toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S. pdf  url
doi  openurl
  Title The Chemical Route to a Carbon Dioxide Neutral World Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume (up) 10 Issue 10 Pages 1039-1055  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy

supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398182800002 Publication Date 2017-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 75 Open Access OpenAccess  
  Notes This paper is written by members of the Royal Flemish Academy of Belgium for Science and the Arts (KVAB) and external experts. KVAB is acknowledged for supporting the writing and publishing of this viewpoint. Valuable suggestions made by colleagues Jan Kretzschmar, Stan Ulens, and Luc Sterckx are highly appreciated. Special thanks go to Mr. Bert Seghers and Mrs. N. Boelens of KVAB for practical assistance. Mr. Tim Lacoere is acknowledged for graphic design and layout of the figures, and Steven Heylen and Elke Verheyen are acknowledged for data collection and editorial assistance. Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:141916 Serial 4532  
Permanent link to this record
 

 
Author Wang, W.; Patil, B.; Heijkers, S.; Hessel, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling Type A1 Journal Article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume (up) 10 Issue 10 Pages 2110-2110  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2/O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx. The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber–Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which lowtemperature plasma technology might play an important role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2017-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links  
  Impact Factor 7.226 Times cited Open Access Not_Open_Access  
  Notes This research was supported by the European Marie Skłodowska- Curie Individual Fellowship “GlidArc” within Horizon 2020 (Grant No.657304), by the FWO project (grant G.0383.16 N) and by the EU project MAPSYN: Microwave, Acoustic and Plasma assisted SYNthesis, under the grant agreement no. CP-IP 309376 of the European Community’s Seventh Framework Program. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ Serial 4573  
Permanent link to this record
 

 
Author Ramakers, M.; Trenchev, G.; Heijkers, S.; Wang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume (up) 10 Issue 10 Pages 2642-2652  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO2 into chemicals and fuels. Since CO2 is a very stable molecule, a key performance indicator for the research on plasma-based CO2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO2. From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO2 conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403934400014 Publication Date 2017-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 42 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek, G.0383.16N 11U5316N ; Horizon 2020, 657304 ; Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:144184 Serial 4616  
Permanent link to this record
 

 
Author Wang, W.; Patil, B.; Heijkers, S.; Hessel, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Nitrogen fixation by gliding arc plasma : better insight by chemical kinetics modelling Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume (up) 10 Issue 10 Pages 2145-2157  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2/O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx. The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale HaberBosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000402122100006 Publication Date 2017-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 42 Open Access OpenAccess  
  Notes Approved Most recent IF: 7.226  
  Call Number UA @ lucian @ c:irua:143261 Serial 4672  
Permanent link to this record
 

 
Author Cleiren, E.; Heijkers, S.; Ramakers, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume (up) 10 Issue 20 Pages 4025-4036  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Dry reforming of methane (DRM) in a gliding arc plasmatron is studied for different CH4 fractions in the mixture. The CO2 and CH4 conversions reach their highest values of approximately 18 and 10%, respectively, at 25% CH4 in the gas mixture, corresponding to an overall energy cost of 10 kJ L@1 (or 2.5 eV per molecule) and an energy efficiency of 66%. CO and H2 are the major products, with the formation of smaller fractions of C2Hx (x=2, 4, or 6) compounds and H2O. A chemical kinetics model is used to investigate the underlying chemical processes. The calculated CO2 and CH4 conversion and the energy efficiency are in good agreement with the experimental data. The model calculations reveal that the reaction of CO2 (mainly at vibrationally excited levels) with H radicals is mainly responsible for

the CO2 conversion, especially at higher CH4 fractions in the mixture, which explains why the CO2 conversion increases with increasing CH4 fraction. The main process responsible for CH4 conversion is the reaction with OH radicals. The excellent energy efficiency can be explained by the non-equilibrium character of the plasma, in which the electrons mainly activate the gas molecules, and by the important role of the vibrational kinetics of CO2. The results demonstrate that a gliding arc plasmatron is very promising for DRM.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413565100012 Publication Date 2017-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 23 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Federaal Wetenschapsbeleid; Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @c:irua:146665 Serial 4759  
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Gorbanev, Y.; Dewilde, S.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Reduction of Human Glioblastoma Spheroids Using Cold Atmospheric Plasma: The Combined Effect of Short- and Long-Lived Reactive Species Type A1 Journal article
  Year 2018 Publication Cancers Abbreviated Journal Cancers  
  Volume (up) 10 Issue 11 Pages 394  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) is a promising technology against multiple types of cancer. However, the current findings on the effect of CAP on two-dimensional glioblastoma cultures do not consider the role of the tumour microenvironment. The aim of this study was to determine the ability of CAP to reduce and control glioblastoma spheroid tumours in vitro . Three-dimensional glioblastoma spheroid tumours (U87-Red, U251-Red) were consecutively treated directly and indirectly with a CAP using dry He, He + 5% H 2 O or He + 20% H 2 O. The cytotoxicity and spheroid shrinkage were monitored using live imaging. The reactive oxygen and nitrogen species produced in phosphate buffered saline (PBS) were measured by electron paramagnetic resonance (EPR) and colourimetry. Cell migration was also assessed. Our results demonstrate that consecutive CAP treatments (He + 20% H 2 O) substantially shrank U87-Red spheroids and to a lesser degree, U251-Red spheroids. The cytotoxic effect was due to the short- and long-lived species delivered by CAP: they inhibited spheroid growth, reduced cell migration and decreased proliferation in CAP-treated spheroids. Direct treatments were more effective than indirect treatments, suggesting the importance of CAP-generated, short-lived species for the growth inhibition and cell cytotoxicity of solid glioblastoma tumours. We concluded that CAP treatment can effectively reduce glioblastoma tumour size and restrict cell migration, thus demonstrating the potential of CAP therapies for glioblastoma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451307700001 Publication Date 2018-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes The authors thank Paul Cos (Department of Pharmaceutical Sciences, University of Antwerp) for providing EPR equipment and Christophe Hermans for his help with the immunohistochemical experiments. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:154871 Serial 5065  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title The Potential Use of Core-Shell Structured Spheres in a Packed-Bed DBD Plasma Reactor for CO2 Conversion Type A1 Journal article
  Year 2020 Publication Catalysts Abbreviated Journal Catalysts  
  Volume (up) 10 Issue 5 Pages 530  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This work proposes to use core-shell structured spheres to evaluate whether it allows to individually optimize bulk and surface effects of a packing material, in order to optimize conversion and energy efficiency. Different core-shell materials have been prepared by spray coating, using dense spheres (as core) and powders (as shell) of SiO2, Al2O3, and BaTiO3. The materials are investigated for their performance in CO2 dissociation and compared against a benchmark consisting of a packed-bed reactor with the pure dense spheres, as well as an empty reactor. The results in terms of CO2 conversion and energy efficiency show various interactions between the core and shell material, depending on their combination. Al2O3 was found as the best core material under the applied conditions here, followed by BaTiO3 and SiO2, in agreement with their behaviour for the pure spheres. Applying a thin shell layer on the cores showed equal performance between the different shell materials. Increasing the layer thickness shifts this behaviour, and strong combination effects were observed depending on the specific material. Therefore, this method of core-shell spheres has the potential to allow tuning of the packing properties more closely to the application by designing an optimal combination of core and shell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000546007000092 Publication Date 2020-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited Open Access  
  Notes Interreg, Project EnOp ; Fonds Wetenschappelijk Onderzoek, G.0254.14N ; Universiteit Antwerpen, Project SynCO2Chem ; We want to thank Jasper Lefevre (VITO) for assistance in the development of the coating suspension for the core-shell spheres. Approved Most recent IF: 3.9; 2020 IF: 3.082  
  Call Number PLASMANT @ plasmant @c:irua:169222 Serial 6364  
Permanent link to this record
 

 
Author Marimuthu, P.; Razzokov, J.; Singaravelu, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide—Mcl1 Complexes Type A1 Journal article
  Year 2020 Publication Biomolecules Abbreviated Journal Biomolecules  
  Volume (up) 10 Issue 8 Pages 1114  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Mcl1 is a primary member of the Bcl–2 family—anti–apoptotic proteins (AAP)—that is overexpressed in several cancer pathologies. The apoptotic regulation is mediated through the binding of pro-apoptotic peptides (PAPs) (e.g., Bak and Bid) at the canonical hydrophobic binding groove (CBG) of Mcl1. Although all PAPs form amphipathic α-helices, their amino acid sequences vary to different degree. This sequence variation exhibits a central role in the binding partner selectivity towards different AAPs. Thus, constructing a novel peptide or small organic molecule with the ability to mimic the natural regulatory process of PAP is essential to inhibit various AAPs. Previously reported experimental binding free energies (BFEs) were utilized in the current investigation aimed to understand the mechanistic basis of different PAPs targeted to mMcl1. Molecular dynamics (MD) simulations used to estimate BFEs between mMcl1—PAP complexes using Molecular Mechanics-Generalized Born Solvent Accessible (MMGBSA) approach with multiple parameters. Predicted BFE values showed an excellent agreement with the experiment (R2 = 0.92). The van–der Waals (ΔGvdw) and electrostatic (ΔGele) energy terms found to be the main energy components that drive heterodimerization of mMcl1—PAP complexes. Finally, the dynamic network analysis predicted the allosteric signal transmission pathway involves more favorable energy contributing residues. In total, the results obtained from the current investigation may provide valuable insights for the synthesis of a novel peptide or small organic inhibitor targeting Mcl1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000578895600001 Publication Date 2020-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes P.M. gratefully acknowledges the use of the bioinformatics infrastructure facility supported by Biocenter Finland and the CSC-IT Center for Science (Project: 2000461) for the computational facility; Jukka Lehtonen for the IT support; Mark Johnson (SBL) Åbo Akademi University for providing the lab support and Outi Salo-Ahen (Pharmacy) Åbo Akademi University and Olli T. Pentikäinen (Institute of Biomedicine) University of Turku, for their valuable support and discussion. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:170486 Serial 6396  
Permanent link to this record
 

