toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Georgieva, V.; Voter, A.F.; Bogaerts, A. doi  openurl
  Title Understanding the surface diffusion processes during magnetron sputter-deposition of complex oxide Mg-Al-O thin films Type A1 Journal article
  Year (down) 2011 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 11 Issue 6 Pages 2553-2558  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract It is known that film structure may change dramatically with the extent of surface diffusion during the film growth process. In the present work, surface diffusion, induced thermally or activated by energetic impacts, is investigated theoretically under conditions appropriate for magnetron sputter-deposition of MgAlO thin films with varying stoichiometry. The distribution of surface diffusion energy barriers available to the system was determined for each stoichiometry, which allowed assessing in a qualitative way how much surface diffusion will take place on the time scale available between deposition events. The activation energy barriers increase with the Al concentration in the film, and therefore, the surface diffusion rates in the time frame of typical deposition rates drop, which can explain the decrease in crystallinity in the film structure and the transition to amorphous structure. The deposition process and the immediate surface diffusion enhanced by the energetic adatoms are simulated by means of a molecular dynamics model. The longer-time thermal surface diffusion and the energy landscape are studied by the temperature accelerated dynamics method, applied in an approximate way. The surface diffusion enhanced by the energetic impacts appears to be very important for the film structure in the low-temperature deposition regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291074600068 Publication Date 2011-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 14 Open Access  
  Notes Approved Most recent IF: 4.055; 2011 IF: 4.720  
  Call Number UA @ lucian @ c:irua:89566 Serial 3806  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: