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The time-dependent Schrödinger equation for an electron passing through a semiconductor quantum ring of
nonzero width is solved in the presence of a perpendicular homogeneous magnetic field. We study the effects
of the Lorentz force on the Aharonov-Bohm oscillations. Within the range of incident momentum for which the
ring is transparent at zero magnetic field, the Lorentz force leads to a decrease of the oscillation amplitude, due
to the asymmetry in the electron injection in the two arms of the ring. For structures in which the fast electrons
are predominantly backscattered, the Lorentz force assists in the transport, producing an initial increase of the
corresponding oscillation amplitude. Furthermore, we discuss the effect of elastic scattering on a potential
cavity within one of the arms of the ring. For the cavity tuned to shift maximally the phase of the maximum
of the wave packet we observe a � shift of the Aharonov-Bohm oscillations. For other cavity depths oscilla-
tions with a period of half of the flux quantum are observed.
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I. INTRODUCTION

The wave function of an electron passing along a path l
acquires a phase shift1 from the vector potential A given by
�= �2� /�0��lA ·dx ��0=h /e is the flux quantum�. In a ring
configuration the Aharonov-Bohm �AB� effect produces a
measurable interference1 due to the relative phase shifts of
the wave function going through the arms ��=2�� /�0,
where � is the magnetic field flux through the area inside the
ring. Oscillations of the electric properties with period �0
were detected in metal2 and semiconductor rings.3–7

The theory8–10 of the AB conductance oscillations was
developed in a strictly one-dimensional model in which the
magnetic field is inaccessible for electrons and the only ef-
fect of the vector potential is the AB phase shift.8–11 In fact
the experiments2–7 are performed in homogeneous magnetic
fields and the leads have a finite width so the magnetic field
declines the paths of the current flow. Nevertheless, the scat-
tering matrix theories8,9 assumed explicitly transport symme-
try with respect to the arms of the ring. Comparable ampli-
tudes for wave function in both arms of the ring were also
assumed in the derivation10 of the multichannel AB conduc-
tance formula. The theories of Refs. 8–10 addressed metals
for which, as we discuss below, these assumptions are justi-
fied, since the Lorentz force has a negligible effect on trajec-
tories of heavy-effective-mass electrons traveling with high
Fermi velocities. This is no longer true for semiconductor
structures.

The purpose of the present paper is to describe the effect
of the Lorentz-force-related deformation of the electron tra-
jectories on the AB effect in a semiconductor quantum ring.
The effect of the Lorentz force was discussed for biprism
diffraction experiments in vacuum.12 The envelope of the
interference pattern for an electron traveling in the magnetic
field is shifted by the magnetic force according to the clas-
sical laws12 following the Ehrenfest theorem. The electron

trajectories declined by the magnetic field were also studied
for the injection through a semiconductor quantum point
contact.13 The effect of the magnetic field on the electron
trajectories in quantum rings was previously addressed in
Ref. 14. However, the boundary conditions applied in this
paper14 are not best suited for the discussion of the Lorentz
force effect since the wave function for the outgoing wave is
not associated with the current flowing out of the ring �see
Sec. IV� and the “incident” electron is not necessarily mov-
ing toward the ring. This is due to the current flowing in the
opposite directions at the edges of the leads in the eigenstates
at high magnetic fields. The problem of the changing orien-
tation of the electron velocity across the leads is in the
present paper neutralized by the time-dependent approach. In
this approach the incoming lead is clearly defined by the
applied initial condition for the localization of the wave
packet. The present calculations are performed in a basis of
Gaussian functions with embedded gauge invariance. We
consider the lowest subband transport and neglect inelastic
scattering effects. We demonstrate that the Lorentz force pro-
duces a preferential injection of the electron wave packet in
one of the arms of the ring. The injection imbalance grows
monotonically with the external magnetic field and eventu-
ally leads to a suppression of the AB oscillations at high
magnetic fields. We find that for high incident momenta the
Lorentz force can be necessary to guide the transport of elec-
trons, which are otherwise, in the absence of the magnetic
field, backscattered to the incoming lead. When the transport
window is opened for the fast electrons, they are directed to
both the arms of the ring and the corresponding AB oscilla-
tions amplitude initially increases with the magnetic field.

The real rings are never ideally clean, and the transport is
influenced by the elastic scattering. We study the scattering
effects introducing a shallow potential cavity in one of the
arms of the ring. The scattering phase shift filters the reso-
nances of the transferred momenta. We find that the AB os-
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cillation of the packet transfer probability is shifted by �0 /2
only when the depth of the cavity is tuned such that it pro-
duces a � phase shift for the maximum of the wave packet in
the momentum space. For other depths we find the appear-
ance of minima in the transition probability at integer mul-
tiples of �0 /2 that leads to a halving of the AB period, which
was originally expected15 for strongly disordered quantum
rings and recently observed in GaAs quantum rings.6

II. THEORY

We consider an electron confined in the �x ,y� plane with
perpendicular magnetic field �0,0 ,B�. The Hamiltonian re-
lated to the kinetic energy has the form H= �1/2m*��−i��
+eA�2 with the vector potential taken in the Landau gauge
A= �−By ,0 ,0� and m* stands for the electron effective mass
�we take the GaAs value m*=0.067m0�. We expand the wave
function in a basis of Gaussian functions16 centered around
chosen points Rn= �Xn ,Yn�

��x,y,t� = �
n

cn�t�fn�x,y� , �1�

with

fn�x,y� = exp�− �r − Rn�2/2�2

+ ieB�x − Xn��y + Yn�/2��/��� . �2�

The shape of the considered structures is defined by the
adopted position of centers �Rn� in functions �2�. The centers
are chosen along the lines drawn in Fig. 1 with spacings of
20 nm. The parameter � in functions �2� is set to 19.8 nm.
That choice determines the width of the waveguides �2�� and
is equivalent to defining a harmonic oscillator confinement
potential with the oscillator energy ��=2.9 meV in the di-
rection perpendicular to the waveguide. In the studied mag-
netic field range the increase of the electron localization in
the wires with the magnetic field is negligible.17 The imagi-
nary part of the exponent is related to the magnetic transla-
tion and ensures equivalence of all the points Rn, i.e., the
gauge invariance. Substituting expansion �1� into the time-
dependent Schrödinger equation we obtain a system of linear
equations for the time derivative of the coefficients cn�t�,

Sċ�t� = Hc�t�/i� , �3�

where the elements of the overlap and Hamiltonian matrices
are given by Skn= �fk 	 fn
 and Hkn= �fk	H	fn
, respectively.
However, the scheme based directly on Eq. �3� increases the
amplitude of the wave function with each time step. A more
stable and norm-conserving solution is provided by the
Askar and Cakmak18 scheme producing a system of linear
equations Sc�t+dt�=Sc�t−dt�−2idtHc�t� /�. Equation �3� is
used only for evaluation of the first time step.

We consider circular and diamond rings enclosing an area
of 1322� nm2 �see Fig. 1�, for which a single flux quantum
corresponds to B=75.57 mT. For the incident wave packet
we take one of the Gaussians �2�, namely, the one localized
at the wire at a position yi, 200 nm before the entrance of the
ring multiplied by a plane wave, i.e.,

��x,y,0� = f i�x,y�exp�iqy� . �4�

This product is projected onto the basis �1� and the projec-
tion is used as the initial condition for the simulations. The
corresponding probability density in wave vector space, cal-
culated as a Fourier transform along the axis of the incoming
lead �x=0�, is given by P�k�=��	 exp�−�k−q�2 /	2� with
	=0.0505/nm. The flux of the y component of the probabil-
ity density current

FIG. 1. Geometry and dimensions of the circular �a� and dia-
mond �b� quantum rings studied in the present paper. In the calcu-
lations the positions of the centers of the Gaussians �2� are chosen
along the drawn lines with a spacing of 20 nm.

FIG. 2. �Color online� Charge �contours� and current �vectors� densities for a Gaussian wave packet with kinetic energy �2q2 /2m
=1.42 meV being transferred through a quantum ring of radius 132 nm for zero magnetic field. �a�–�d� correspond to t=2.17, 4.35, 6.35, and
8.8 ps. Scale for the charge and current density is the same in all the plots, with the exception of the current density vectors in �a� which were
shortened by a factor of 1 /2 with respect to the other plots.

B. SZAFRAN AND F. M. PEETERS PHYSICAL REVIEW B 72, 165301 �2005�

165301-2



j =
i�

2m* �� � �* − �* � �� +
e

m*A��* �5�

integrated over the two-dimensional space equals �q /m*,
which gives the same initial condition for all B. The central
part of the packet in the wires moves in real space according
to the Ehrenfest theorem as d�r
 /dt= �p+eA
 /m*, so in the
applied gauge, for the leads oriented along the y direction,
the vector potential has no influence on the movement of the
center of the wave packet. The Ehrenfest theorem for the
change of the average momentum in time,

d�p + eA

dt

= −
e

m* �p + eA
 
 B , �6�

gives for the y component the expression

d�py

dt

=
d�− i��/�y


dt
= −

eB

m*�i�
�

�x
+ eyB� . �7�

The matrix elements of the operator �fm	i�� /�x+eyB	fn
 are
zero for Xm=Xn �see Eq. �2��, so in the leads �oriented par-
allel to the y axis� the average value of momentum is con-
served. In other words, the magnetic field cannot deflect the
momentum of the electron packet moving in the leads de-
fined as a sequence of Gaussian basis functions centered
along the same axis. In that sense the leads in our model are
effectively one-dimensional. Deflection is only possible at
the junctions of the leads and the ring. Finally, we have veri-
fied using Fourier transform analysis that not only �py
 and
�py

2
 but the entire momentum distribution remains un-
changed in time when the wave packet travels through the
leads. Summarizing, in our model the magnetic forces are
not active in the leads, the momentum of the packet is con-
served, although for B�0 the momentum operator does not
commute with the Hamiltonian.

The numerical results presented in this paper were ob-
tained for an average value of the momentum q=0.05/nm,
which corresponds to an average kinetic energy �2q2 /2m*

=1.42 meV. The average kinetic energy is equal to the Fermi
energy �EF=��n /m*� of the two dimensional electron gas at
the carrier concentration n=0.4
1011/cm2. At the higher en-
ergy end of the packet, i.e., for k=q+	, the kinetic energy
equals 5.36 meV.

III. RESULTS

Figures 2–4 show snapshots of the time evolution of the
wave packet in a circular quantum ring �see Fig. 1�a�� for 0,
0.5, and 4.5 flux quanta. The contour plots show the charge
densities and the arrows display the probability density vec-
tors �5�. Plots for t=2.17 ps �in parts �a� of Figs. 2–4� corre-
spond to the moment just before the maximum of the charge
density packet enters the ring. A larger part of the wave
packet is scattered back into the injection lead. The plot for
�=0 �Fig. 2�a�� shows an equal spreading of the wave
packet into both arms of the ring. At t=4.4 and 6.5 ps �Figs.
2�b� and 2�c�� we observe the formation of a maximum at the
exit region of the ring where left and right circulating parts
of the packet meet. For �=�0 /2 �Fig. 3� the parts of the
packet transferred through the left and right arms interfere
destructively �Figs. 3�b�–3�d��, leading to a zero charge den-
sity at the upper exit of the ring. Consequently, �almost� no
charge is transferred out of the ring at this exit. The injection
asymmetry due to the Lorentz force directing the wave
packet to the left arm, visible already in Fig. 3�a�, increases
with the magnetic field �see Fig. 4 for 4.5�0�. We observe
also that for 4.5�0 the wave packet reaches further into the
arm as compared to the effect at lower magnetic fields. The
Lorentz force helps the higher-momentum parts of the packet
enter into the ring instead of being reflected. In comparison
to the case of 0.5�0 �Fig. 3�, we see that due to the injection

FIG. 3. �Color online� Same as
Fig. 2 but for B=0.0378 T, which
corresponds to the flux of the
magnetic field through the ring
�=h /2e=�0 /2. �d� corresponds
to t=13.06 ps �the others to t’s as
in Fig. 2�.

FIG. 4. �Color online� Same as
Fig. 2 but for B=0.34 T, i.e., �
=4.5�0.

TIME-DEPENDENT SIMULATIONS OF ELECTRON… PHYSICAL REVIEW B 72, 165301 �2005�

165301-3



imbalance the destructive interference at the upper exit is not
complete. The force also guides the packet, which travels
throughout the left arm and exits the ring �Figs. 4�c� and
4�d��.

The transmission probability of the wave packet through
the circular quantum ring is shown by the solid line in Fig. 5.
This quantity was obtained by integrating the probability
density leaving the ring through the upper lead. In contrast to
the strictly one-dimensional model with the assumption of
equal amplitudes of wave functions entering both arms of the
ring as given by the Büttiker single-channel formula,9 we
find �1� that the amplitude of the oscillations decreases with
magnetic field, and �2� that for half-integer fluxes the value
of the transmission probability is no longer zero. The de-
creasing amplitude is due to the growing imbalance in the
amount of charge transferred through the left and right arms
of the ring, which prevents the interference from being com-
pletely destructive. The values of the transmission probabil-
ity maxima and minima are increasing functions of the mag-
netic field, which is a consequence of the guiding behavior of
the Lorentz force that eases the entrance and exit of the wave
packet. The envelope of the maxima is well approximated by
the packet transfer probability through a semicircular wire
that is obtained when the right arm of the circular ring is
removed, plotted with the dashed line in Fig. 5. One could
expect that the probability of transfer through the semicircu-
lar wire �T�B�� will be larger for B�0, since then the Lor-
entz force tends to deflect the trajectories to the left. In fact,
the transfer probabilities are independent of the magnetic
field orientation �T�B�=T�−B��. This is a signature of the
microreversibility relation for a two-terminal device.19–21

The time dependence of the charge accumulated in the semi-
circular part of the wire, as well as the probabilities of find-
ing the electron below and above the bend, are plotted in Fig.
6 for �=10�0. The probability density below the ring is at
any time exactly the same for both the wires. The transmis-
sion probability tends for t→� to the same value for both

wires, but the transport for B
0 is delayed with respect to
the B�0 case. For B�0 the Lorentz force directly injects
the electron into the bend and then ejects it to the outgoing
lead. On the other hand, for B
0 both the magnetic-field-
assisted injection into and the ejection out of the wire bend
are realized after the electron velocity changes its sign in
reflection from the junctions at which the waveguide turns at
the 90° angle, hence the time delay.

More information on the nature of the transport is ob-
tained from the momentum distribution of the transmitted
wave packet, calculated numerically as the square of the ab-
solute value of the space Fourier transform of the wave func-
tion transmitted through the ring calculated along the axis of
the output lead �x=0�. The black solid line in Fig. 7 shows
the momentum distribution of the transmitted packet for zero
magnetic field �the momentum distribution of the incident
packet is plotted by the dashed curve�. The origin of the
pronounced peaks can be understood from the transmission
mechanism illustrated in Fig. 2. The momenta that have the
highest probability to be transferred from the injection to the
collection lead correspond to standing waves with maxima of

FIG. 5. The transmission probability of the wave packet through
the circular �solid line�, and diamond �dotted line� quantum rings as
function of the flux passing through the ring in units of the flux
quantum. The dashed line shows the transmission probability
through a wire of semicircular shape obtained from the circular
quantum ring after removal of one of its arms.

FIG. 6. Probability of finding the electron inside the semicircu-
lar wire above and below it as function of time for �=10�0. The
solid �dashed� lines show the results for B
0 �B�0�. The reflected
probability density for the B
0 is marked by the dots.

FIG. 7. �Color online� Probability density of the transferred
wave packet through the circular ring in wave vector space. Lines
corresponding to 0, 1, 2.5, 7, and 7.5 flux quanta passing through
the ring are labeled. The dashed line shows the shape of the initial
wave packet. The arrows show the wave vector values equal to n /R.
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charge density at the entrance and the exit of the ring. This is
realized when the phase shift k�R along each of the arms is
equal to an integer �n� multiple of � leading to the resonant
condition k=n /R �values marked by arrows in the top of the
figure�. Position of the momentum peaks for higher values of
k agrees well with these values. For lower momenta the spac-
ing between the peaks increases, as if the resonant length for
the slower parts of the packet was shorter. The transferred
momentum spectrum for one flux quantum �see Fig. 7� is
very similar to the one for zero magnetic field, and the posi-
tion of the peaks is unaltered. For halves of the flux quanta at
lower magnetic fields �see the plot for 2.5�0� the nonzero
value for the transferred spectra is uniquely due to the injec-
tion imbalance. The spectrum possesses characteristic
double-peak structure in between the maxima for integer flux
quanta. For �=0 we also notice a clear asymmetry in the
transferred momentum with respect to its original distribu-
tion. The parts of the wave packet that travel faster have less
time to enter into the arms of the ring before they get re-
flected back at the entrance to the ring into the incoming
lead. The momentum distribution at 7�0 �blue curve� differs
with respect to the �=0 and �0 distributions in two points:
�1� the gaps between the peaks are filled, and �2� a visibly
larger probability of transfer of the fast parts of the packet.
Consequently, the spectrum approaches more closely the ini-
tial momentum distribution. The Lorentz-force guided trans-
port does not require formation of standing waves with
maxima at the ring-leads junctions, which is the reason why
the resonant relation no longer holds. At high field for frac-
tional flux quanta �see the plot for 7.5�0� the minima in the
transferred spectrum are shifted toward distinctly nonzero
values.

Figure 8 shows the transfer probability as a function of
the magnetic field for fixed values of the wave vector. For
k=0.053/nm and 0.06/nm the magnetic field leads to a de-
crease of the oscillation amplitude, as in the momentum-
averaged packet transfer probability �see Fig. 5�. The growth
of the envelope of transfer probability maxima seen in Fig. 5
is due to the Lorentz-force guided transport for high incident
momenta. For k=0.072/nm the transfer probability grows

with decreasing AB oscillation amplitude. On the other hand,
already for k=0.091/nm the amplitude increases with B.
This can be understood on the basis of the properties of the
semicircular wire discussed above. The electron can be in-
jected by the Lorentz force into the left arm of the ring di-
rectly from the incoming lead or to the right arm after its
velocity changes sign at the reflection at the junction. For
high momenta the Lorentz force first allows transport
through both the arms of the ring. It should be expected that
at higher B the injection imbalance will appear and eventu-
ally destroy the AB oscillations. Note that the peaks of the
transfer probability for k=0.091/nm are spaced by only
around 90% of the nominal AB period, which indicates that
the effective radius of the ring is larger for fast electrons.
This classical feature was already noticed in the enlarged
spacings between the resonant peaks at the low-k part of the
spectrum for B=0 in Fig. 7.

As compared to the circular ring, in the diamond geom-
etry the incoming packet enters the arms of the ring more
easily and leaves also more easily the ring to the upper lead.
Consequently, at B=0 the transmission probability is more
than twice larger than for the circular ring �see the dotted line
in Fig. 5�. No pronounced resonance pattern similar to the
one obtained for the circular ring �compare Figs. 7 and 9� is
observed. The transmitted momentum spectrum exhibits an
asymmetric shift towards higher momenta with respect to the
initial momentum distribution which is opposite to the circu-
lar ring case. The electrons with higher momenta are now
more easily transferred through the diamond ring simply by
the inertia and not by the Lorentz force. That explains why
for the diamond ring the envelope of the maxima of the
packet transfer probability �Fig. 5� does not exhibit the
growth with B as in the circular ring case. Since the angle at
which the trajectory has to be deflected is smaller than for
the discussed circular ring geometry, the minima in the os-
cillations increase much faster with the B field as compared
to the circular ring �see Fig. 5�. For ��5�0 the AB oscil-
lations in the diamond ring are no longer observed.

Next, we study the effect of elastic scattering on a shallow
Gaussian potential cavity placed in the center of the left arm
of the circular ring. To determine the scattering properties of
the cavity we solved first the strictly one-dimensional prob-
lem of transmission through a Gaussian quantum well

FIG. 8. �Color online� Transfer probability for fixed values of
the incident wave vector as a function of the magnetic field flux for
the circular ring. The plots for k=0.072, 0.06, and 0.053 per nm
were shifted by 0.5, 1, and 1.5, respectively.

FIG. 9. Probability density of the packet transferred through the
diamond ring in wave vector space for B=0. The dashed line shows
the shape of the initial wave packet.
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�−V0 exp�−x2 /2�2��. Figure 10 presents the transmission
probability and the phase shift as functions of the wave vec-
tor. The cavity is transparent for wave vectors larger than
0.025/nm, only the phase is changed with respect to the V0
=0 �no cavity� case. The phase shift for k=0.05/nm �maxi-
mum of the probability density used in the time-dependent
simulations� is close to � /4, � /2, and � for V0=1, 2.75, and
5.5 meV, respectively.

In the time-dependent simulations for the ring structure
we introduce a potential cavity described by the potential

V�x,y� = − V0 exp
− ��x − Xl�2 + �y − Yl�2�/2�2� , �8�

where �Xl ,Yl� is situated in the middle of the left arm of the
ring. The transmission probability of the wave packet is plot-
ted as a function of V0 in Fig. 11�a� for different values of the
flux. For �=0 the transmission probability has a minimum
when the phase shift for the maximum of the wave packet in
momentum space is equal to �, which is achieved at V0
=5.5 meV �cf. Fig. 10 for q=0.05/nm�. Figure 11�b� shows
the comparison of the momentum distribution of the trans-
ferred part of the packet for V0=0 and 5.5 meV at �=0. The
phase shift acquired in the dot and the destructive interfer-
ence at the exit remove the central part of the wave packet in
the momentum space. For �=�0 /2 the cavity has the oppo-
site effect on the transmission probability since it compen-
sates for the � shift produced by the AB effect. As a conse-
quence the probability increases �see dashed lines in Fig.
11�a�� when V0 is increased from 0, and is maximal for V0
=5.5 meV where the compensation of the AB phase shift is
obtained. The central part of the transferred momentum
spectrum at �=0.5�0 for V0=5.5 meV �see Fig. 11�c�� is
similar to V0=0 in the absence of the magnetic field �com-
pare black line in Fig. 11�b��. Note, that the transmission
probability plotted in Fig. 11�a� is not a smooth function of
V0. The changing slope of the curve is due to switching on
and off the resonances in the transmitted momentum spec-
trum.

The magnetic field dependence of the packet transfer
probability for V0=5.5 meV is plotted in Fig. 12 by the low-
est curve. The transfer probability possess maxima at the

magnetic fields corresponding to halves of the flux quanta,
for which the Aharonov-Bohm effect compensates for the
scattering � shift. The transfer probability for V0=4 meV is
plotted by the second curve from below in Fig. 12. By anal-
ogy to the results for V0=0 and V0=5.5 meV one could ex-
pect a similar behavior with minima spaced by �0 but shifted
on the flux scale. However, this would violate the even sym-
metry of the two-terminal device properties as a function of
the external field. The transfer probability are subject to the
phase-locking21 of the AB oscillations resulting in an extre-
mum always present at B=0. For V0=4 meV the transmis-
sion probability develops shallow minima at odd multiples of
�0 /2. The probability amplitudes for the paths passing
through the left and right arms do not meet exactly in phase
at the upper exit from the wire, but on the other hand, the
rotating left and right parts of the packet meet exactly in
phase at the entrance. The depth of the probability minima
for both the odd and even multiples of �0 /2 decrease with
increasing flux. At V0=2.75 meV the phase shift for the
maximum of the wave packet �q=0.05/nm� is about � /2
�see Fig. 10�. The minima at the even and odd multiples of

FIG. 10. �Color online� Transmission probability �solid lines�
and the phase shift �dotted lines� as functions of the wave vector for
a strictly one-dimensional Gaussian potential cavity of width 28 nm
and different depths V0.

FIG. 11. �Color online� �a� Transmission probability of the wave
packet through a circular ring with a Gaussian quantum well �Eq.
�8�� in the left arm as a function of the depth of the well V0. Values
for fluxes equal to integer flux quanta are plotted with solid lines
and for half flux quanta with dashed lines. �b� The transferred mo-
mentum distribution for V0=0 and 5.5 meV at �=0. �c� Same as
�b� but now for �=0.5�0.
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�0 /2 acquire similar depth. As a consequence the transmis-
sion probability exhibits oscillations with an effective quasi-
period of half of the flux quantum.

IV. DISCUSSION

The measured conductance of semiconductor rings3,4,6,7,22

deviates from the strict periodicity predicted by the one-
dimensional models.8–10,19–21 We indicate that the Lorentz
force can be responsible for these deviations. The injection
imbalance leads to a decrease of the AB oscillations ampli-
tude with the magnetic field as obtained in the magnetocon-
ductance measurements6 performed on GaAs/AlGaAs quan-
tum rings �see Fig. 1 of Ref. 6�. The amplitude decreasing
with magnetic field was also observed in GaAs/AlGaAs na-
norings formed by an atomic force microscope tip4 �see the
ring current plot in Fig. 2�c� of Ref. 4� and in the AB inter-
ferometer �see Fig. 3�a� of Ref. 22�. A suppression of the
periodic magnetoresistance oscillations was also reported in
Ref. 3. Lorentz force can also be responsible for an increase
of the oscillations’ amplitude �observed for instance in Ref.
7� since in some geometries it opens the transport window
for fast electrons.

In order to be of significant importance the Lorentz force
has to deflect the electron trajectories at the entrance and at
the exit leads of the ring. The classical formula for the radius
of an electron orbit in a magnetic field R=m*V /eB �for the
average q=0.05/nm taken in our calculations R=32.9
nm T/B� indicates that the effect will be smaller for fast
electrons since the radius will not fit into the width of the
junction. This feature was actually confirmed in the context
of Figs. 7 and 8. In metals the Fermi energies are of order eV,
which compares to meV in a two-dimensional electron gas in
GaAs. Consequently, in Au rings2 in which both the electron
effective mass ��m0� and the Fermi velocity �1.4
106

m/s� are about 15 times larger than the effective mass and
the velocity ��q /m*=0.086
106 m/s for q=0.05/nm� con-
sidered in the present paper, the AB oscillations pertain up to
8 T covering as much as 104 flux quanta �0. Recently, AB
oscillations in a semiconductor quantum ring5 pertaining to
large fluxes were observed in a device with electrostatic tun-
nel barriers in both arms of the ring. In the experiment5 the
barriers were tuned to have equal transmission, which can
compensate for the Lorentz force effect described in the
present paper.

The imbalance of the current through the arms of the ring
as due to the magnetic field was previously14 found in a
time-independent simulation. Our results contradict the pro-
posed mechanism14 of the direction of the current injection
changing from the left to the right arm of the ring periodi-
cally with the magnetic field. The injection imbalance is due
to the Lorentz force; hence it is monotonic in B. At high field
for single-channel transport the authors14 obtain the trans-
mission probability as a bivalue function equal to zero for
odd multiples of �0 /2 and 1 for other fluxes �see Fig. 13 of
Ref. 14 for �=20�. According to our calculations there is no
physical reason that would lead to a strict vanishing of the
single-channel conductance at high magnetic field penetrat-
ing the arms of the two-dimensional quantum ring. The
Hamiltonian eigenstates in the leads �oriented along x axes�
were used14 as boundary conditions for the incoming and
outgoing waves. The eigenstates were calculated as gk�x ,y�
=exp�ikx�fk�y�, where fk is the eigenfunction of the one-
dimensional Hamiltonian H=−��2 /2m*�d2 /dy2+ �1/2m*�

��k−m*�cy�2 with zero boundary conditions on the wall,
i.e., for y= ±d /2. The probability density current in the x
direction for eigenstate gk is given by jx�y�= 	f�y�	2��k /m
−�cy�. At high magnetic field14 �when �c��k /m*� the cur-
rent jx�y� has the opposite orientation at the top �y�0� and
bottom �y
0� edges of both the injection and the extraction
lead.23 Moreover, the conductance Landauer formula �Eq.
�16� of Ref. 14� assumes that the current is proportional to
the wave vector. This assumption is only correct at B=0.

V. CONCLUSION AND SUMMARY

We have solved the time-dependent Schrödinger equation
for a Gaussian electron wave packet passing through a quan-
tum ring in the presence of a homogeneous external mag-
netic field. In contrast to previous strictly one-dimensional
theories our results indicate that the Aharonov-Bohm oscil-
lations for semiconductor quantum rings disappear in the
high-magnetic-field limit due to the Lorentz force action on
the moving electron. In circular quantum rings the magnetic
field changes the mechanism of transport, increasing the
strength of the coupling of the ring to the leads with increas-
ing magnetic field. The momentum resonances in the tunnel-
ing at low magnetic field resemble the formation of a quasi-
bound temporary state localized in the ring. At high magnetic
field the tunneling becomes guided by the Lorentz force. For
rings, in which in the absence of the magnetic field the ge-
ometry blocks the transport of fast electrons, the Lor-

FIG. 12. �Color online� Probability of transmission of the wave
packet through a circular ring with a Gaussian quantum well �Eq.
�8�� in the left arm as a function of the magnetic field flux for well
depths: V0=5.5, 4, 2.75, 1 and 0 meV. Lines for V0=4, 2.75, 1, and
0 meV have been shifted for clarity by +0.12, +0.24, +0.36, and
+0.48, respectively.
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entz force helps them to pass through. This can initially in-
crease the amplitude of oscillations before the interference is
eventually suppressed. The presence of an elastic scatterer in
one of the ring arms leads to a � shift of the oscillations of
the wave packet transmission probability or to halving of the
period of its Aharonov-Bohm oscillations.
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