 
Author Mehta, P.; Barboun, P.M.; Engelmann, Y.; Go, D.B.; Bogaerts, A.; Schneider, W.F.; Hicks, J.C. pdf  url
doi  openurl
  Title Plasma-Catalytic Ammonia Synthesis beyond the Equilibrium Limit Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume (up) 10 Issue 12 Pages 6726-6734  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explore the consequences of nonthermal plasma-activation on product yields in catalytic ammonia synthesis, a reaction that is equilibrium-limited at elevated temperatures. We employ a minimal microkinetic model that incorporates the influence of plasma-activation on N2 dissociation rates to predict NH3 yields into and across the equilibrium-limited regime. NH3 yields are predicted to exceed bulk thermodynamic equilibrium limits on materials that are thermal-rate-limited by N2 dissociation. In all cases, yields revert to bulk equilibrium at temperatures at which thermal reaction rates exceed plasma-activated ones. Beyond-equilibrium NH3 yields are observed in a packed bed dielectric barrier discharge reactor and exhibit sensitivity to catalytic material choice in a way consistent with model predictions. The approach and results highlight the opportunity to exploit synergies between nonthermal plasmas and catalysts to affect transformations at conditions inaccessible through thermal routes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543663800015 Publication Date 2020-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access  
  Notes University of Notre Dame; Basic Energy Sciences, DE-SC-0016543 ; Air Force Office of Scientific Research, FA9550-18-1- 0157 ; This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Sustainable Ammonia Synthesis Program, under Award DE-SC-0016543 and by the U.S. Air Force Office of Scientific Research, under Award FA9550-18-1-0157. P.M. acknowledges support through the Eilers Graduate Fellowship for Energy Related Research from the University of Notre Dame. Computational resources were provided by the Notre Dame Center for Research Computing. We thank the Notre Dame Energy Materials Characterization Facility and the Notre Dame Integrated Imaging Facility for the use of the X-ray diffractometer and the transmission electron microscope, respectively. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number PLASMANT @ plasmant @c:irua:170713 Serial 6405  
Permanent link to this record
 

 
Author Van Loenhout, J.; Freire Boullosa, L.; Quatannens, D.; De Waele, J.; Merlin, C.; Lambrechts, H.; Lau, H.W.; Hermans, C.; Lin, A.; Lardon, F.; Peeters, M.; Bogaerts, A.; Smits, E.; Deben, C. url  doi
openurl 
  Title Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma Type A1 Journal Article;oxidative stress
  Year 2021 Publication Cells Abbreviated Journal Cells  
  Volume (up) 10 Issue 11 Pages 2936  
  Keywords A1 Journal Article;oxidative stress; auranofin; cold atmospheric plasma; glioblastoma; cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Targeting the redox balance of malignant cells via the delivery of high oxidative stress unlocks a potential therapeutic strategy against glioblastoma (GBM). We investigated a novel reactive oxygen species (ROS)-inducing combination treatment strategy, by increasing exogenous ROS via cold atmospheric plasma and inhibiting the endogenous protective antioxidant system via auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor. The sequential combination treatment of AF and cold atmospheric plasma-treated PBS (pPBS), or AF and direct plasma application, resulted in a synergistic response in 2D and 3D GBM cell cultures, respectively. Differences in the baseline protein levels related to the antioxidant systems explained the cell-line-dependent sensitivity towards the combination treatment. The highest decrease of TrxR activity and GSH levels was observed after combination treatment of AF and pPBS when compared to AF and pPBS monotherapies. This combination also led to the highest accumulation of intracellular ROS. We confirmed a ROS-mediated response to the combination of AF and pPBS, which was able to induce distinct cell death mechanisms. On the one hand, an increase in caspase-3/7 activity, with an increase in the proportion of annexin V positive cells, indicates the induction of apoptosis in the GBM cells. On the other hand, lipid peroxidation and inhibition of cell death through an iron chelator suggest the involvement of ferroptosis in the GBM cell lines. Both cell death mechanisms induced by the combination of AF and pPBS resulted in a significant increase in danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation, indicating a potential increase in immunogenicity, although the phagocytotic capacity of dendritic cells was inhibited by AF. In vivo, sequential combination treatment of AF and cold atmospheric plasma both reduced tumor growth kinetics and prolonged survival in GBM-bearing mice. Thus, our study provides a novel therapeutic strategy for GBM to enhance the efficacy of oxidative stress-inducing therapy through a combination of AF and cold atmospheric plasma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000807134000001 Publication Date 2021-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Olivia Hendrickx Research Fund, 21OCL06 ; University of Antwerp, FFB160231 ; The authors would express their gratitude to Hans de Reu for technical assistance with flow cytometry. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:182915 Serial 6826  
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Sahun, M.; Smits, E.; Bogaerts, A.; Privat-Maldonado, A. url  doi
openurl 
  Title Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Type A1 Journal article
  Year 2022 Publication Biomedicines Abbreviated Journal Biomedicines  
  Volume (up) 10 Issue 4 Pages 823  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000785420400001 Publication Date 2022-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-9059 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Science and Engineering Research Board (SERB), Core Research Grant, Department of Science and Technology, India., (CRG/2021/001935) ; Department of Biotechnology, BT/RLF/Re-entry/27/2019 ; We are grateful to Charlotta Bengtson for her valuable input. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:187931 Serial 7051  
Permanent link to this record
 

 
Author Lu, X.P.; Bruggeman, P.J.; Reuter, S.; Naidis, G.; Bogaerts, A.; Laroussi, M.; Keidar, M.; Robert, E.; Pouvesle, J.-M.; Liu, D.W.; Ostrikov, K.(K.) url  doi
openurl 
  Title Grand challenges in low temperature plasmas Type A1 Journal article
  Year 2022 Publication Frontiers in physics Abbreviated Journal  
  Volume (up) 10 Issue Pages 1040658-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. In this paper, we will discuss the challenges being faced in the field of LTPs, in particular for atmospheric pressure plasmas, with a focus on health, energy and sustainability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000878212000001 Publication Date 2022-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:192173 Serial 7267  
Permanent link to this record
 

 
Author Tinck, S.; Altamirano-Sánchez, E.; De Schepper, P.; Bogaerts, A. pdf  doi
openurl 
  Title Formation of a nanoscale SiO2 capping layer on photoresist lines with an Ar/SiCl4/O2 inductively coupled plasma : a modeling investigation Type A1 Journal article
  Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume (up) 11 Issue 1 Pages 52-62  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract PECVD of a nanoscale SiO2 capping layer using low pressure SiCl4/O-2/Ar plasmas is numerically investigated. The purpose of this capping layer is to restore photoresist profiles with improved line edge roughness. A 2D plasma and Monte Carlo feature profile model are applied for this purpose. The deposited films are calculated for various operating conditions to obtain a layer with desired shape. An increase in pressure results in more isotropic deposition with a higher deposition rate, while a higher power creates a more anisotropic process. Dilution of the gas mixture with Ar does not result in an identical capping layer shape with a thickness linearly correlated to the dilution. Finally, a substrate bias seems to allow proper control of the vertical deposition rate versus sidewall deposition as desired.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330588800006 Publication Date 2013-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.846; 2014 IF: 2.453  
  Call Number UA @ lucian @ c:irua:115735 Serial 1256  
Permanent link to this record
 

 
Author Aerts, R.; Snoeckx, R.; Bogaerts, A. pdf  doi
openurl 
  Title In-situ chemical trapping of oxygen in the splitting of carbon dioxide by plasma Type A1 Journal article
  Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume (up) 11 Issue 10 Pages 985-992  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000344180900008 Publication Date 2014-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 29 Open Access  
  Notes Approved Most recent IF: 2.846; 2014 IF: 2.453  
  Call Number UA @ lucian @ c:irua:118302 Serial 1575  
Permanent link to this record
 

 
Author Somers, W.; Dubreuil, M.F.; Neyts, E.C.; Vangeneugden, D.; Bogaerts, A. pdf  doi
openurl 
  Title Incorporation of fluorescent dyes in atmospheric pressure plasma coatings for in-line monitoring of coating homogeneity Type A1 Journal article
  Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume (up) 11 Issue 7 Pages 678-684  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper reports on the incorporation of three commercial fluorescent dyes, i.e., rhodamine 6G, fluorescein, and fluorescent brightener 184, in plasma coatings, by utilizing a dielectric barrier discharge (DBD) reactor, and the subsequent monitoring of the coatings homogeneity based on the emitted fluorescent light. The plasma coatings are qualitatively characterized with fluorescence microscopy, UVvis spectroscopy and profilometry for the determination of the coating thickness. The emitted fluorescent light of the coating correlates to the amount of dye per area, and deviations of these factors can hence be observed by monitoring the intensity of this light. This allows monitoring the homogeneity of the plasma coatings in a fast and simple way, without making major adjustments to the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000340416300007 Publication Date 2014-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.846; 2014 IF: 2.453  
  Call Number UA @ lucian @ c:irua:118063 Serial 1598  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title The ion- and atom-induced secondary electron emission yield: numerical study for the effect of clean and dirty cathode surfaces Type A1 Journal article
  Year 2002 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume (up) 11 Issue Pages 27-36  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000174336300003 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 51 Open Access  
  Notes Approved Most recent IF: 3.302; 2002 IF: 1.816  
  Call Number UA @ lucian @ c:irua:40184 Serial 1739  
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A. pdf  doi
openurl 
  Title Modeling adatom surface processes during crystal growth: a new implementation of the Metropolis Monte Carlo algorithm Type A1 Journal article
  Year 2009 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume (up) 11 Issue 8 Pages 1597-1608  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, a new implementation of the Metropolis Monte Carlo (MMC) algorithm is presented. When combining the MMC model with a molecular dynamics (MD) code, crystal growth by plasma-enhanced chemical vapor deposition can be simulated. As the MD part simulates impacts of growth species onto the surface on a time scale of picoseconds, the MMC algorithm simulates the slower adatom surface processes. The implementation includes a criterion for the selection of atoms that are allowed to be displaced during the simulation, and a criterion of after how many MMC cycles the simulation is stopped. We performed combined MD-MMC simulations for hydrocarbon species that are important for the growth of ultrananocrystalline diamond (UNCD) films at partially hydrogenated diamond surfaces, since this implementation is part of a study of the growth mechanisms of (ultra)nanocrystalline diamond films. Exemplary for adatom arrangements during the growth of UNCD, the adatom surface behavior of C and C2H2 at diamond (111)1 × 1, C and C4H2 at diamond (111)1 × 1 and C3 at diamond (100)2 × 1 has been investigated. For all cases, the diamond crystal structure is pursued under the influence of MMC simulation. Additional longer time-scale MD simulations put forward very similar structures, verifying the MMC algorithm. Nevertheless, the MMC simulation time is typically one order of magnitude shorter than the MD simulation time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000268184300021 Publication Date 2009-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.474; 2009 IF: 4.183  
  Call Number UA @ lucian @ c:irua:77374 Serial 2106  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A. doi  openurl
  Title Modeling of the synthesis and subsequent growth of nanoparticles in dusty plasmas Type A1 Journal article
  Year 2007 Publication High temperature material processes Abbreviated Journal High Temp Mater P-Us  
  Volume (up) 11 Issue Pages 21-36  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000246372200003 Publication Date 2008-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1093-3611; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:63996 Serial 2136  
Permanent link to this record
 

 
Author Bultinck, E.; Bogaerts, A. url  doi
openurl 
  Title Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films Type A1 Journal article
  Year 2009 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume (up) 11 Issue Pages 103010-103010,24  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The physical processes in an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx thin films were simulated with a 2d3v particle-in-cell/Monte Carlo collisions (PIC/MCC) model. The plasma species taken into account are electrons, Ar+ ions, fast Arf atoms, metastable Arm* atoms, Ti+ ions, Ti atoms, O+ ions, O2+ ions, O− ions and O atoms. This model accounts for plasmatarget interactions, such as secondary electron emission and target sputtering, and the effects of target poisoning. Furthermore, the deposition process is described by an analytical surface model. The influence of the O2/Ar gas ratio on the plasma potential and on the species densities and fluxes is investigated. Among others, it is shown that a higher O2 pressure causes the region of positive plasma potential and the O− density to be more spread, and the latter to decrease. On the other hand, the deposition rates of Ti and O are not much affected by the O2/Ar proportion. Indeed, the predicted stoichiometry of the deposited TiOx film approaches x=2 for nearly all the investigated O2/Ar proportions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000270820900001 Publication Date 2009-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.786; 2009 IF: 3.312  
  Call Number UA @ lucian @ c:irua:78326 Serial 2559  
Permanent link to this record
 

 
Author Bogaerts, A.; Yusupov, M.; Van der Paal, J.; Verlackt, C.C.W.; Neyts, E.C. pdf  doi
openurl 
  Title Reactive molecular dynamics simulations for a better insight in plasma medicine Type A1 Journal article
  Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume (up) 11 Issue 12 Pages 1156-1168  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this review paper, we present several examples of reactive molecular dynamics simulations, which contribute to a better understanding of the underlying mechanisms in plasma medicine on the atomic scale. This includes the interaction of important reactive oxygen plasma species with the outer cell wall of both gram-positive and gram-negative bacteria, and with lipids present in human skin. Moreover, as most biomolecules are surrounded by a liquid biofilm, the behavior of these plasma species in a liquid (water) layer is presented as well. Finally, a perspective for future atomic scale modeling studies is given, in the field of plasma medicine in general, and for cancer treatment in particular.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000346034700007 Publication Date 2014-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 22 Open Access  
  Notes Approved Most recent IF: 2.846; 2014 IF: 2.453  
  Call Number UA @ lucian @ c:irua:121269 Serial 2822  
Permanent link to this record
 

 
Author Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A. url  doi
openurl 
  Title Reactive sputter deposition of TiNx films, simulated with a particle-in-cell/Monte Carlo collisions model Type A1 Journal article
  Year 2009 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume (up) 11 Issue Pages 023039,1-023039,24  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The physical processes in an Ar/N2 magnetron discharge used for the reactive sputter deposition of TiNx thin films were simulated with a 2d3v particle-in-cell/Monte Carlo collisions (PIC/MCC) model. Cathode currents and voltages were calculated self-consistently and compared with experiments. Also, ion fractions were calculated and validated with mass spectrometric measurements. With this PIC/MCC model, the influence of N2/Ar gas ratio on the particle densities and fluxes was investigated, taking into account the effect of the poisoned state of the target.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000263744100001 Publication Date 2009-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.786; 2009 IF: 3.312  
  Call Number UA @ lucian @ c:irua:73150 Serial 2825  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Relative sensitivity factors in glow discharge mass spectrometry: the role of charge transfer ionization Type A1 Journal article
  Year 1996 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (up) 11 Issue Pages 841-847  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1996VG92800032 Publication Date 2004-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.466 Times cited 38 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:16243 Serial 2860  
Permanent link to this record
 

 
Author Georgieva, V.; Voter, A.F.; Bogaerts, A. doi  openurl
  Title Understanding the surface diffusion processes during magnetron sputter-deposition of complex oxide Mg-Al-O thin films Type A1 Journal article
  Year 2011 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume (up) 11 Issue 6 Pages 2553-2558  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract It is known that film structure may change dramatically with the extent of surface diffusion during the film growth process. In the present work, surface diffusion, induced thermally or activated by energetic impacts, is investigated theoretically under conditions appropriate for magnetron sputter-deposition of MgAlO thin films with varying stoichiometry. The distribution of surface diffusion energy barriers available to the system was determined for each stoichiometry, which allowed assessing in a qualitative way how much surface diffusion will take place on the time scale available between deposition events. The activation energy barriers increase with the Al concentration in the film, and therefore, the surface diffusion rates in the time frame of typical deposition rates drop, which can explain the decrease in crystallinity in the film structure and the transition to amorphous structure. The deposition process and the immediate surface diffusion enhanced by the energetic adatoms are simulated by means of a molecular dynamics model. The longer-time thermal surface diffusion and the energy landscape are studied by the temperature accelerated dynamics method, applied in an approximate way. The surface diffusion enhanced by the energetic impacts appears to be very important for the film structure in the low-temperature deposition regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291074600068 Publication Date 2011-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 14 Open Access  
  Notes Approved Most recent IF: 4.055; 2011 IF: 4.720  
  Call Number UA @ lucian @ c:irua:89566 Serial 3806  
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Hammerschmid, D.; Privat-Maldonado, A.; Dewilde, S.; Bogaerts, A. url  doi
openurl 
  Title Synergistic Effects of Melittin and Plasma Treatment: A Promising Approach for Cancer Therapy Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume (up) 11 Issue 8 Pages 1109  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Melittin (MEL), a small peptide component of bee venom, has been reported to exhibit anti-cancer effects in vitro and in vivo. However, its clinical applicability is disputed because of its non-specific cytotoxicity and haemolytic activity in high treatment doses. Plasma-treated phosphate buffered saline solution (PT-PBS), a solution rich in reactive oxygen and nitrogen species (RONS) can disrupt the cell membrane integrity and induce cancer cell death through oxidative stress-mediated pathways. Thus, PT-PBS could be used in combination with MEL to facilitate its access into cancer cells and to reduce the required therapeutic dose. The aim of our study is to determine the reduction of the effective dose of MEL required to eliminate cancer cells by its combination with PT-PBS. For this purpose, we have optimised the MEL threshold concentration and tested the combined treatment of MEL and PT-PBS on A375 melanoma and MCF7 breast cancer cells, using in vitro, in ovo and in silico approaches. We investigated the cytotoxic effect of MEL and PT-PBS alone and in combination to reveal their synergistic cytological effects. To support the in vitro and in ovo experiments, we showed by computer simulations that plasma-induced oxidation of the phospholipid bilayer leads to a decrease of the free energy barrier for translocation of MEL in comparison with the non-oxidized bilayer, which also suggests a synergistic effect of MEL with plasma induced oxidation. Overall, our findings suggest that MEL in combination with PT-PBS can be a promising combinational therapy to circumvent the non-specific toxicity of MEL, which may help for clinical applicability in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000484438000069 Publication Date 2019-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes We gratefully acknowledge financial support from the Research Foundation—Flanders (FWO), grant number 12J5617N. We are thankful to Maksudbek Yusupov for his valuable discussions, and to the Center for Oncological Research (CORE), for providing the facilities for the experimental work. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the University Antwerp, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:161630 Serial 5286  
Permanent link to this record
 

