hopping at chemical potential μ and the same values of U,t

and β as in the slab, and μi = μ + vi . n3D(μ) is obtained by
single-site DMFT for a set of predetermined values of μ. The
density for values of μ that do not coincide with values in that
predetermined set is obtained from a linear interpolation:

n(μ) = n(μleft)x + n(μright)(1 − x), (8)

where μleft,right are the two values of the chemical potential in
the set which are closest to μ (such that μleft � μ � μright),
and x = (μright − μ)/(μright − μleft). In a similar manner we
obtain LDA estimates for the spectral weight at the Fermi
level, A(ω = 0), and the Z factor. Two stable solutions of the
DMFT equations of the 3D Hubbard model, a metallic and
an insulating one, exist in parts of the U,β,μ-range which
we explore. For the LDA we use the density that corresponds
to the metallic branch. In all our calculations we enforce a
paramagnetic phase, i.e., we set �̂↑ = �̂↓.

III. RESULTS

A. Coexistence

The dependence of on-site density on chemical potential
for the Hubbard model on a three-dimensional tight-binding
lattice is shown in Fig. 1 for U/t = 13.2. For all temperatures
shown there is a plateau in the n(μ) curve. This is due to
the existence of a gap in the spectral function of the solid at
that value of the Hubbard interaction U . When the value of
the chemical potential is inside the gap, far from the upper
and lower Hubbard bands, the charge density does not change
noticeably when the chemical potential is varied, due to the
vanishing spectral weight in the gap. As the chemical potential
approaches either of the two Hubbard bands, a quasiparticle
peak appears at the Fermi level. This redistribution of spectral
weight causes a change in the particle density and determines
the end of the flat region in the n(μ) curve.

As is well known, there is a region in the μ−U−T phase
diagram of the three-dimensional fermionic Hubbard model in
which both a metallic and an insulating phase can exist [55,56].
When the values of μ, U , and T are such that the system is
in this coexistence region, the DMFT converges to either one

FIG. 1. Bulk (3D) electron density as a function of chemical
potential for different temperatures at U/t = 13.2. This value of the
interaction is large enough for a gap to open in the spectral function
of the solid. A corresponding plateau appears in the n(μ) curve. The
simulations for different μ values are carried out recursively. Dashed
(full) lines correspond to down- (up-) sweep. The hysteresis indicates
the coexistence of two solutions. Offsets added for clarity.
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of the two solutions, depending on the initial guess (seed) for
the self-energy. At the value of the Hubbard repulsion that we
are considering, U/t = 13.2, and when the system is far away
from half filling (when μ − U/2 is large), only the metallic
solution exists. If one gradually brings the system closer to
half filling (by varying μ in small increments) and uses the
converged value of the self-energy at each point as a seed for
the subsequent simulation, the system remains on the metallic
branch until the metallic solution ceases to exist in the region
very close to half filling. Continuing the recursion beyond half
filling traces out the insulating branch. This is reflected in
the hysteresis in Fig. 1. Coexistence is possible in the slab as
well [57].

In Fig. 2(a) we show the variation of the charge density of
the metallic solution across the slab calculated with DMFT
(symbols) and in the LDA (lines) for a number of different
values of the applied external field at β = 30. The interaction
strength (U/t = 12) is chosen such that the bulk system at
half filling (μ = U/2) would be in the U − T coexistence
region, close to its upper boundary, Uc2, beyond which only the
insulating phase is stable. A comparison of the two approaches
shows that the DMFT and LDA results are in good agreement
in the central parts of the slab, whereas near the surface
(within approximately the first four layers) the discrepancy
is significant. For larger fields the discrepancy between the
DMFT and LDA is significant in a narrower region close
to the surface. The main reason for this is the existence of
highly-doped regions (close to the surfaces) in which the
correlation length is smaller [22], which limits the discrepancy
between the two approaches to only the surface layer. We
expect that the discrepancy between the DMFT and LDA will
be larger whenever the correlation length is larger, in particular
at very low temperatures and when the first order nature of the
transition is weaker. The same trends were observed earlier in
calculations based on the Gutzwiller approximation [21].

In Fig. 2(b) we plot the double occupancy, 〈di〉 = 〈ni↑ni↓〉,
across the slab at zero applied external field for both the
metallic and insulating solutions. In both the metallic and
the insulating case the double occupancy is suppressed at the
surface. The suppression is due to the surface reduction of
the site coordination number, which leads to an enhancement

FIG. 2. Charge density deviation from half filling across the slab
for different values of the applied field. Symbols indicate the full
DMFT calculation; lines correspond to the LDA (panel (a)). Double
occupancy across the slab for the insulating and metallic solution at
zero field (panel (b)). U/t = 12 and βt = 30 (both panels).

of correlation effects. The surface effect is also visible in
the density redistribution in the presence of an electric field
[Fig. 2(a)]: The maximum charge deviation does not occur
exactly at the surface as is expected from LDA approach.
From Fig. 2(b) it is clear that in the insulating state the
double occupancy recovers its bulk value within a single layer,
whereas in the metallic case the recovery takes place deeper
in the slab (approximately four layers from the surface). This
suggests that the correlation length in the metallic state is
longer than in the insulating state. The recovery length for the
double occupancy at V = 0 in the metallic state is related to
the extent of the surface effect in the case of applied electric
field, which is given by the width of the discrepancy between
the full DMFT calculation and the LDA shown in Fig. 2(a).
These two lengths are of approximately the same magnitude.

B. Half-filled case

The charge redistribution caused by an electric field applied
to a slab at half filling is shown in Fig. 3 (U/t = 13.2). The
value of U is outside the U − T coexistence region for bulk
(at μ = U/2) and is such that the slab is insulating at zero
field. As discussed in connection with Fig. 1, the metallic
and insulating phase can coexist in bulk at this value of U

when μ is away from its particle-hole symmetric value. The
two phases can coexist in the slab as well, and we find that
recursive simulations for different values of V lead to different
solutions, i.e., hysteresis (not shown). Whenever two distinct
solutions exist, in Fig. 3 we show only the metallic one. It
is clear from the figure that when the field applied to the
slab is below a certain threshold, there is no redistribution of
charge in the slab. When the field increases sufficiently, the
charge density close to the surfaces of the film starts deviating
from half filling. The deviation is symmetric with respect to
the center of the slab, as can be expected in the case of a
symmetric (with respect to the center of the slab) external field

FIG. 3. Electron density across the slab at different temperatures
and different values of the electric field. The overall density for the
slab corresponds to half filling. Only “metallic” seeds were used.
Symbols correspond to the full DMFT calculation, lines correspond
to the LDA. U/t = 13.2.
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FIG. 4. Variation of the Z factor, Eq. (5), across the slab for the
same simulation parameters as in Fig. 3. Symbols correspond to the
full DMFT calculation, lines correspond to the LDA.

due to the particle-hole symmetry of the Hubbard model with
nearest-neighbor hopping.

The corresponding Z factors, plotted in Fig. 4, are also
enhanced close to the surface in the presence of an electric
field. In contrast to what is observed for the density, the Z

factor is enhanced close to the surface even at the smallest
nonzero value of the applied field which we consider here
(V = 1.5). In most cases, the highest value of Z in the slab
occurs not immediately at the surface but one layer into the
slab. Deeper into the slab Z decreases from that maximum
value. At the highest temperature in the series (βt = 10) there
is only a narrow central region where the enhancement is not
significant. The width of the region where Z is small increases
as the temperature is lowered.

A(ω = 0), the spectral weight at the Fermi level, is plotted
in Fig. 5 for the same simulation parameters as in Figs. 3
and 4. Similarly to the Z factor, A(ω = 0) is enhanced most
strongly close to the surfaces. In contrast to what is observed
for the Z factor, however, the enhancement of A(ω = 0) at the
lowest nonzero bias (V = 1.5) is insignificant. Furthermore,
except at βt = 10, at large enough bias, the value of A(ω = 0)
remains nearly constant (close to its maximum value in the
slab) in the layers immediately near the surface. The transition
to the low spectral weight region in the center of the slab
is relatively abrupt, compared with what we observe for the
Z factor. Contrary to the width of the region where Z is
small, the width of the low spectral weight region decreases
with decreasing temperature. Thus, at the highest temperature
(βt = 10) there is a region of high Z and low A(ω = 0) close to
the center of the slab, whereas at lower temperatures there is a
region of strongly enhanced A(ω = 0) and weakly enhanced Z

factor.
In combination with the charge redistribution in the slab,

the field enhancement of the Z factor and spectral weight at
the Fermi level leads to the formation of conductive channels
close to the surfaces of the slab, while the central portion of
the slab remains close to its (insulating) V = 0 state.

FIG. 5. The variation of the spectral weight at the Fermi level
across the slab corresponding to the density and Z-factor data shown
in Figs. 3 and 4. Symbols correspond to the full DMFT calculation,
lines correspond to the LDA.

The fact that a certain minimal field is necessary to achieve
a “breakdown” of the insulator (i.e., to create an electrically
doped region close to the surface in which the Z factor and
the spectral weight at the Fermi level are significant) can
be understood more easily by considering the dependence
of density on chemical potential in the three-dimensional
Hubbard model (Fig. 1). Due to the presence of a gap in
the spectrum for large enough U , a plateau analogous to the
one in Fig. 1 appears in the n vs layer curves in Fig. 3, which
corresponds to values of the local chemical potential that are
well within the gap. When the externally applied field is large
enough, the local value of the chemical potential close to the
surface of the slab deviates sufficiently from U/2 to induce a
change in the local charge density.

Some of our simulations (not shown) also indicate that
when βt � 30 and the applied external field is small, only an
insulating solution exists in the slab at U/t = 13.2. In other
words, independent of the seed, the simulation converges to
the insulating solution throughout the slab. Above a certain
value of the field (V ≈ 3.0), two solutions reappear. This is
consistent with what we observe in bulk (Fig. 1).

The temperature dependence of the bulk n(μ) curves also
elucidates what is observed in the slab. At U/t = 13.2 the
range of μ values for which both a metallic and an insulating
solution exist is clearly larger at lower temperature, extending
to values of μ closer to the middle of the gap. On the metallic
branch (Fig. 1), the plateau in n(μ) shrinks as temperature
drops and almost completely disappears at β = 90. The
insulating solution, in contrast, is less temperature sensitive.
This temperature dependence of the bulk metallic solution
is consistent with what we observe in the slab (see Fig. 3):
The minimum field strength required to “break” the insulator
decreases as the temperature drops. The width of the insulating
region that remains at half filling in the center of the slab for
a given field also decreases as the temperature is lowered.
Similarly to what is observed in bulk, changes in the local
value of the chemical potential in individual layers in the slab
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FIG. 6. Panels (e) and (f): Maximum-entropy method reconstruc-
tion of the spectral functions Ai(ω) throughout the slab. Data is
interpolated between layers for clarity. Panels (a) and (b): Comparison
of MEM results for A(ω = 0) (blue lines with crosses) with those
obtained by Eq. (6) (green lines with circles). Panels (c) and
(d): a comparison of Eq. (9) (blue lines with crosses) and the
Monte Carlo results (green lines with circles) for the density n.
Left panels: U/t = 13.2, μ = U/2, βt = 30,V = 4.5 and average
density corresponding to half filling. Right panels: U/t = 16.2, βt =
10,V = 6 and average density per site in the slab n = 1.04.

do not lead to a significant change in density, unless the change
is large enough.

Maximum-entropy method (MEM) reconstructions [58,59]
of the real-frequency spectral function A(ω) provide additional
insight into the changes that occur across the slab as bias
is increased and parts of the slab become metallic [see
Fig. 6(e)]. We validated our MEM results in two different
ways: Comparison with the results of Eq. (6) reveals very good
agreement [Fig. 6(a)]. Furthermore, calculating the average
density in each layer from the real frequency spectral function,
according to:

ni =
∫ +∞

−∞
dωAi(ω)f (ω − μi), (9)

where Ai(ω) is the MEM spectral function of layer i

and f (ω) is the Fermi-Dirac distribution function, we find
excellent agreement with the Monte-Carlo charge density
data [Fig. 6(c)]. The appearance and development of the
quasiparticle peaks due to the spectral transfer from the
nearby Hubbard bands (the frequency-integrated spectrum
remains constant) is clearly visible in the figure. The width
of the peaks is proportional to the Z factor and reaches a
maximum approximately one layer into the slab from each
of the surfaces, which is consistent with Fig. 4. Similarly,
the abrupt rise of A(ω = 0) is reproduced [in the MEM plot
A(ω = 0) corresponds to the height of the quasiparticle peak].
The MEM results for the doped case [Figs. 6(b), 6(d), 6(f)] are
discussed in more detail in the following section.

It is clear (Fig. 3) that the LDA estimate of the density
agrees fairly well with the full calculation for almost all the
temperatures and field strengths we consider. The difference

between the two approaches is greatest close to the surfaces of
the slab, where the independent plane approximation tends to
overestimate the density and fails to capture the dip evident in
the full calculation, and for values of V which are close to the
“breakdown” bias of the insulator. The LDA underestimates
the value of the breakdown bias. The differences between the
LDA estimates for Z and A(0) and the full calculation are more
pronounced. The largest discrepancy in Z is observed at V =
3, the bias value at which the system is closest to the breakdown
point. At V = 3 and βt � 30 the LDA and full DMFT results
for Z differ not only near the surface, but through a significant
part of the slab. A similar observation is valid for A(ω = 0), but
in addition to the significant disagreement between the LDA
and DMFT estimates of A(ω = 0) at V = 3, the LDA also
significantly overestimates the value of A(ω = 0) at V = 1.5
and βt = 60,90. The agreement is better at larger values of V

and at higher temperature (lower β).

C. Screening

We also investigate the effect of screening on the half-filled
slab (see Fig. 7). In Figs. 7(a) and 7(c) we show the density
and potential across a slab in the metallic phase (U/t = 10 and
βt = 10) in the presence of screening and in the unscreened
case. For the screened case we use α = 1. The total potential
drop across the slab in both cases is the same (this means that
in the screened case the applied external field V is larger).
In practice, we first fix the externally applied field V and the
screening strength α and allow the simulation to converge to
a self-consistent solution that satisfies Eq. (3). This leads to a
reduced potential drop across the slab. Then a nonscreened
simulation with the same potential drop is performed for
comparison. The effect of screening is to reduce the penetration
of the field in the slab. The density deviation (from half filling)
is reduced compared to the nonscreened case, especially in
the central region of the slab. Qualitatively the results remain
very similar: The deviation from half filling is symmetric
with respect to the central region and largest close to the
two surfaces in the slab. Screening masks the influence of
the surface on the density: in the absence of screening the
maximum of the density does not occur at the surface but
one layer into the slab. In contrast, in the screened case, the
maximum is at the surface. The surface reduction effect is still

FIG. 7. The effect of screening on a metallic slab, panels (a) and
(c), and an insulating slab, panels (b) and (d). The effect is much
more pronounced for the metallic case. α is the screening parameter
described in Sec. II.
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visible, but softened, due to the decreased penetration of the
field in the slab. The effect of screening on an insulating slab
(U/t = 13.2, βt = 30) is analogous, Figs. 7(b) and 7(d). In
contrast to the metallic case, however, the effect is much less
pronounced. Our results are similar to the ones found earlier
with the Falicov-Kimball model [44]. This indicates that the
effects of Coulomb screening do not depend in an essential
way on the type of the local interaction.

D. Doped case

The effect of the field on a doped slab is quite different. In
Figs. 8–10 we show the charge density redistribution (DMFT
and LDA results), A(ω = 0), and Z factor across the slab
for four different values of U and β (U/t = 13.2,16.2; βt =
10,30). At our chosen doping (n = 1.04) and in the absence
of a field (V = 0), both the spectral weight at the Fermi level
(Fig. 9) and the Z factor (Fig. 10) are significant throughout
the slab in all four cases, indicating a metallic phase. In this
case even a small field causes charge redistribution. Since the
average density in the slab is kept fixed, the pile-up of charge
on one side is accompanied by a decrease in the charge density
on the other side. However, if the value of U is large enough
(i.e., sufficient for a gap to appear in the spectral function of
the solid at half filling), this decrease in the charge density
on the depleted side pauses as soon as half filling is reached.
From that point on, as the magnitude of V increases the charge
build-up on the other side is compensated by an increase in the
width of the half filling region. This is what we observe here
for U/t = 13.2 and U/t = 16.2. Thus, at large U , as the field
increases one of the sides of the slab becomes more conducting
while an insulating layer of increasing thickness develops at
the opposite end of the slab. Note that the density redistribution
is accompanied by a change in the Z factor: the Z factor is
enhanced on the side with excess charge and suppressed on the

FIG. 8. Variation of the electron density throughout a 24 layer
slab for selected values of the electric field, Hubbard U , and
temperature. The average density for the whole slab is fixed at 1.04
electrons per site. The insets show how the chemical potential of the
slab changes as the field is increased. This adjustment is necessary to
keep the average electron density in the slab fixed. Symbols indicate
the full DMFT calculation; lines correspond to the LDA.

FIG. 9. Variation of the spectral weight at the Fermi level across
a 24 layer slab for the same values of the electric field, Hubbard U ,
and temperature as in Fig. 8. The average density for the whole slab is
fixed at 1.04 electrons per site. Symbols correspond to the full DMFT
calculation, lines correspond to the LDA.

“depleted” side. The spectral weight at the Fermi level follows
a similar trend. As the temperature is lowered from βt = 10 to
βt = 30 the transition between the low- and high-conductivity
regions becomes more abrupt (Fig. 9). Variation of U/t in the
range considered (13.2–16.2) does not significantly influence
the density results. The effect of increasing U on A(ω = 0) is
most pronounced at V = 0, in which case it leads to a decrease
of the spectral weight at the Fermi level throughout the slab.

The insets in Fig. 8 show how the chemical potential should
be adjusted in order to keep the average amount of charge
per layer in the slab constant (at n = 1.04) at each bias. The
adjustment is necessary due to the nonlinear dependence of
charge density on μ (see Fig. 1). Experimentally, this situation

FIG. 10. Variation of the Z factor across a 24 layer slab for the
same values of the electric field, Hubbard U , and temperature as in
Figs. 8 and 9. The average density for the whole slab is fixed at 1.04
electrons per site. Symbols indicate the full DMFT calculation; lines
correspond to the LDA.
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corresponds to a slab that is electrically insulated from its
environment (the overall amount of charge in the slab remains
constant). The observed reduction of chemical potential in the
presence of external electric field indicates that if connected
to a charge reservoir (e.g., via metallic leads) an overdoped
system would tend to absorb charge when an electric field is
applied. In simulations with doped slabs at constant μ we do
observe an increase in the amount of charge in the slab as the
field increases (not shown). This charge absorption is caused
by the nonlinearity of the n(μ) curve and not by a potential
difference between the system and its environment.

At higher values of the interaction (U/t = 16.2) oscil-
lations appear in the Z factor vs layer number. The effect
of lowering temperature is to make the oscillations more
pronounced (cf. Fig. 10, lower two panels). From the fit-based
estimates of the Z factor (see Appendix) it is clear that
the magnitude and position of these oscillations depends
sensitively on the method used to estimate Z. In the presence of
a significant spectral weight at ω = μ, these oscillations would
correspond to alternating regions of low and high mobility of
the quasiparticles in the film. However, since A(ω = 0) is
rather low in the part of the film where these oscillations occur
(see Fig. 9), in practice the variation in conductivity would be
small. The fact that these oscillations in Z are also reproduced
by the LDA indicates that they are not caused by the reduced
translational symmetry in the slab geometry. It is worth noting
that different parts of the slab can coexist in different states, i.e.,
that the metallicity of one part of the slab does not penetrate
throughout the slab to destroy the low Z and low spectral
weight region in other parts of the slab.

The MEM reconstruction of the slab spectral functions is
shown Fig. 6(f) for U/t = 16.2, βt = 10, and V = 6. In this
case the agreement with Eq. (6) and DMFT density data is
again very good (panels (b) and (d), respectively). Due to the
doping, the position of the lower and upper Hubbard bands
with respect to the Fermi level is not symmetric, in contrast
to the half-filled case. This asymmetry is also reflected in
Fig. 8 to Fig. 10. From the MEM reconstruction it is clear
that once again the Z factor and spectral weight enhancement
on the right side of Figs. 10 and 9 are associated with the
appearance of a quasiparticle peak. On the basis of the MEM
reconstruction, it is to be expected that at sufficiently strong
fields the lower Hubbard band will also approach the Fermi
level and a quasiparticle peak will appear on the low-doped
side as well, which will cause a “secondary breakdown” to
occur at the insulating side of the film (not to be confused with
the oscillations in Z discussed in the preceding paragraph).

The doping and the resulting asymmetry lead to a very
different response compared to the half-filled case. In the
latter case, the application of the field to the insulating slab
leads to the formation of symmetric zones of relatively high
conductivity close to the surfaces, whereas in the doped case,
which is metallic in the absence of a field, application of a
field causes one side to become more conductive, whereas the
other side becomes insulating, until the field is large enough
for the “secondary” breakdown to occur.

The LDA results for the charge density match the full
calculation very nearly in almost all cases, except in the surface
layers, and—when the bias is in the vicinity of the “secondary
breakdown”—in a narrow region close to the surface on

FIG. 11. Electron density, spectral weight at the Fermi level, and
Z factor across a doped 24 layer slab for the same values of the
electric field as in Figs. 8–10, but lower U . The average density in
the slab is fixed at 1.04 electrons per site. The inset shows the change
of μ necessary to keep the average density constant for different
values of V . Symbols correspond to the full DMFT calculation, lines
correspond to the LDA.

the insulating side. The agreement on the overdoped side
improves as the bias increases. We attribute this to the short
correlation length in the highly-doped (metallic) regime. On
the underdoped side the discrepancy is most significant at low
temperature (βt � 30), close to the “secondary breakdown.”
As in the half-filled case, the LDA underestimates the
breakdown voltage. This tendency to overestimate the extent
of the metallic phase is reflected also in the LDA results for
the spectral weight, Fig. 9, and Z factor, Fig. 10. Overall, the
agreement between the DMFT and LDA is much better for the
doped case than for the half-filled slab, which can be partially
attributed to the fact that at most biases and temperatures a
large part of the slab is metallic.

When the Hubbard interaction is lowered to U/t = 10.2
(Fig. 11), no half-filling region of significant width develops,
as there is no plateau in the n(μ) curve at this interaction
strength. At this value of U the Z factor exhibits a minimum
as a function of layer number and is enhanced close to the slab
surfaces. Expectedly, as in the large U case, even a weak field
is sufficient to cause a redistribution of charge. The agreement
between the DMFT and the LDA results for density, A(ω = 0),
and Z factor is excellent at all bias values we consider. The
largest discrepancy between the two approaches occurs in the
two layers immediately at the surface and is most significant
in the value of Z [panel (c)].

IV. CONCLUSION

In summary, we investigate the properties of strongly
correlated thin films under bias using IDMFT and examine
the validity of a computationally cheaper approximation. We
observe switching behavior in both half-filled and doped films.
In the half-filled slab a sufficiently strong field (larger than
some threshold) is necessary to produce conducting regions
near the surfaces of the film. For doped films, there is no
threshold field and the application of a field initially causes one
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side of the film to become more insulating, before a secondary
breakdown occurs. Taking a screening correction of the form
given in Eq. (3) into account does not lead to qualitative
changes of the results. It can therefore be expected that the
conclusions for the nonscreened case will remain qualitatively
valid in the presence of screening.

In spite of the breakdown of useful concepts from band
theory, such as band bending, the local density approximation
accurately reproduces the full IDMFT calculations in both the
half-filled and doped cases, except in the layers immediately
at the surface of the slab and close to transition points. Our
calculations confirm and extend earlier findings in theoretical
studies of colossal magnetoresistance, where DMRG calcu-
lations in 1D systems indicated the existence of a universal
density-potential relation of the interface Mott transition [60].
We find that the goodness of the local approximation for n and
Z is relatively independent of temperature in the T range we
explore. In contrast, the agreement between the LDA results
for A(ω = 0) and the full DMFT calculation is worse at lower
temperature. Overall, the LDA may be used as a fairly reliable
and quick first estimate for the charge density and to a lesser
extent for the Z factor and spectral weight at the Fermi level.
This may allow for calculations of device properties such
as, e.g., electrostatic charge distribution, switching behavior,
differential capacitance, which are not easily accessible with
full DMFT calculations due to the larger computational cost.
The hysteretic behavior associated with the first order Mott
transition observed in bulk persists in the slab, and should lead
to memory effects in devices, which is relevant for the devel-
opment of applications based on strongly-correlated materials.
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APPENDIX

For completeness, in this section we present estimates of Z

and Im�(ω = 0) based on a polynomial fit of the form:

Im�(iω) = a0 + a1ω + a2ω
2 + a3ω

3 + · · · (10)

to the imaginary part of the self-energy at the few lowest
Matsubara frequencies. In this case

Z = 1

1 − ∂Im�(iω)/∂ω

∣∣∣∣
ω→0+

= 1

1 − a1
. (11)

The Z-factor obtained by fitting a polynomial of the form
Eq. (10) of degree four to the self-energy at the lowest six
Matsubara frequencies are compared with the one based on
Eq. (5) in Figs. 12 (half-filled case) and 14 (doped case).
(Polynomials of order n with 8 � n � 3, fitted to the values
of Im�(iωn) at the lowest n + 2 Matsubara frequencies, were
considered, showing only a weak dependence on n.)

FIG. 12. Comparison of the Z factor estimated from a fit, Eq. (10)
(lines), and from the simple form, Eq. (5) (lines with symbols), across
the slab for the same simulation parameters as in Figs. 3–5 (half-
filled case, U/t = 13.2). Semitransparency indicates regions with
low spectral weight at the Fermi level (see the last section of the
Appendix for details).

In Figs. 12 and 14 we use different opacities to distinguish
between “metallic” (opaque colors) and “insulating” (semi-
transparent colors) regions of the slab. The rationale behind
the distinction is described in the last subsection below.

1. Half-filled case

In Fig. 12 we show a comparison between the Z factor
estimated for the half-filled case on the basis of the approxi-
mate expression, Eq. (5) (lines with symbols; already shown
in Fig. 4), and the fit, Eq. (10) (lines). The high-temperature
case (βt = 10) is quite different from the rest, so we discuss
it separately below.

At the lower temperatures considered here (βt = 30,60,90)
the agreement between the fit and the simpler approximate
expression is very good in the metallic regions of the slab,
and it improves as the temperature decreases. In the insulating
(central) regions of the slab and in the regions of transition
between the metallic and insulating parts of the slab, on the
other hand, the agreement is poor even qualitatively. Whereas
the simple approximation, Eq. (5), always yields a positive
Z factor of magnitude less than 1 [as long as Im�(iω0) is
negative, which is always the case here], the fit can result in
a positive slope of the imaginary part of the self-energy at
small Matsubara frequency (a1 > 0), which—depending on
whether a1 > 1 or a1 < 1—can result in Z < 0 or Z > 1,
respectively. The former case, Z < 0, occurs in the central
region of the half-filled slabs, where we find a1 
 1 at all
temperatures considered here. The latter case, Z > 1, occurs
in the transition regions between the metallic and insulating
portions of the slab, where the sign of a1 changes from negative
to positive. This case causes the appearance of the spikes at,
e.g., V = 6,β = 30 [Fig. 12(b)].

It is clear that in the high-temperature case [βt = 10,
Fig. 12(a)] the agreement between the fit-based estimate for Z

and the naive expression is rather poor. This is also reflected in
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FIG. 13. Variation of the absolute value of Im�(ω = 0) (esti-
mated from a fit to the imaginary part of the self-energy) across the
slab for the same simulation parameters as in Figs. 3–5 and Fig. 12
(half-filled case, U/t = 13.2). Symbols correspond to the full DMFT
calculation, lines correspond to the LDA.

the fact that the magnitude of Im�(ω = 0) at all biases (except
V = 0) is significantly larger than at the respective biases
at all other temperatures [cf. Figs. 13(a) and 13(b)–13(d)]:
Im�(ω = 0) � 1 throughout the slab at β = 10 whereas at
lower temperatures Im�(ω = 0) is generally � 1, except in a
few central layers. The large value of Im�(ω = 0) indicates
a shortened quasiparticle lifetime, which means that at this
temperature excitations near the Fermi level are far less coher-
ent than at the lower temperatures considered. In the absence
of coherent excitations (the “bad metal” regime [61]) the Z

factor cannot properly be interpreted as a quasiparticle mass
renormalization factor (irrespective of whether it is calculated
from the fit to the self-energy or the more naive expression).
For these reasons it is clear that a quantitative comparison
between the βt = 10 case and the lower-temperature cases is
not meaningful. The trends in Fig. 13(a) are nevertheless clear:
Under bias, quasiparticle excitations near the center of the slab
are much less coherent than close to the surfaces.

2. Doped case

In the doped case, we see again that at high temperature
[βt = 10, Figs. 14(a) and 14(c)] there is a large discrepancy
between the fit-based estimate of Z and the simpler approxima-
tion. Also similar to the half-filled case is the observation that
the magnitude of Im�(ω = 0) at high temperature is about
an order of magnitude larger than at the lower temperature
we consider here (βt = 30) throughout most of the slab (cf.
Fig. 15). For the same reasons as in the half-filled case, we
ascribe the poor agreement between the fit and the approximate
expression, Eq. (5), to the lack of coherent excitations at this
temperature. This means that the variation of the Z factor
at this temperature doesn’t provide useful information about
the conductivity of the different layers of the slab. As in
the half-filled case, however, the variation of Im�(ω = 0)
[cf. Figs. 15(a) and 15(c)] allows us some insight into how
conductivity changes across the slab. It is clear that the overall
conclusions made on the basis of the approximate expression,

FIG. 14. Comparison of the Z factor estimated from a fit, Eq. (10)
(lines), and from the simple form, Eq. (5) (lines with symbols), across
the slab for the same simulation parameters as in Figs. 8–10 (doped
case). Semitransparency indicates regions with low spectral weight
at the Fermi level (see the last section of the Appendix for details).

Eq. (5), remain valid: Under bias, one side of the slab becomes
more conducting, whereas the other becomes more insulating.

At lower temperature [βt = 30, Figs. 14(b) and 14(d)], we
also encounter a situation similar to the half-filled case: The
agreement between the fit, Eq. (10), and Eq. (5) is good, except
in those areas of the slab which are insulating. In particular,
the oscillations that appear in Z when Eq. (5) is used are not
reproduced by the fit.

The suppression of Z at the surface observed when
Eq. (5) is used is reproduced by the fit, with the exception
of the V = 0,U/t = 16 case [Fig. 14(d)], which therefore
deserves additional comment. The slight enhancement of Z

at the surface (≈40% with respect to bulk) in this case is
accompanied by a much larger enhancement (nearly tenfold

FIG. 15. Variation of the absolute value of Im�(ω = 0) (esti-
mated from a fit to the imaginary part of the self-energy) across the
slab for the same simulation parameters as in Figs. 8 and 9 and Fig. 14
(doped case). Symbols correspond to the full DMFT calculation, lines
correspond to the LDA.
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with respect to the bulk value) of Im�(ω = 0) (cf. Fig. 15).
As the magnitude of Im�(0) is inversely proportional to the
quasiparticle lifetime, this means that the earlier conclusion
that the surface layers are more insulating remains valid also
in this case.

3. Quality of the fit

We also estimated the goodness of the fits used to obtain
the data shown in Figs. 12–15. We did this by estimating the
Q value, i.e., the likelihood that χ2 will exceed a given value
by chance, of each of the fits (for more details on goodness-of-
fit estimation see, e.g., Numerical Recipes, chapter 15 [62]).
Except in the strongly insulating regions of the slab, the value
of Q is ≈ 10−1 In the strongly insulating regions of the slab
the value of Q is extremely small (〈10−14 in some layers).
In general, a fit probability Q > 0.001 indicates a reasonably
good fit to the data. [62] Thus the extremely small Q values
we see in some cases indicate that the functional form Eq. (10)
is a very unlikely model for the behavior of Im�(iωn) in those
cases. A fit with a 1/ω term provides a much higher Q value
(≈0.1) in those cases (the overall number parameters being
kept fixed). This is not surprising, as Im�(ω) is expected to
diverge at ω = 0 in the Mott insulating phase.

4. ImG(iωn) criterion

For clarity in Figs. 12 and 14 we use different opacities to
distinguish between “metallic” and “insulating” regions of the
slab. In this section we describe the criterion which was used
for that distinction.

The basis for the distinction is the observation that the
shape of ImG(iωn) in insulating layers is different from
that in metallic layers. This is illustrated in Fig. 16, which
shows how ImG(iωn) changes across a slab under bias (in
this case U/t = 13.2,βt = 30, V = 6). Deep in the metallic

FIG. 16. A plot of the imaginary part of G(iωn) for different
layers in the slab illustrating the criterion used to distinguish between
“metallic” and “insulating” parts of the slab (see text).

region ImG(iωn) exhibits a negative peak close to the origin
[the slope of ImG(iωn) is positive close to the origin] and
attains its lowest value at the first Matsubara frequency. In the
strongly insulating layers, on the other hand, ImG(iωn) has
negative slope and extrapolates nearly to zero at the origin. The
transition between the two extremes is fairly abrupt (≈3 layers
in most cases). We use as our “cutoff” between “metallic” and
“insulating” layers the point where the ImG(iωn) no longer
attains its lowest value at the lowest Matsubara frequency
iω0 [63]. Obviously there is a certain degree of arbitrariness
in labeling the two neighboring layers on either side of that
cutoff as “metallic” and “insulating,” respectively, as in fact
they are fairly similar.

It is worth pointing out that the point where this change
of slope occurs is closely correlated with the point where
A(ω = 0), the spectral weight at the Fermi level, exhibits a
sharp drop (see Figs. 5 and 9). This isn’t surprising, since
A(ω = 0) = −ImG(ω = 0)/π .

[1] R. W. Helmes, T. A. Costi, and A. Rosch, Phys. Rev. Lett. 101,
066802 (2008).

[2] H. Zenia, J. K. Freericks, H. R. Krishnamurthy, and T. Pruschke,
Phys. Rev. Lett. 103, 116402 (2009).

[3] J. M. Tomczak, F. Aryasetiawan, and S. Biermann, Phys. Rev.
B 78, 115103 (2008).

[4] K. Martens, I. P. Radu, S. Mertens, X. Shi, L. Nyns, S. Cosemans,
P. Favia, H. Bender, T. Conard, M. Schaekers, S. De Gendt, V.
Afanas’ev, J. A. Kittl, M. Heyns, and M. Jurczak, J. Appl. Phys.
112, 124501 (2012).

[5] J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and
S. S. P. Parkin, Science 339, 1402 (2013).

[6] K. Martens, N. Aetukuri, J. Jeong, M. G. Samant, and S. S. P.
Parkin, Appl. Phys. Lett. 104, 081918 (2014).

[7] M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M.
Kawasaki, Y. Iwasa, and Y. Tokura, Nature (London) 487, 459
(2012).

[8] A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider,
M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M.
Triscone, Nature (London) 456, 624 (2008).

[9] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039
(1998).

[10] P. Limelette, A. Georges, D. Jérome, P. Wzietek, P. Metcalf, and
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