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Abstract: Cold physical plasma has limited tumor growth in many preclinical models and is,
therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the
cells’ metastatic behavior following plasma treatment are scarce, although being of prime importance
to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer
cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was
chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive
for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity
and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion
markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D
tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis
of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically
active cells physically or chemically detached with plasma treatment. We conclude that plasma
treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior
in pancreatic cancer cells in vitro and in ovo.

Keywords: cell adhesion; plasma medicine; oncology

1. Introduction

Ninety percent of cancer deaths are not caused by the primary tumor but because of metastasis [1].
For this to happen, individual cancer cells leave the primary tumor (or later: metastatic sites) into
the bloodstream or lymphatic vessels to settle at distance organs or lymph nodes, respectively [2].
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Therapies, therefore, should not only be effective in diminishing tumor growth but also avoid spurring of
metastasis due to treatment. In the last decade, traditional therapies such as surgery, chemotherapy, and
radiotherapy have been increasingly complemented with novel therapeutic approaches. This includes
systemic treatments, for example, immunotherapies, small molecules, and other biological [3–5] as
well as local treatments such as electrochemotherapy, photodynamic therapy, and a novel concept
involving the application of cold physical plasma [6–10].

Cold physical plasma is a partially ionized gas that expels a variety of reactive oxygen and
nitrogen species into the ambient air [11]. As these sources can be operated at body temperature,
they can be applied to human tissue without causing thermal damage. Recent in vitro [12–14] and
in vivo [15–17] evidence suggests a tumor-toxic potential of cold physical plasma sources, with reactive
species playing a significant role in the effects observed. First, studies reported on beneficial antitumor
effects of cold physical plasma in the palliation of cancer patients within clinical observational case
studies [18–21]. These results were achieved using an atmospheric pressure argon plasma jet (kINPen
MED) accredited as a medical device in Europe [22].

While such a novel approach generates excitement among researchers and practitioners, new
technologies and therapies should be effective and safe. The kINPen plasma jet has been investigated for
genotoxic safety, and several studies—partially based on genotoxicity testing according to OECD-based
protocols—have shown that there is no evidence of mutagenic effects on human cells in vitro and
in HET-CAM tests using chicken embryos (in ovo) [23–25]. The source can also be applied without
thermal harm and is well-tolerated in patients without any severe adverse events noted [26–29]. At the
same time, we reported a lack of tumor formation in a 1-year follow-up study in mice that had received
six repetitive plasma-treatment sessions [30]. However, a point that has so far not been addressed
is whether cold physical plasma treatment may promote metastasis due to physically or chemically
dislodging cells from their primary tumor or by changing the cell’s adhesion molecule profile.

Using the kINPen plasma jet and four human pancreatic cancer cell lines, we investigated
potentially metastasis-promoting effects in vitro in two-dimensional cultures, three-dimensional
cultures, and three-dimensional cultures grown on chicken embryos, a realistic model allowing
tumor formation with vascularization. Despite each of the cell lines showing an individual behavior
in response to plasma treatment as seen with several biological assays, we could not identify a
metastasis-promoting effect when exposing four human pancreatic cancer cell lines to the plasma of
the kINPen argon jet.

2. Materials and Methods

2.1. Cell Culture

Pancreatic cancer cell lines (MiaPaCa2, PaTuS, PaTuT, and Panc01) were cultured in Dulbecco’s
modified Eagle’s Medium (DMEM, Pan Biotech, Aidenbach, Germany) supplemented with 10% fetal
bovine serum (FCS), 2% glutamine, and 1% penicillin/streptomycin (all Sigma, Steinheim, Germany).
For incubation, cells were placed at 37 ◦C and 5% CO2 in a humidified cell culture incubator (Binder,
Tuttlingen, Germany). For in-vitro experiments with 2D cell cultures, 2 × 104 cells were seeded in
100 µL of Roswell Park Memorial Medium (RPMI, Pan Biotech) also supplemented with FCS, glutamine,
and penicillin-streptomycin, in tissue culture-treated 96-well flat-bottom plates (Eppendorf, Hamburg,
Germany). Cell counting was performed in a highly standardized fashion by determining the absolute
number of cells using the Attune NxT flow cytometer (Thermo Scientific, Waltham, MA, USA) and
propidium iodide (PI; Sigma) for live-dead discrimination. For optimal culture conditions, the rim of
the Eppendorf plates was filled with double-distilled water to prevent excessive evaporation of culture
medium in the outer wells (edge effect).
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2.2. Cold Physical Plasma and Treatment Regimen

For treatment with cold physical plasma, a kINPen atmospheric pressure plasma jet (Neoplas,
Greifswald, Germany) was utilized at room temperature. The device was operated with 99.999% pure
argon gas (Air Liquide, Paris, France) at 2 standard liters per minute (SLM). Mock treatment with argon
gas alone (plasma off) was carried out to control for any potential effect of argon gas on cells alone
(argon controls), while untreated controls were exposed neither to plasma nor to argon gas. In-vitro
treatment of 2D cell cultures in flat-bottom plates or of spheroids (see below) in ultra-low-affinity (ULA)
plates (PerkinElmer, Waltham, MA, USA) were carried out utilizing a computer-controlled xyz-table
(CNC-Step, Geldern, Germany). This table works with specific software (WinPC-NC) that standardizes
the distance of the plasma effluent to the cells (12 mm = distance nozzle to cells), velocity, as well as the
treatment time that was set to 60 s for treatment with plasma or argon gas. During in-vitro treatment,
cells were cultivated in RPMI culture medium that remained on the cells afterward. Evaporation
through the jet effluent was measured via precision balance (Sartorius, Göttlingen, Germany) and
was resubstituted with 12 µL of double-distilled water per treated well. Tumors growing on the
chorion-allantois membrane of eggs (TUM-CAM, see below) were treated manually for 60 s plasma
at 9 mm distance nozzle-to-target (the tip of the plasma effluent touching tumor surface). Detached
cells (floaters) were collected post-treatment immediately, and a separate treatment of them was
not performed.

2.3. Quantification of Metabolic Activity

In-vitro treated cells growing in 2D cultures were incubated for 24 h after their initial exposure
to the plasma effluent or argon gas before the addition of 7-hydroxy-3H-phenoxazin-3-on-10-oxid
(resazurin, Alfa Aesar, Haverhill, MA, USA) that is transformed by viable cells to the fluorescent
resorufin. Fluorescence was measured 4 h after incubation with the dye utilizing a multiplate reader
(Tecan F200, Männedorf, Switzerland) at λex = 530 nm and λem = 590 nm to quantify the number
of metabolically active cells. To validate the importance of plasma-derived reactive oxygen species
(ROS), the antioxidant n-acetylcysteine (NAC, final concentration 2 mM; Sigma) was added to control
experiments. To harvest cells that have detached either naturally or potentially through plasma
treatment (floaters), the cell culture supernatant was collected immediately after treatment and added
to a new plate. This new plate was incubated for 6 further days under optimal growing conditions
before resazurin was added to quantify the amount of metabolically active cells in these wells.
A similar protocol was used to identify the number and metabolic activity of floaters collected during
in-ovo experiments.

2.4. Culture and Analysis of 3D Tumor Spheroids

Before utilizing each of the four human pancreatic cancer cell lines for tumor spheroid formation,
they were stained with the cell tracing reagent 1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine
perchlorate (DiL; Thermo Fisher, Waltham, USA). Afterward, 3 × 103 cells were seeded in ULA 96-well
plates in RPMI containing 0.24% methylcellulose (Methocel; Sigma Aldrich, Steinheim, Germany).
To form spheroids, they were centrifuged for 10 min at 1000× g. After 3 days of incubation in the
incubator, the fresh culture medium was added, and the plasma treatment was performed as described
above. After 4 h of incubation, the medium was removed, leaving only 50 µL per well. To this medium,
50 µL of Matrigel (LDEV-free; concentration 2 mg/mL; Corning, New York, NY, USA) extracellular
matrix component was added. The plate was centrifuged and incubated for one further hour before
100 µL fresh medium containing sytox green (Thermo Fisher) dead cell staining solution was added on
top of the Matrigel.
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2.5. High Content Imaging

All images were acquired using a high content imaging device (Operetta CLS; PerkinElmer) that
utilizes a 16-bit sCMOS camera with 4.7 megapixels, laser-based autofocus, high-speed precision
xyz-table, and eight different excitation light sources and emission wavelengths via bandpass filters.
Time-lapse imaging experiments were carried out under environmental conditions set to 37 ◦C and
5% CO2 during a 4-h time course. The water-filed rim of the 96-well plates protected the cells from
excessive evaporation. Bright-field and digital phase contrast (DPC) images were acquired with a 20 ×
air objective (NA = 0.4; Zeiss, Jena, Germany) for 25 fields of view (FOV) per well with six technical
replicate wells. Imaging frequency was every 20 min, which resulted in a quantitative analysis of
around 3 × 104 single cells per cell line, per condition, and per time point. Spheroids were imaged
immediately and at 24 h, 48 h, and 72 h post-plasma treatment with a 5 × air objective (NA = 0.16;
Zeiss, Jena, Germany) in confocal mode with seven z-stacks per spheroid. Brightfield and fluorescence
channels (λex = 530–560 nm and λem = 570–650 nm for detection of the pancreatic cancer cells labeled
with DiL; λex = 460–490 nm and λem = 500–550 nm for dead cell quantification of cells positive for
sytox green; and λex = 435–460 nm and λem = 470–515 nm to detect the spheroids’ autofluorescence)
were acquired. The experimental setup and image quantification were performed with the image
acquisition and analysis software Harmony 4.8 (Perkin Elmer, Waltham, MA, USA). For analysis of
time-lapse experiments, at least 1500 individual cells per condition and cell line were tracked with
their pseudo-cytosolic signal (DPC channel) to assess the individual cell’s motility based on algorithm
detection methods. In parallel, cell counts as well as cell growth area (cell cluster area in PaTuS cells)
were calculated throughout the time course. For spheroid analysis, the brightfield channel was inverted
and merged with fluorescence channels. This calculated image was further processed, and an intensity
cut-off was applied to detect the spheroid area independent of surrounding cells. Quantification
of the metastatic cancer cells outside the spheroid region was performed via segmentation of their
DiL signal, whereas presumable objects with higher sum fluorescence intensities of 2 × 105 were
excluded from analysis (= autofluorescent conglomerates). For calculation of viability, objects with
mean fluorescence intensity of sytox green higher than 3 × 103 were considered to be dead cells. For
investigating the spheroids symmetry, a polynomial function was utilized (Rnm (ρ,ϕ) = ρn e−imϕ).
Threshold compactness was investigated by calculating the relation of objects inside the spheroid (with

intensities of 60% of the maximum) concerning the spheroid border using the formula: c =
2√s body
s border .

The spheroid’s profile is defined by the shortest distance from the border to higher cell intensities.

2.6. Flow Cytometry

Different molecules at the cell membrane important for cell adhesion were quantified via flow
cytometry. Cells were harvested 4 h and 24 h post-plasma exposure with the enzyme accutase
(BioLegend, San Diego, CA, USA) and stained with monoclonal antibodies targeting the anti-cluster
of differentiation (CD) 49b conjugated with phycoerythrin (PE), anti-CD49d PE-Cy7, anti CD324
(E-cadherin) Alexa Fluor (AF) 488, and anti-CD326 (EpCam) Brilliant Violet (BV) 605 as well as
4,6-Diamidin-2-phenylindol (DAPI) (all BioLegend). After washing with phosphate-buffered saline
(PBS, PAN Biotech), cells were acquired with a Cytoflex S (Beckman-Coulter, Brea, CA, USA) flow
cytometer. Following doublet discrimination, cells were gated via their size and granularity with
forward and side scatter (FSC, SSC). Only DAPI- (viable) cells were used for quantification of mean
fluorescence intensities of cell surface integrins (CD49b, CD49d) and cadherins (CD324, CD326) on the
four human pancreatic cancer cell lines. Unstained and treated as well as unstained and untreated
controls helped to create autofluorescence vectors for accurate quantification of expression values. To
enumerate floaters, supernatants were mixed with fixation and permeabilization buffer (BioLegend)
containing DAPI to count all nucleated cells sensitively, accurately, and quantitatively using flow
cytometry. Data analysis of more than 2000 flow cytometry acquisitions across all assays was performed
using Kaluza 2.1.1 software (Beckman-Coulter).
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2.7. In ovo Experiments

After delivery, fertilized chicken eggs (Valo BioMedia, Osterholz-Scharmbeck, Germany) were
incubated at constant temperatures around 37.7 ◦C and 65% humidity in an egg incubator with
automatic turning function. To prepare the chorion-allantois membrane (CAM) for tumor cell
implantation 6 days later, the upper pole was disinfected, and the eggshell was punctured with a sterile
cannula without damaging the inner components. During all steps outside the incubator, a heat block
with a custom-made egg adapter (Stuart Scientific, Staffordshire, UK) was utilized to ensure regular
maturation. The lesion was closed with sticking plaster to prevent contamination, and the egg was
again placed in the incubator but without frequent turning. On day 8, the CAM was well established,
and the plaster and a section of the shell were removed to allow the implantation of a silicone ring.
The ring was placed at the upper pole, and 2 × 106 cells (in 15 µL Matrigel) per egg were filled in that
form to shape solid tumors. On day 12 and 14, these tumors were exposed to cold physical plasma or
argon gas for 60 s or were left untreated. As a positive control for cell detachment, tumors grown on
eggs were incubated with accutase or 0.1% trypsin in PBS (PAN Biotech) for 5 min. To address the
question of whether plasma treatment physically detaches tumor cells during treatment that could
potentially spur metastasis, tumors were rinsed with 150 µL growth medium for both treatment days.
An additional plastic ring placed around the tumor prevented leakage of the solution, and hence the
solution could be recovered after rinsing, and analyzed in downstream assays (on day 12 and day
14), such as absolute cell counting with flow cytometry or metabolic activity of proliferated cells 6
days after collection. Moreover, the toxic effects of plasma treatment were addressed by the surgical
removal of tumors on day 14 and weight analysis using a precision balance (Sartorius).

2.8. Statistical Analysis

All experiments were repeated several times in independent runs (as detailed in figure legends),
and data are displayed as mean with standard deviation (SD) or standard error (SEM), if not indicated
otherwise. For multiple comparisons of effects between different groups, analysis of variance (ANOVA
II) with Dunnet’s post-testing was utilized. Differences between two groups were detected using
unpaired t-test with Welch’s correction to pay attention to unequal SDs. If requirements for parametric
testing were not fulfilled, the Mann-Whitney U-test was utilized. Calculations and graphing were
performed using Prism 8.1 (GraphPad Software, La Jolla, CA, USA). Levels of significance are shown
in the graphs as numerical value or asterisks (*, **, or *** for the p-values < 0.05, < 0.01, or < 0.001,
respectively).

3. Results

3.1. Plasma Treatment Reduced Cellular Metabolism, Growth, and Motility in vitro

Cold physical plasma is known to generate various reactive species that can interfere with cells’
homeostasis and therefore diminish their viability. To test whether this novel treatment may promote
metastasis, four different pancreatic carcinoma cell lines (MiaPaCa2, PaTuS, PaTuT, and Panc01) were
exposed to plasma followed by their experimental analysis (Figure 1A–C). For comparison, these cells
were exposed for 60 s to argon gas or plasma, or were left untreated (Figure 2A). Plasma significantly
reduced the metabolic activity of all pancreatic cancer cell lines, whereas argon gas alone left the
cells overall unaffected (Figure 2B). MiaPaCa2 and PaTuT cells were highly vulnerable to the plasma
treatment, while PaTuS and Panc01 were less sensitive (Figure 2B). Regardless, plasma effects were
mediated via ROS release and deposition to cell culture, as the complete abrogation of cytotoxic plasma
activity with the antioxidant scavenger n-acetylcysteine (NAC, Figure A1A) suggested. Furthermore,
correlations of viable cell count and metabolic activity were observed (Figure A1B–E) and therefore
conclusions can be drawn towards a plasma-mediated reduced viable cell count that is the reason for the
decreased whole-well metabolic activity. To analyze the growth behavior in more detail, high content
image analysis of the four different cell lines’ cytosolic area (Figure 2C) enabled absolute microscopy
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cell counting and showed a significant reduction during a 4 h live-cell time-lapse imaging analysis
post-plasma treatment in MiaPaCa2 (Figure 2D) and PaTuT cells (Figure 2F). Absolute cell counts of the
rather robust PaTuS (Figure 2E) and Panc01 (Figure 2G) cells were unaffected. PaTuS cells in vitro do not
grow as single cells but rather form 2D monolayers/clusters. Exposure to physical plasma significantly
reduced the total cluster area of these cells beginning 1.5 h after plasma treatment (Figure 2H). Such
detached cells are at risk of forming metastasis, but we found a decreased accumulated distance of cells
that were tracked after plasma treatment (Figure 2I). The motility of the other cell lines was unaffected
by the treatment regimen (Figure 2I). Beside these impairments in cell metabolism and growth, the
toxicity of the treatment regimen was validated by the observation of reduced viable cell fraction via
flow cytometry (cells negative for the dead cell dye DAPI), that was significant for MiaPaCa2, PaTuT,
and Panc01, and seen in tendencies for PaTuS cells (Figure 2J).

Cancers 2019, 11, x FOR PEER REVIEW 6 of 20 

The motility of the other cell lines was unaffected by the treatment regimen (Figure 2I). Beside these 
impairments in cell metabolism and growth, the toxicity of the treatment regimen was validated by 
the observation of reduced viable cell fraction via flow cytometry (cells negative for the dead cell dye 
DAPI), that was significant for MiaPaCa2, PaTuT, and Panc01, and seen in tendencies for PaTuS cells 
(Figure 2J). 

 
Figure 1. Schematic overview of the experimental setup. Experimental procedures for analysis of 
plasma effects on four human pancreatic cancer cell lines (A) in vitro using 2D cultures, (B) in vitro 
using 3D tumor spheroids and (C) in ovo using solid tumors. Time-points of experimental 
downstream analysis or high-content imaging are indicated as bars. 

 

Figure 1. Schematic overview of the experimental setup. Experimental procedures for analysis of
plasma effects on four human pancreatic cancer cell lines (A) in vitro using 2D cultures, (B) in vitro
using 3D tumor spheroids and (C) in ovo using solid tumors. Time-points of experimental downstream
analysis or high-content imaging are indicated as bars.

3.2. Plasma Treatment Modulated the Expression of Cell Adhesion Markers

The loss of adhesion molecules, such as integrins (CD49b, CD49d) and cadherins (CD324, CD326),
is important for cancer cells to dislodge and form metastasis. To this end, the surface expression of the
markers CD49b, CD49d, CD324, and CD326 was investigated 4h and 24h post plasma treatment. To
analyze baseline expression levels of these molecules first, the staining was compared to unstained
controls and a clear expression of all markers in the viable (DAPI-) cell fraction was found using
five-color flow cytometry (Figure 3A). In all cases (except in the PE channel for plasma treatment of
MiaPaCa2, PaTuS, and PaTuT), the autofluorescence of the unstained control cells was increased after
plasma exposure (Figure A1G–J). This was taken into account in our final results by subtracting the
autofluorescence values from the signal of stained cells matched to the treatment (stained untreated
minus unstained untreated; stained plasma-treated minus unstained plasma-treated). As an early
consequence of exposure of the cancer cells to physical plasma, an upregulation of surface-CD49d
was detected in PaTuS and PaTuT cells. In PaTuT cells, also CD326 was increased 4 h after treatment,
whereas all other markers where unaffected (Figure A1K–N). Analyzing the markers 24 h after plasma
treatment in MiaPaCa2 cells, CD49b was found to be downregulated, but the expression of integrin
CD49d was increased (Figure 3B). This marker was also higher expressed in plasma-treated PaTuS
cells, while CD324 and CD326 were found to be decreased (Figure 3C). PaTuT cells upregulated CD49b
and CD49d following exposure to plasma and showed a decrease in CD326 expression (Figure 3D).
The robust pancreatic cancer cell line Panc01 was modulated to a higher expression of integrin CD49d
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after treatment with physical plasma (Figure 3E). To summarize, the major impact of plasma treatment
was found in the upregulation of CD49d that was uniform through all different cell lines, but also a
downregulation of CD324 and CD326 was detected in two cases (Table 1). The upregulation of integrin
CD49d is positive, as it increases the loco-stability, whereas subtle but significant down-regulation of
cadherins (CD324 and CD326) is not favorable and promoted further investigations in more complex
3D models.
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Figure 2. Plasma treatment reduced cellular metabolism, growth, and motility in vitro. (A) treatment
of MiaPaCa2, PaTuS, PaTuT, and Panc01 human pancreatic cancer cells with the kINPen argon plasma
jet utilizing an xyz table for standardization of plasma-treatment conditions (driving directions and
conditions indicated as yellow arrows); (B) metabolic activity of cancer cells 24 h after argon gas or
plasma exposure for 60 s (numerical value of the reduction is shown in red) normalized to each respective
untreated control; (C) digital phase-contrast images of pancreatic cancer cells and representative cell
tracking and cluster detection (light red in PaTuS cells) via quantitative image analysis; cell counts
during a 4 h time course normalized t = 0 of control and plasma-treated (D) MiaPaCa2, (E) PaTuS,
(F) PaTuT, and (G) Panc01 cells; (H) cluster area of PaTuS cell during the time-laps normalized on t = 0;
(I) mean accumulated distance of cells 4 h post-treatment; and (J) DAPI- cells normalized on respective
untreated control 24 h after plasma exposure counted via flow cytometry. All data are mean + or ± SEM
(except J, mean only) and are representatives of four independent experiments; scale bar represents
100 µm.
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Figure 3. Plasma treatment modulated the expression of cell adhesion markers. (A) representative overlays of fluorescence intensity fluorochrome-labeled antibodies
targeting CD49b, CD49d, CD324, and CD326 on human pancreatic cancer cells: unstained control cells (grey dashed line), unstained plasma-treated cells (red
dashed line), stained control cells (gray histogram), and stained plasma-treated cells (red histogram) 24 h after treatment; fold change of adhesion marker expression
normalized to untreated control and corrected for autofluorescence values for (B) MiaPaCa2, (C) PaTuS, (D) PaTuT, and (E) Panc01 cells. Data are mean (red line) and
single values (circles) of four independent experiments.
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Table 1. Type and modulation of adhesion markers analyzed following plasma treatment. Type of
four different adhesion molecules and their ligands, as well as the modulation of their expression 4 h
or 24 h post-plasma treatment in four different human pancreatic cancer cell lines. An increase of the
surface marker expression is indicated as “+”, unaffected markers as “=”, and a reduction of marker
expression as “−“.

Description of Adhesion Markers Analyzed Modulation of Adhesion Marker
Expression Post Plasma Treatment

CD Other
Names Ligand MiaPaCa2 PaTuS PaTuT Panc01

49b
VLA-2α,

α2 integrin
collagen = = = = 4 h

− = + = 24 h

49d
VLA-4α,

α4 integrin
VCMA-1, MAdCAM-1,

fibronectin, CD242
= + + = 4 h
+ + + + 24 h

324 E-cadherin,
CDH1

CD103, E-cadherin, catenins,
internalin

= = = = 4 h
− − = = 24 h

326 Ep-Cam,
TROP1

LAIR-1, LAIR-2, Ep-CAM = = + = 4 h
= − − = 24 h

3.3. Plasma Treatment Altered Tumor Spheroid Morphology, and Induced Toxicity

As a consequence of adhesion, marker modulation seen with plasma treatment in two-dimensional
cultures remained unclear, tumor spheroids—three-dimensional structures in which cells differentiate
and adhere—were utilized for further studies. Consequently, the effect of physical plasma (Figure 4A
V–VIII) was compared with control spheroids (Figure 4A I–IV) up to 72 h post plasma exposure. Using
high content imaging and algorithm-based quantification, stained pancreatic cancer cell spheroids were
segmented, and images were merged and further processed (Figure 4B I–III) to receive information
about the spheroids growing in an extracellular matrix (Matrigel) and of cells within the surrounding
area of spheroids (Figure 4B IV). Immediately after plasma treatment, the number of cancer cells within
the spheroid was not affected in any cell line (Figure 4C). By contrast, 72 h post-treatment, a significant
area decrease in spheroids from MiaPaCa2 and PaTuT cells was observed (Figure 4D), underlining
the results made with two-dimensional cultures (Figure 2B). Quantifying the fluorescence signal of
the dead-cell stain sytox green within the spheroid area (Figure 4E), a time-dependent increase of the
signal was detected in plasma-treated samples of all cell lines (Figure 4F). The MiaPaCa2 pancreatic
cancer spheroid showed the highest toxic response following plasma treatment (Figure 4F). In addition
to cytotoxic parameters, spheroids can be described by distinct morphology parameters. For example,
plasma treatment significantly increased the symmetry of PaTuS spheroids (Figure 4G–H), suggesting
that there is a re-organization of cells growing within the spheroid. The compactness (a relative
measure of cell densities within several areas of the spheroid segmented) increased in tendency with
all four human pancreatic cancer cell lines investigated, and most extremely in PaTuS and Panc01
spheroids (Figure 4I–J). This suggests a contraction of cells in response to plasma treatment, leading to
higher local densities. Moreover, we identified a variation in the spheroids’ edges, and their profile
was found steeper (shorter distance from the spheroid border to high cell intensities) in PaTuT and
Panc01 cells following plasma treatment (Figure 4K-l). All types of analysis were algorithm-based and
quantitative, taking into account thousands of individual images.

3.4. Plasma Treatment Unaffected or Decreased Cell Detachment from Tumor Spheroids

After finding changes in integrin and cadherin expression in plasma-treated pancreatic cancer cell
lines, and identifying changes in viability and morphology of three-dimensional tumor spheroids, the
next step was to analyze cells detached from solid spheroids as a measure to investigate the potential
promotion of metastasis with plasma treatment. This was performed in tumor spheroids being carried
over 4 h after plasma treatment into a three-dimensional matrix (Matrigel) to resemble tumor cell
outgrowth characteristics similar to in-vivo conditions. Hence, we term the cells within the main tumor
spheroid ‘spheroid-cells’ and the cells outside the main tumor spheroid ‘matrix-cells’. A quantitative
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image analysis strategy was designed to detect matrix cells (Figure 5A) as well as to determine their
viability via an intensity cut-off of their sytox green fluorescence signal (Figure 5B). In the latter case,
we found a slight decrease in the viability of matrix-cells from MiaPaCa2, PaTuT, and Panc01 cells with
plasma treatment compared to untreated controls (Figure 5C). The four different pancreatic cancer
cell lines were inherently different in their capabilities of generating micro-metastases in the matrix
as the number of matrix-cells varied between 25 (Panc01) and 100 (PaTuS). Three days after plasma
treatment, the number of matrix cells significantly decreased compared to controls with PaTuT cells.
By contrast, no changes were observed with MiaPaCa2 and PaTuS cells, whereas matrix-cells were
found to be significantly increased with Panc01 cells (Figure 5D). While the total number of cells
outside the spheroid is an important parameter to characterize metastatic potential, it is also important
to investigate the individual cell’s distance to the main spheroid as a measure of migratory capacity
through an extracellular matrix (Matrigel) from satellite metastasis. We designed an image analysis
strategy to calculate individual distances for each matrix cell to address this question. In this respect,
MiaPaCa2 cells (Figure 5E) showed the lowest and PaTuS (Figure 5F) the highest distance, while
60 s plasma treatment significantly and strongly decreased the mean distance of matrix cells to main
spheroids in PaTuT (Figure 5G) and especially Panc01 cells (Figure 5H). Hence, despite the larger
number of Panc01 matrix-cells observed with plasma treatment, these matrix cells were of low viability
and had a limited migratory capacity.

3.5. Plasma Treatment did not Increase Tumor Growth or Number of Viable, Detached Cells in ovo

To investigate these findings further, we used a living model system in subsequent experiments.
To test the safety in terms of promotion of metastasis of plasma treatment, the physical or chemical
detachment of tumor cells exposed to plasma were investigated using a realistic, innervated,
macroscopic 3D-tumor mass grown on chicken embryos. (Figure 6A I). In this model, tumors
were grown on the chorion allantois membrane (CAM) to analyze tumor growth and tumor spread
in a complex and living system. All four human pancreatic cancer cell lines developed solid tumors
that were treated repeatedly at the 12th or 14th-day post-incubation, for 60 s with plasma or argon
gas, or were left untreated (Figure 6A II). On day 14, the tumors were excised, and their weight was
determined. Except for Panc01, plasma treatment decreased tumor weights of all other cell lines in
tendency (Figure 6B–D). Macroscopically, we did not observe metastasis (data not shown). Using the
same model, a second assay was performed. Immediately after plasma treatment, the tumors were
rinsed with culture medium (not draining away due to the ring placed on the egg). This was done to
collect any cells physically or chemically detaching from the main tumor mass due to plasma treatment.
Soon after, the medium was acquired by flow cytometry to quantify detached cells. As a positive
control, solid tumors were incubated with enzymes for 5 min at 37 ◦C, which generated larger numbers
of detached cells (floaters) in all cases (Figure 6F–I). For plasma treatment, tumors from MiaPaCa2 cells
did not show a change in cell counts (Figure 6F). In contrast, in PaTuS (Figure 6G) and PaTuT cells
(Figure 6H), significantly fewer cells were identified in the rinsing medium compared to untreated
tumors. Low counts of floaters were detected in Panc01 tumors in all treatment groups, and no
significant difference was detected between them (Figure 6I). Of note, the frequency of extra-spheroidal
cells was similar in our in-ovo and 3D in-vitro model, providing good coherence and accuracy of
our detection methods. As the total number of cells detached from the tumor mass does not allow
conclusions on their viability and ability to proliferate, the collected medium was added to culture
plates, which were allowed to incubate for 6 d before analysis of total metabolic activity per well.
Detached cells from plasma-treated tumors showed a reduced metabolic activity with MiaPaCa2 (p <

0.25), PaTuS (p < 0.15), and significantly with Panc1, while PaTuT cells remained unaffected (Figure 6J).
These findings are underlined by data investigating detached cells (floaters) immediately after plasma
treatment in two-dimensional cultures (Figure A1F).
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Figure 4. Plasma treatment altered tumor spheroid morphology and induced toxicity. (A) representative
images of DiL-labeled tumor spheroids grown in Matrigel extracellular matrix stained with sytox
green for life-dead cell discrimination 72h after exposure to plasma; (B I) representative merged
image, (B II) calculated pseudo-color image of all channels, (B III) further processed image with
intensity cut-off, and (B IV) spheroid-surrounding area segmented; (C) quantification of DiL intensity
of spheroid immediately after treatment; (D) quantification of spheroid area segmented 72 h post
plasma-treatment; (E) representative images of sytox green signal within the spheroid area (red line)
and (F) their quantification during a 72 h time-course normalized on each cell line’s respective control;
analysis of morphology parameters with representative scheme of (G) spheroid symmetry and (H) its
quantification for all cell lines 72 h post-treatment, (I) spheroid compactness and (J) its quantification,
and (K) spheroid profile and (L) its quantification. Data are mean + SEM (C–D) or mean (F,H,J,L) of
three replicates per cell line and the group as representative of three independent experiments; ns = not
significant. Scale bars represent 450 µm.
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Figure 5. Plasma treatment unaffected or decreased cell detachment from tumor spheroids. (A)
representative image of spheroid stained with DiL, and calculation of shortest distance from spheroid
(yellow lines) to cancer cells spread in Matrigel extracellular matrix; (B) representative scatter dot blot of
single cells detected outside the spheroid and the cut-off (orange bar) of sytox green mean fluorescence
intensity (3 × 103) for discrimination of viable and dead cells; (C) % viable cell cells (normalized to
untreated controls) outside the spheroid at 72 h after plasma exposure; (D) total live cell counts outside
the spheroid at 72 h after treatment, and mean distance of these cells (viable) to the main spheroid of (E)
MiaPaCa2, (F) PaTuS, (G) PaTuT, and (H) Panc01 cells. Data are mean + SEM (C), mean (D) or mean,
minimum and maximum (E–H) of three replicates per cell line and group as representative of three
independent experiments; scale bar represents 450 µm.
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Figure 6. Plasma treatment did not increase tumor growth or the number of detached cells in ovo. (A I)
preparation of a chicken egg for tumor implantation on a plastic ring; (A II) scheme of the anatomy
of the chorion allantois membrane (CAM) and treatment of a solid pancreatic tumor tissue with the
kINPen argon plasma jet (day 12 and 14); tumor weight after excision (day 14) of (B) MiaPaCa2,
(C) PaTuS, (D) PaTuT, and (E) Panc01 cells; rinsing of tumors with 150 µL growth medium to collect
cells detached per se or potentially through plasma treatment procedure and (F–I) the quantification
of the counts of detached cells (floaters) via nuclear counterstaining and flow cytometry collected
of tumors immediately after either being left untreated or treated for 60s with argon gas (argon) or
plasma; enzymes (accutase or trypsin) digestion for 5 min served as a positive control (blue horizontal
line); (K) second set of samples from (G–J) but incubated for 6 d following collection from tumors,
and assessment of metabolic activity. Data are displayed as mean with the minimum, maximum, and
single values (B–E) or median with minimum, maximum and quartiles as dashed lines (F–I) of at least
four to five eggs per group and experiment; (J) are mean values ± SEM as representatives of four
independent experiments.
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4. Discussion

Late diagnosis and metastasis are mainly responsible for high mortality in pancreatic cancer
patients [31]. Although significant improvements in surgical and non-surgical treatment modalities
were made, survival rates have only been modestly improving within the last 20 years from < 4%
to 9% [32]. One of the reasons for poor prognosis is high rates of microscopic incomplete resections
(R1-situation) [33]. The tumor side, therefore, requires a local and preferably intraoperative therapeutic
option to eliminate remaining tumor cells. Vice versa, it is of prime importance for anticancer therapies
not only to be effective but also safe in terms of discouraging therapy-induced tumor metastasis.
Pre-clinical research suggested treatment with cold physical plasma being effective against pancreatic
cancer in vitro [34–37] and in vivo [38–41]. We confirmed the cytotoxic effects of plasma treatment and
addressed the question of whether plasma treatment affects pancreatic cancer cell metastasis.

In the late 2000s, it was reported that treatment of human cells with an experimental plasma
jet led to the detachment of the cells [42–44]. Surprisingly, the cells did not die but re-attached after
some time, a potentially deleterious property for plasma cancer treatment, as this may enhance tumor
metastasis. These findings prompted us to perform the current study investigating whether exposure to
an accredited medical plasma jet i) generates detached tumor cells that ii) are viable and proliferate. By
taking off supernatants of plasma-treated 2D monolayers and culturing them for 6 days, we confirmed
that this was not the case, at least in our setting in vitro. More importantly, plasma treatment of solid
macroscopic tumor mass grown on the CAM of chicken embryos failed to generate larger numbers of
detached cells (compared to untreated controls) in three out of four cell lines. Even more, the long-term
culture of the remaining suspended cells from plasma-treated tumors showed a decreased metabolic
activity. For plasma-resistant Panc01 cells, there was a non-significant increase of detached cells with
plasma treatment, which, however, was significantly impaired (>75%) concerning viability.

The in-ovo model has several advantages. It is fast, does not need ethical approval, generates solid
tumors, and vascularizes the tumors. Hence, it provides high accuracy in analyzing cell detachment.
Also, matrix remodeling of solid tumors can be observed in this model [45]. The advantage of animal
models is that they can provide an orthotopic environment and metastatic niche, which more resembles
the in-vivo situation with tumors not being surrounded by air but matrix. However, tracing low
amounts of cells metastasizing in vivo is technically challenging, and the use of human tumor cell
lines requires xenograft animal models, which lack essential immune components possibly critical
to metastasis.

A critical step of tumor metastasis is the active migration of cells away from the primary tumor [46].
To investigate the influence of plasma on pancreatic tumor cell migration, we exposed 3D tumor
spheroids to plasma and embedded them in a three-dimensional matrix to follow the migratory
behavior of individual cells using live-cell high content imaging. Previous findings provided evidence
of plasma-mediated toxicity in 3D tumor spheroids [47–52] with increased apoptosis, mitochondrial
superoxide production, terminal cell death, and subsequent tumor shrinkage. The question was
whether this led to metabolic reprogramming, mediated via oxidative stress, fostering a metastatic
phenotype of pancreatic cancer cells that would evade the primary tumor mass into the surrounding
matrix. Algorithm-based, unbiased quantification of the number and the mean distance of single
and viable (sytox green-negative) cells neither showed an increased number nor increased distance
with plasma treatment in three out of four cell lines. Similar to the in-ovo experiments, there was a
more significant number of Panc01 cells identified in plasma-treated conditions, but these cells had a
significantly reduced mean distance compared to control conditions, arguing for a resting/dormant
phenotype linked to increased integrin expression [53]. These data were supported by algorithm-based
tracking of 2D migration of viable plasma-treated cells showing either no change in motility or
a significant decrease (PatuS). The affected cell motility can be (among others) one reason for the
decreased 3D cell evasion. This phenomenon was previously observed with other cancer cell lines as
well [54–58]. In general, cell motility is strongly linked to the expression of adhesion molecules like
integrins and cadherins [59].
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Moreover, integrins and cadherins are essential molecules in tumor metastasis [60]. E-cadherin
(CD324) mediates cell–cell interaction, and we observed a partial but not full decrease of CD324
expression with MiaPaCa2 and PaTuS cells. Partial loss of CD324 is associated with dislodging of
pancreatic cancer islets (but not single cells that can more easily enter into the bloodstream) [61] and can
also be observed when culture conditions change [62]. However, absolute expression levels of CD324
were similar or increased in all four cell types when compared to non-plasma-treated controls. This was
similar for EpCam (CD326), showing a relative decrease with PatuS and PatuT, while absolute values
were similar or increased in all cell lines with plasma treatment. The role of EpCam (CD326) in tumor
biology and metastasis is less clear, and reports find both anti-metastatic as well as pro-metastatic
activity of CD326, depending on the microenvironment and tumor model [63]. Either way, the changes
observed were significant but rather modest (see histograms in Figure 3, none of the changes were > ±

two-fold) and there does not seem to be a correlation of cadherin expression with histological tumor
grade, stage, or disease progression [64]. For integrins, we observed one increase and one decease
of CD49b with one cell line, and a consistent upregulation of CD49d in all cell lines after plasma
treatment. While in principle integrins mediate attachment as well as intracellular signaling upon
contact with extracellular matrix components, changes in their expression may have different outcomes
on tumor metastasis, depending on the type of integrin, tumor cell, and specific microenvironment [65].
The apparent difference of our data with the literature is that none of our cells are reported to be
positive for CD49d, and MiaPaCa2 is reported to be devoid of CD49b [66]. However, this was reported
more than a decade ago, and antibody clones, as well as fluorescence sensitivity of instrumentation,
have dramatically improved since that time, especially with the use of avalanche photodiodes for the
far-red channel as in our case. Studies on CD49d/α4-integrin in human pancreatic cancer are scarce,
with one study reporting a decrease of tumor inflammation and growth upon the administration of
CD49d-blocking antibodies in a murine, orthotopic model of pancreatic cancer [67].

5. Conclusions

Plasma treatment holds promises in the decelerating growth of tumor cells, including pancreatic
cancer. Testing the safety of this novel therapeutic approach in vitro and in ovo, our preclinical data
show plasma treatment failing to promote tumor metastasis. Future research using, e.g., animal models,
RNA sequencing, and cancer patient tissue biopsies may aid in further deciphering the consequences of
plasma treatment, taking into account the tumor microenvironment with immune and stromal factors.
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PaTuT, and (J) Panc01 cells; fold change of adhesion marker expression 4 h post-treatment normalized 
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Figure A1. Plasma treatment affected cellular morphology and expression of early adhesion markers,
and plasma’s toxicity is quenched with scavenger n-acetylcysteine. (A) decrease of metabolic activity
24 h after exposure to physical plasma and alleviation of toxic plasma effect upon pre-incubation
with n-acetylcysteine (NAC); correlation of metabolic activity and viable cell count for (B) MiaPaCa2,
(C) PaTuS, (D) PaTuT, and (E) Panc01 cells with goodness of fit (R2) of different polynomial functions
of the 2nd degree (quadratic); (F) metabolic activity normalized to respective untreated controls of
detached cells in supernatant following treatment (floaters) subsequently allowed for proliferation in
another plate for 6 days; fold change of autofluorescence 4 h and 24 h after treatment with argon gas or
plasma for 60 s in channels for PE, PE/Cy7, AF488, and BV605 for (G) MiaPaCa2, (H) PaTuS, (I) PaTuT,
and (J) Panc01 cells; fold change of adhesion marker expression 4 h post-treatment normalized to
untreated control and corrected for autofluorescence for (K) MiaPaCa2, (L) PaTuS, (M) PaTuT and (N)
Panc01 cells. Data are mean + SEM (A), mean (B–E,G–J), mean and single values (K–N) or median with
minimum, maximum and SEM (F) of representative data (A) or several independent replicates (B–N).
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