 
Author Bekeschus, S.; Freund, E.; Spadola, C.; Privat-Maldonado, A.; Hackbarth, C.; Bogaerts, A.; Schmidt, A.; Wende, K.; Weltmann, K.-D.; von Woedtke, T.; Heidecke, C.-D.; Partecke, L.-I.; Käding, A. url  doi
openurl 
  Title Risk Assessment of kINPen Plasma Treatment of Four Human Pancreatic Cancer Cell Lines with Respect to Metastasis Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume (up) 11 Issue 9 Pages 1237  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold physical plasma has limited tumor growth in many preclinical models and is, therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the cells’ metastatic behavior following plasma treatment are scarce, although being of prime importance to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically active cells physically or chemically detached with plasma treatment. We conclude that plasma treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior in pancreatic cancer cells in vitro and in ovo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489719000022 Publication Date 2019-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes The authors acknowledge that this work was supported by grants funded by the German Federal Ministry of Education and Research (BMBF), grant number 03Z22DN11. We want to thank the Research Foundation – Flanders (FWO) for providing funding to APM under the “long stay abroad” scheme (grant code V415618N). APM and AB acknowledge financial support from the Methusalem project. Technical support by Felix Niessner and Antje Janetzko is gratefully acknowledged. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:162106 Serial 5357  
Permanent link to this record
 

 
Author Van Loenhout, J.; Flieswasser, T.; Freire Boullosa, L.; De Waele, J.; Van Audenaerde, J.; Marcq, E.; Jacobs, J.; Lin, A.; Lion, E.; Dewitte, H.; Peeters, M.; Dewilde, S.; Lardon, F.; Bogaerts, A.; Deben, C.; Smits, E. url  doi
openurl 
  Title Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume (up) 11 Issue 10 Pages 1597  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)  
  Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a low response to treatment and a five-year survival rate below 5%. The ineffectiveness of treatment is partly because of an immunosuppressive tumor microenvironment, which comprises tumor-supportive pancreatic stellate cells (PSCs). Therefore, new therapeutic strategies are needed to tackle both the immunosuppressive PSC and pancreatic cancer cells (PCCs). Recently, physical cold atmospheric plasma consisting of reactive oxygen and nitrogen species has emerged as a novel treatment option for cancer. In this study, we investigated the cytotoxicity of plasma-treated phosphate-buffered saline (pPBS) using three PSC lines and four PCC lines and examined the immunogenicity of the induced cell death. We observed a decrease in the viability of PSC and PCC after pPBS treatment, with a higher efficacy in the latter. Two PCC lines expressed and released damage-associated molecular patterns characteristic of the induction of immunogenic cell death (ICD). In addition, pPBS-treated PCC were highly phagocytosed by dendritic cells (DCs), resulting in the maturation of DC. This indicates the high potential of pPBS to trigger ICD. In contrast, pPBS induced no ICD in PSC. In general, pPBS treatment of PCCs and PSCs created a more immunostimulatory secretion profile (higher TNF-α and IFN-γ, lower TGF-β) in coculture with DC. Altogether, these data show that plasma treatment via pPBS has the potential to induce ICD in PCCs and to reduce the immunosuppressive tumor microenvironment created by PSCs. Therefore, these data provide a strong experimental basis for further in vivo validation, which might potentially open the way for more successful combination strategies with immunotherapy for PDAC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000498826000194 Publication Date 2019-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 6 Open Access  
  Notes Universiteit Antwerpen, NA ; Fonds Wetenschappelijk Onderzoek, 11E7719N 1121016N 1S32316N 12S9218N 12E3916N ; Agentschap Innoveren en Ondernemen, 141433 ; Kom op tegen Kanker, NA ; Stichting Tegen Kanker, STK2014-155 ; The authors express their gratitude to Christophe Hermans, Céline Merlin, Hilde Lambrechts, and Hans de Reu for technical assistance; and to VITO for the use of the MSD reader (Mol, Belgium). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:163328 Serial 5436  
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Bengtson, C.; Razzokov, J.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume (up) 11 Issue 12 Pages 1920  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507382100097 Publication Date 2019-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Figure 4 was created using resources from the ‘Mind the Graph’ platform, free trial version. Spheroid image obtained in collaboration with Sander Bekeschus (INP Greifswald, Germany); organoid image kindly provided by Christophe Deben (Center for Oncological Research, University of Antwerp, Belgium). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:164892 Serial 5437  
Permanent link to this record
 

 
Author Bal, K.M.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Ensemble-Based Molecular Simulation of Chemical Reactions under Vibrational Nonequilibrium Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume (up) 11 Issue 2 Pages 401-406  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present an approach to incorporate the effect of vibrational nonequilibrium in molecular dynamics (MD) simulations. A perturbed canonical ensemble, in which selected modes are excited to higher temperature while all others remain equilibrated at low temperature, is simulated by applying a specifically tailored bias potential. Our method can be readily applied to any (classical or quantum mechanical) MD setup at virtually no additional computational cost and allows the study of reactions of vibrationally excited molecules in nonequilibrium environments such as plasmas. In combination with enhanced sampling methods, the vibrational efficacy and mode selectivity of vibrationally stimulated reactions can then be quantified in terms of chemically relevant observables, such as reaction rates and apparent free energy barriers. We first validate our method for the prototypical hydrogen exchange reaction and then show how it can capture the effect of vibrational excitation on a symmetric SN2 reaction and radical addition on CO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508473400008 Publication Date 2020-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access  
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; Departement Economie, Wetenschap en Innovatie van de Vlaamse Overheid; K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation − Flanders), Grant 12ZI420N, and through a TOP-BOF research project of the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government− department EWI. Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number PLASMANT @ plasmant @c:irua:165587 Serial 5442  
Permanent link to this record
 

 
Author Yi, Y.; Wang, X.; Jafarzadeh, A.; Wang, L.; Liu, P.; He, B.; Yan, J.; Zhang, R.; Zhang, H.; Liu, X.; Guo, H.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Catalytic Ammonia Reforming of Methane over Cu-Based Catalysts for the Production of HCN and H2at Reduced Temperature Type A1 Journal article
  Year 2021 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume (up) 11 Issue 3 Pages 1765-1773  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Industrial production of HCN from NH3 and CH4 not only uses precious Pt or Pt−Rh catalysts but also requires extremely high temperatures (∼1600 K). From an energetic, operational, and safety perspective, a drastic decrease in temperature is highly desirable. Here, we report ammonia reforming of methane for the production of HCN and H2 at 673 K by the combination of CH4/NH3 plasma and a supported Cu/silicalite-1 catalyst. 30% CH4 conversion has been achieved with 79% HCN selectivity. Catalyst characterization and plasma diagnostics reveal that the excellent reaction performance is attributed to metallic Cu active sites. In addition, we propose a possible reaction pathway, viz. E-R reactions with N, NH, NH2, and CH radicals produced in the plasma, for the production of HCN, based on density functional theory calculations. Importantly, the Cu/silicalite-1 catalyst costs less than 5% of the commercial Pt mesh catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000618540300057 Publication Date 2021-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited Open Access OpenAccess  
  Notes Universiteit Antwerpen, 32249 ; China Postdoctoral Science Foundation, 2015M580220 2016T90217 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; National Natural Science Foundation of China, 21503032 ; We acknowledge financial support from the National Natural Science Foundation of China [21503032], the China Postdoctoral Science Foundation [grant numbers 2015M580220 and 2016T90217, 2016], the PetroChina Innovation Foundation [2018D-5007-0501], and the TOP research project of the Research Fund of the University of Antwerp [grant ID 32249]. Approved Most recent IF: 10.614  
  Call Number PLASMANT @ plasmant @c:irua:175880 Serial 6675  
Permanent link to this record
 

 
Author Li, S.; Ahmed, R.; Yi, Y.; Bogaerts, A. url  doi
openurl 
  Title Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis Type A1 Journal article
  Year 2021 Publication Catalysts Abbreviated Journal Catalysts  
  Volume (up) 11 Issue 5 Pages 590  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Direct oxidation of methane to methanol (DOMTM) is attractive for the increasing industrial demand of feedstock. In this review, the latest advances in heterogeneous catalysis and plasma catalysis for DOMTM are summarized, with the aim to pinpoint the differences between both, and to provide some insights into their reaction mechanisms, as well as the implications for future development of highly selective catalysts for DOMTM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000653609900001 Publication Date 2021-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited Open Access OpenAccess  
  Notes Fundamental Research Funds for the Central Universities of China, DUT18JC42 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; TOP-BOF research project of the Research Council of the University of Antwerp, 32249 ; This research was funded by the Fundamental Research Funds for the Central Universities of China (DUT18JC42), the National Natural Science Foundation of China (21503032) PetroChina Innovation Foundation (2018D-5007-0501) and the TOP-BOF research project of the Research Council of the University of Antwerp (grant ID 32249). This research was supported by the China Scholarship Council (CSC). The authors warmly acknowledge CSC for their support. Approved Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @c:irua:177851 Serial 6753  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: