toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Weber, D.; Huber, M.; Gorelik, T.E.; Abakumov, A.M.; Becker, N.; Niehaus, O.; Schwickert, C.; Culver, S.P.; Boysen, H.; Senyshyn, A.; Poettgen, R.; Dronskowski, R.; Ressler, T.; Kolb, U.; Lerch, M.
  Title (down) Molybdenum oxide nitrides of the Mo2(O,N,\square)5 type : on the way to Mo2O5 Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 56 Issue 15 Pages 8782-8792
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Blue-colored molybdenum oxide nitrides of the Mo-2(O,N,square)(5) type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting (MoO6)-O-v units. The new materials are stable up to similar to 773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb9O24.9-type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo2O5. On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo2O5, backed by electronic-structure and phonon calculations from first principles, is given.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Easton, Pa Editor
  Language Wos 000407405500026 Publication Date 2017-07-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access
  Notes ; Financial support from the Deutsche Forschungsgemeinschaft (SPP 1415, LE 781/ 11-1, DR 342/22-2) is gratefully acknowledged. The authors are grateful to J. Barthel, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Julich, Germany, for STEM image simulations. This work was further supported by Diamond Light Source (beamtime awards EE13560) within beamtime proposal SP13560. The Hamburg Synchrotron Radiation Laboratory, HASYLAB, and the FRM II, Garching, are acknowledged for providing beamtime. ; Approved Most recent IF: 4.857
  Call Number UA @ lucian @ c:irua:145727 Serial 4744
Permanent link to this record
 

 
Author Partoens, B.; Peeters, F.M.
  Title (down) Molecule-type phases and Hund's rule in vertically coupled quantum dots Type A1 Journal article
  Year 2000 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 84 Issue Pages 4433-4436
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000086941600045 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 99 Open Access
  Notes Approved Most recent IF: 8.462; 2000 IF: 6.462
  Call Number UA @ lucian @ c:irua:28519 Serial 2188
Permanent link to this record
 

 
Author Yusupov, M.; Dewaele, D.; Attri, P.; Khalilov, U.; Sobott, F.; Bogaerts, A.
  Title (down) Molecular understanding of the possible mechanisms of oligosaccharide oxidation by cold plasma Type A1 Journal article
  Year 2022 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume Issue Pages
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Cold atmospheric plasma (CAP) is a promising technology for several medical applications, including the removal of biofilms from surfaces. However, the molecular mechanisms of CAP treatment are still poorly understood. Here we unravel the possible mechanisms of CAP‐induced oxidation of oligosaccharides, employing reactive molecular dynamics simulations based on the density functional‐tight binding potential. Specifically, we find that the interaction of oxygen atoms (used as CAP‐generated reactive species) with cellotriose (a model system for the oligosaccharides) can break structurally important glycosidic bonds, which subsequently leads to the disruption of the oligosaccharide molecule. The overall results help to shed light on our experimental evidence for cellotriose CAP. This oxidation by study provides atomic‐level insight into the onset of plasma‐induced removal of biofilms, as oligosaccharides are one of the main components of biofilm.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000865844800001 Publication Date 2022-10-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.5 Times cited Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, 1200219N ; They also acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA, where all computational work was performed. This study was financially supported by the Research Foundation–Flanders (FWO) (grant number 1200219N). Approved Most recent IF: 3.5
  Call Number PLASMANT @ plasmant @c:irua:191404 Serial 7113
Permanent link to this record
 

 
Author Munarin, F.F.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M.
  Title (down) Molecular states of two vertically coupled systems of classical charged particles confined by a Coulomb potential Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 76 Issue Pages 035336,1-8
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000248500800111 Publication Date 2007-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 3 Open Access
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
  Call Number UA @ lucian @ c:irua:69657 Serial 2184
Permanent link to this record
 

 
Author Kumar, M.; Sengupta, A.; Kummamuru, N.B.
  Title (down) Molecular simulations for carbon dioxide capture in silica slit pores Type A3 Journal article
  Year 2023 Publication Materials Today: Proceedings Abbreviated Journal
  Volume Issue Pages 1-9
  Keywords A3 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract In present work, we have performed the Grand Canonical Monte Carlo (GCMC) simulations to quantify CO2 capture inside porous silica at high operating temperatures of 673.15 K and 873.15 K; and over a operating pressure range of 500 kPa – 4000 kPa that are methane steam reforming process parameters. Related chemical potential values at these thermodynamic conditions are obtained from the bulk phase simulations in the Canonical ensemble in conjunction with Widom’s insertion technique, where the CO2 has been accurately represented by TraPPE force field. Present structure of the porous silica is a single slit pore geometry of various heights (H = 20 Å, 31.6 Å, 63.2 Å and 126.5 Å), dimensions in which possible vapour-liquid equilibria for generic square well fluids has been reported in literature. Estimation of the pore-fluid interactions show a higher interaction between silica pore and adsorbed CO2 compared to the reported pore-fluid interactions between homogeneous carbon slit pore and adsorbed CO2; thus resulting in an enhancement of adsorption inside silica pores of H = 20 Å and H = 126.5 Å, which are respectively 3.5 times and 1.5 times higher than that in homogeneous carbon slit pores of same dimensions and at 673.15 K and 500 kPa. Estimated local density plots indicate the presence of structured layers due to more molecular packing, which confirms possible liquid-like and vapour-like phase coexistence of the supercritical bulk phase CO2 under confinement.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2023-05-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2214-7853 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:200944 Serial 9058
Permanent link to this record
 

 
Author de Clippel, F.; Harkiolakis, A.; Ke, X.; Vosch, T.; Van Tendeloo, G.; Baron, G.V.; Jacobs, P.A.; Denayer, J.F.M.; Sels, B.F.
  Title (down) Molecular sieve properties of mesoporous silica with intraporous nanocarbon Type A1 Journal article
  Year 2010 Publication Chemical communications Abbreviated Journal Chem Commun
  Volume 46 Issue 6 Pages 928-930
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Biporous carbonsilica materials (CSM) with molecular sieve properties and high sorption capacity were developed by synthesizing nano-sized carbon crystallites in the mesopores of Al-MCM-41.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000274070800024 Publication Date 2009-12-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.319 Times cited 21 Open Access
  Notes Fwo; Iap Approved Most recent IF: 6.319; 2010 IF: 5.787
  Call Number UA @ lucian @ c:irua:80994 Serial 2182
Permanent link to this record
 

 
Author Verheyen, E.; Jo, C.; Kurttepeli, M.; Vanbutsele, G.; Gobechiya, E.; Korányi, T.I.; Bals, S.; Van Tendeloo, G.; Ryoo, R.; Kirschhock, C.E.A.; Martens, J.A.;
  Title (down) Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking Type A1 Journal article
  Year 2013 Publication Journal of catalysis Abbreviated Journal J Catal
  Volume 300 Issue Pages 70-80
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract MFI zeolite nanosheets with thickness of 2 and 8 nm were synthesized, transformed into bifunctional catalysts by loading with platinum and tested in n-decane isomerization and hydrocracking. Detailed analysis of skeletal isomers and hydrocracked products revealed that the MFI nanosheets display transition-state shape-selectivity similar to bulk MFI zeolite crystals. The suppressed formation of bulky skeletal isomers and C5 cracking products are observed both in the nanosheets and the bulk crystals grown in three dimensions. This is typical for restricted transition-state shape-selectivity, characteristic for the MFI type pores. It is a first clear example of transition-state shape-selectivity inside a zeolitic nanosheet. Owing to the short diffusion path across the sheets, expression of diffusion-based discrimination of reaction products in the MFI nanosheets was limited. The 2-methylnonane formation among monobranched C10 isomers and 2,7-dimethyloctane among dibranched C10 isomers, which in MFI zeolite are favored by product diffusion, was much less favored on the nanosheets compared to the reference bulk ZSM-5 material.
  Address
  Corporate Author Thesis
  Publisher Place of Publication San Diego, Calif. Editor
  Language Wos 000317558000009 Publication Date 2013-02-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.844 Times cited 121 Open Access
  Notes Methusalem; IAP; Countatoms Approved Most recent IF: 6.844; 2013 IF: 6.073
  Call Number UA @ lucian @ c:irua:106186 Serial 2181
Permanent link to this record
 

 
Author Yadav, D.K.; Kumar, S.; Saloni; Misra, S.; Yadav, L.; Teli, M.; Sharma, P.; Chaudhary, S.; Kumar, N.; Choi, E.H.; Kim, H.S.; Kim, M.-hyun
  Title (down) Molecular Insights into the Interaction of RONS and Thieno[3,2-c]pyran Analogs with SIRT6/COX-2: A Molecular Dynamics Study Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
  Volume 8 Issue 8 Pages 4777
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract SIRT6 and COX-2 are oncogenes target that promote the expression of proinflammatory and pro-survival proteins through a signaling pathway, which leads to increased survival and proliferation of tumor cells. However, COX-2 also suppresses skin tumorigenesis and their relationship with SIRT6, making it an interesting target for the discovery of drugs with anti-inflammatory and anti-cancer properties. Herein, we studied the interaction of thieno[3,2-c] pyran analogs and RONS species with SIRT6 and COX-2 through the use of molecular docking and molecular dynamic simulations. Molecular docking studies revealed the importance of hydrophobic and hydrophilic amino acid residues for the stability. The molecular dynamics study examined conformational changes in the enzymes caused by the binding of the substrates and how those changes affected the stability of the protein-drug complex. The average RMSD values of the backbone atoms in compounds 6 and 10 were calculated from 1000 ps to 10000 ps and were found to be 0.13 nm for both compounds. Similarly, the radius of gyration values for compounds 6 and 10 were found to be 1.87 +/- 0.03 nm and 1.86 +/- 0.02 nm, respectively. The work presented here, will be of great help in lead identification and optimization for early drug discovery.
  Address
  Corporate Author Thesis
  Publisher Nature Publishing Group Place of Publication London Editor
  Language Wos 000427685200002 Publication Date 2018-03-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.259 Times cited 10 Open Access OpenAccess
  Notes Approved Most recent IF: 4.259
  Call Number UA @ lucian @ c:irua:150841 Serial 4974
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A.
  Title (down) Molecular dynamics simulations of the sticking and etch behavior of various growth species of (ultra)nanocrystalline diamond films Type A1 Journal article
  Year 2008 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
  Volume 14 Issue 7/8 Pages 213-223
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The reaction behavior of species that may affect the growth of ultrananocrystal line and nanocrystalline diamond ((U)NCD) films is investigated by means of molecular dynamics simulations. Impacts of CHx (x = 0 – 4), C2Hx (x=0-6), C3Hx (x=0-2), C4Hx (x = 0 – 2), H, and H-2 on clean and hydrogenated diamond (100)2 x 1 and (111) 1 x 1 surfaces at two different substrate temperatures are simulated. We find that the different bonding structures of the two surfaces cause different temperature effects on the sticking efficiency. These results predict a temperature-dependent ratio of diamond (100) and (111) growth. Furthermore, predictions of which are the most important hydrocarbon species for (U)NCD growth are made.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000259302700008 Publication Date 2008-08-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.333 Times cited 25 Open Access
  Notes Approved Most recent IF: 1.333; 2008 IF: 1.483
  Call Number UA @ lucian @ c:irua:70001 Serial 2177
Permanent link to this record
 

 
Author Neyts, E.; Eckert, M.; Bogaerts, A.
  Title (down) Molecular dynamics simulations of the growth of thin a-C:H films under additional ion bombardment: influence of the growth species and the Ar+ ion kinetic energy Type A1 Journal article
  Year 2007 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
  Volume 13 Issue 6/7 Pages 312-318
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000248381800007 Publication Date 2007-07-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.333 Times cited 14 Open Access
  Notes Approved Most recent IF: 1.333; 2007 IF: 1.936
  Call Number UA @ lucian @ c:irua:64532 Serial 2176
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
  Title (down) Molecular dynamics simulations of mechanical stress on oxidized membranes Type A1 Journal article
  Year 2019 Publication Biophysical chemistry Abbreviated Journal Biophys Chem
  Volume 254 Issue Pages 106266
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Biomembranes are under constant attack of free radicals that may lead to lipid oxidation in conditions of oxidative stress. The products generated during lipid oxidation are responsible for structural and dynamical changes which may jeopardize the membrane function. For instance, the local rearrangements of oxidized lipid molecules may induce membrane rupture. In this study, we investigated the effects of mechanical stress on oxidized phospholipid bilayers (PLBs). Model bilayers were stretched until pore formation (or poration) using nonequilibrium molecular dynamics simulations. We studied single-component homogeneous membranes composed of lipid oxidation products, as well as two-component heterogeneous membranes with coexisting native and oxidized domains. In homogeneous membranes, the oxidation products with —OH and —OOH groups reduced the areal strain required for pore formation, whereas the oxidation product with ]O group behaved similarly to the native membrane. In heterogeneous membranes composed of oxidized and non-oxidized domains, we tested the hypothesis according to which poration may be facilitated at the domain interface region. However, results were inconclusive due to their large statistical variance and sensitivity to simulation setup parameters. We pointed out important technical issues that need to be considered in future simulations of mechanically-induced poration of heterogeneous membranes. This research is of interest for photodynamic therapy and plasma medicine, because ruptured and intact plasma membranes are experimentally considered hallmarks of necrotic and apoptotic cell death.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000502890900015 Publication Date 2019-09-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0301-4622 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.402 Times cited Open Access
  Notes São Paulo Research Foundation, 2012/50680-5 ; National Counsel of Technological and Scientific Development, 459270/2014-1 ; We are thankful for the financial support received from the São Paulo Research Foundation (FAPESP) (grant no. 2012/50680-5) and from the National Counsel of Technological and Scientific Development (CNPq) (grant no. 459270/2014-1). MCO acknowledges UFABC for the Master's scholarship granted. Approved Most recent IF: 2.402
  Call Number PLASMANT @ plasmant @c:irua:163477 Serial 5374
Permanent link to this record
 

 
Author Brault, P.; Chamorro-Coral, W.; Chuon, S.; Caillard, A.; Bauchire, J.-M.; Baranton, S.; Coutanceau, C.; Neyts, E.
  Title (down) Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source Type A1 Journal article
  Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
  Volume 13 Issue 2 Pages 324-329
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Molecular dynamics simulations are carried out for describing growth of Pd and PdO nanoclusters using the ReaxFF force field. The resulting nanocluster structures are successfully compared to those of nanoclusters experimentally grown in a gas aggregation source. The PdO structure is quasi-crystalline as revealed by high resolution transmission microscope analysis for experimental PdO nanoclusters. The role of the nanocluster temperature in the molecular dynamics simulated growth is highlighted.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000468848400009 Publication Date 2019-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.712 Times cited 3 Open Access Not_Open_Access
  Notes Approved Most recent IF: 1.712
  Call Number UA @ admin @ c:irua:160278 Serial 5276
Permanent link to this record
 

 
Author Gou, F.; Neyts, E.; Eckert, M.; Tinck, S.; Bogaerts, A.
  Title (down) Molecular dynamics simulations of Cl+ etching on a Si(100) surface Type A1 Journal article
  Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 107 Issue 11 Pages 113305,1-113305,6
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Molecular dynamics simulations using improved TersoffBrenner potential parameters were performed to investigate Cl+ etching of a {2×1} reconstructed Si(100) surface. Steady-state Si etching accompanying the Cl coverage of the surface is observed. Furthermore, a steady-state chlorinated reaction layer is formed. The thickness of this reaction layer is found to increase with increasing energy. The stoichiometry of SiClx species in the reaction layer is found to be SiCl:SiCl2:SiCl3 = 1.0:0.14:0.008 at 50 eV. These results are in excellent agreement with available experimental data. While elemental Si products are created by physical sputtering, most SiClx (0<x<4) etch products are produced by chemical-enhanced physical sputtering.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000278907100018 Publication Date 2010-06-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 15 Open Access
  Notes Approved Most recent IF: 2.068; 2010 IF: 2.079
  Call Number UA @ lucian @ c:irua:82663 Serial 2175
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; Gijbels, R.; Benedikt, J.; van den Sanden, M.C.M.
  Title (down) Molecular dynamics simulations for the growth of diamond-like carbon films from low kinetic energy species Type A1 Journal article
  Year 2004 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
  Volume 13 Issue Pages 1873-1881
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000223883400021 Publication Date 2004-07-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.561 Times cited 53 Open Access
  Notes Approved Most recent IF: 2.561; 2004 IF: 1.670
  Call Number UA @ lucian @ c:irua:48276 Serial 2173
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; Gijbels, R.; Benedikt, J.; van de Sanden, M.C.M.
  Title (down) Molecular dynamics simulation of the impact behaviour of various hydrocarbon species on DLC Type A1 Journal article
  Year 2005 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B
  Volume 228 Issue Pages 315-318
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000226669800052 Publication Date 2004-12-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.109 Times cited 19 Open Access
  Notes Approved Most recent IF: 1.109; 2005 IF: 1.181
  Call Number UA @ lucian @ c:irua:49873 Serial 2172
Permanent link to this record
 

 
Author Chen, Z.; Yu, M.Y.; Luo, H.
  Title (down) Molecular dynamics simulation of dust clusters in plasmas Type A1 Journal article
  Year 2005 Publication Physica scripta Abbreviated Journal Phys Scripta
  Volume 71 Issue 6 Pages 638-643
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Finite and infinite three-dimensional dust systems and their configurational and transport properties are investigated by Molecular Dynamics simulation. The model dust-dust interaction potential includes an attraction part. Spherical dust clusters or balls are found and their structural and transport properties studied. Qualitatively, the cluster structure agrees well with recent experimental results.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Stockholm Editor
  Language Wos 000230087300010 Publication Date 2006-01-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.28 Times cited 13 Open Access
  Notes Approved Most recent IF: 1.28; 2005 IF: 1.240
  Call Number UA @ lucian @ c:irua:95096 Serial 2169
Permanent link to this record
 

 
Author Van Pottelberge, R.; Moldovan, D.; Milovanović, S.P.; Peeters, F.M.
  Title (down) Molecular collapse in monolayer graphene Type A1 Journal article
  Year 2019 Publication 2D materials Abbreviated Journal 2D Mater
  Volume 6 Issue 4 Pages 045047
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Atomic collapse is a phenomenon inherent to relativistic quantum mechanics where electron states dive in the positron continuum for highly charged nuclei. This phenomenon was recently observed in graphene. Here we investigate a novel collapse phenomenon when multiple sub- and supercritical charges of equal strength are put close together as in a molecule. We construct a phase diagram which consists of three distinct regions: (1) subcritical, (2) frustrated atomic collapse, and (3) molecular collapse. We show that the single impurity atomic collapse resonances rearrange themselves to form molecular collapse resonances which exhibit a distinct bonding, anti-bonding and non-bonding character. Here we limit ourselves to systems consisting of two and three charges. We show that by tuning the distance between the charges and their strength a high degree of control over the molecular collapse resonances can be achieved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000487692200003 Publication Date 2019-08-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.937 Times cited 10 Open Access
  Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research Grant for RVP and a postdoctoral Grant for SPM. ; Approved Most recent IF: 6.937
  Call Number UA @ admin @ c:irua:163756 Serial 5422
Permanent link to this record
 

 
Author Wang, J.; Andelkovic, M.; Wang, G.; Peeters, F.M.
  Title (down) Molecular collapse in graphene: Sublattice symmetry effect Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 102 Issue 6 Pages 064108-8
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Atomic collapse can be observed in graphene because of its large “effective” fine structure constant, which enables this phenomenon to occur for an impurity charge as low as Z(c) similar to 1-2. Here we investigate the effect of the sublattice symmetry on molecular collapse in two spatially separated charge tunable vacancies, which are located on the same (A-A type) or different (A-B type) sublattices. We find that the broken sublattice symmetry: (1) does not affect the location of the main bonding and antibonding molecular collapse peaks, (2) but shifts the position of the satellite peaks, because they are a consequence of the breaking of the local sublattice symmetry, and (3) there are vacancy characteristic collapse peaks that only occur for A-B type vacancies, which can be employed to distinguish them experimentally from the A-A type. As the charge, energy, and separation distance increase, the additional collapse features merge with the main molecular collapse peaks. We show that the spatial distribution around the vacancy site of the collapse states allows us to differentiate the molecular from the frustrated collapse.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000562320700002 Publication Date 2020-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited 3 Open Access
  Notes ; This work was supported by the National Natural Science Foundation of China (Grants No. 61874038 and No. 61704040), National Key R&D Program Grant 2018YFE0120000, the scholarship from China Scholarship Council (CSC: 201908330548), and TRANS2DTMD FlagEra project. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
  Call Number UA @ admin @ c:irua:172065 Serial 6562
Permanent link to this record
 

 
Author Bafekry, A.; Nguyen, C.; Obeid, M.M.; Ghergherehchi, M.
  Title (down) Modulating the electro-optical properties of doped C₃N monolayers and graphene bilayersviamechanical strain and pressure Type A1 Journal article
  Year 2020 Publication New Journal Of Chemistry Abbreviated Journal New J Chem
  Volume 44 Issue 36 Pages 15785-15792
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract In this work, we investigated systematically the electronic and optical properties of B doped C3N monolayers as well as B and N doped graphene bilayers (BN-Gr@2L). We found that the doping of B atoms leads to an enlarged band gap of the C3N monolayer and when the dopant concentration reaches 12.5%, an indirect-to-direct band gap switching occurs. In addition, with co-doping of B and N atoms on the graphene monolayer in the hexagonal configuration, an electronic transition from semi-metal to semiconductor occurs. Our optical results for B-C3N show a broad absorption spectrum in a wide visible range starting from 400 nm to 1000 nm with strong absorption intensity, making it a suitable candidate for nanoelectronic and optoelectronic applications. Interestingly, a transition from semi-metal to semiconductor emerges in the graphene monolayer with doping of B and N atoms. Furthermore, our results demonstrate that the in-plane strain and out-of-plane strain (pressure) can modulate the band gap of the BN-Gr@2L. The controllable electronic properties and optical features of the doped graphene bilayer by strain engineering may facilitate their practical performance for various applications in future.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000571972400054 Publication Date 2020-08-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.3 Times cited 7 Open Access
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.3; 2020 IF: 3.269
  Call Number UA @ admin @ c:irua:171936 Serial 6561
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Sahun, M.; Smits, E.; Bogaerts, A.; Privat-Maldonado, A.
  Title (down) Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Type A1 Journal article
  Year 2022 Publication Biomedicines Abbreviated Journal Biomedicines
  Volume 10 Issue 4 Pages 823
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
  Abstract Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000785420400001 Publication Date 2022-03-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2227-9059 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Science and Engineering Research Board (SERB), Core Research Grant, Department of Science and Technology, India., (CRG/2021/001935) ; Department of Biotechnology, BT/RLF/Re-entry/27/2019 ; We are grateful to Charlotta Bengtson for her valuable input. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:187931 Serial 7051
Permanent link to this record
 

 
Author Filippousi, M.; Siafaka, P.I.; Amanatiadou, E.P.; Nanaki, S.G.; Nerantzaki, M.; Bikiaris, D.N.; Vizirianakis, I.S.; Van Tendeloo, G.
  Title (down) Modified chitosan coated mesoporous strontium hydroxyapatite nanorods as drug carriers Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal J Mater Chem B
  Volume 3 Issue 3 Pages 5991-6000
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Mesoporous strontium hydroxyapatite (SrHAp) nanorods (NRs) have been successfully synthesized using a simple and efficient chemical route, i.e. the hydrothermal method. Structural and morphological characterization of the as-synthesized SrHAp NRs have been performed by transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). TEM and HAADF-STEM measurements of the NRs reveal the coexistence of longer and shorter particles with the length ranging from 50 nm to 400 nm and a diameter of about 20-40 nm. Electron tomography measurements of the NRs allow us to better visualize the mesopores and their facets. Two model drugs, hydrophobic risperidone and hydrophilic pramipexole, were loaded into the SrHAp NRs. These nanorods were coated using a modified chitosan (CS) with poly(2-hydroxyethyl methacrylate) (PHEMA), in order to encapsulate the drug-loaded SrHAp nanoparticles and reduce the cytotoxicity of the loaded materials. The drug release from neat and encapsulated SrHAp NRs mainly depends on the drug hydrophilicity. Importantly, although neat SrHAp nanorods exhibit some cytotoxicity against Caco-2 cells, the Cs-g-PHEMA-SrHAp drug-loaded nanorods show an acceptable cytocompatibility.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000358065100009 Publication Date 2015-06-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-750X;2050-7518; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.543 Times cited 24 Open Access
  Notes Approved Most recent IF: 4.543; 2015 IF: 4.726
  Call Number c:irua:127131 Serial 2161
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
  Title (down) Modified atomic scattering amplitudes and size effects on the 002 and 220 electron structure factors of multiple Ga1-xInxAs/GaAs quantum wells Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 105 Issue 8 Pages 084310,1-084310,8
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The modified atomic scattering amplitudes (MASAs) of mixed Ga<sub>1-x</sub>In<sub>x</sub>As, GaAs<sub>1-x</sub>N<sub>x</sub>, and InAs<sub>1-x</sub>N<sub>x</sub> are calculated using the density functional theory approach and the results are compared with those of the binary counterparts. The MASAs of N, Ga, As, and In for various scattering vectors in various chemical environments and in the zinc-blende structure are compared with the frequently used Doyle and Turner values. Deviation from the Doyle and Turner results is found for small scattering vectors (s<0.3 Å<sup>-1</sup>) and for these scattering vectors the MASAs are found to be sensitive to the orientation of the scattering vector and on the chemical environment. The chemical environment sensitive MASAs are used within zero pressure classical Metropolis Monte Carlo, finite temperature calculations to investigate the effect of well size on the electron 002 and 220 structure factors (SFs). The implications of the use of the 002 (200) spot for the quantification of nanostructured Ga<sub>1-x</sub>In<sub>x</sub>As systems are examined while the 220 SF across the well is evaluated and is found to be very sensitive to the in-plane static displacements.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000268064700149 Publication Date 2009-04-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record
  Impact Factor 2.068 Times cited Open Access
  Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 2.068; 2009 IF: 2.072
  Call Number UA @ lucian @ c:irua:78282 Serial 2160
Permanent link to this record
 

 
Author Chen, J.H.; van Dyck, D.; op de Beeck, M.; Broeckx, J.; van Landuyt, J.
  Title (down) Modification of the multislice method for calculating coherent STEM images Type A1 Journal article
  Year 1995 Publication Physica status solidi: A: applied research Abbreviated Journal
  Volume 150 Issue Pages 13-22
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos A1995RQ21500002 Publication Date 2007-01-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 5 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:13292 Serial 2159
Permanent link to this record
 

 
Author de Keyser, A.; Bogaerts, R.; van Bockstal, L.; Herlach, F.; Karavolas, V.C.; Peeters, F.M.; van de Graaf, W.; Borghs, G.
  Title (down) Modification of the 2D electronic properties in Si-δ-doped InSb due to surface effects Type P3 Proceeding
  Year 1997 Publication Abbreviated Journal
  Volume Issue Pages 383-386
  Keywords P3 Proceeding; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher World Scientific Place of Publication Singapore Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:19303 Serial 2158
Permanent link to this record
 

 
Author Napierala, C.; Lepoittevin, C.; Edely, M.; Sauques, L.; Giovanelli, F.; Laffez, P.; Van Tendeloo, G.
  Title (down) Moderate pressure synthesis of rare earth nickelate with metal-insulator transition using polymeric precursors Type A1 Journal article
  Year 2010 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 183 Issue 7 Pages 1663-1669
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Rare earth nickelates exhibit a reversible metalsemiconductor phase transition that is, in the infrared range, responsible for a thermo-optical contrast. The state of the art synthesis of these compounds usually requires high oxygen pressure to stabilize Ni in the oxidation state 3+. In this work, using polymeric precursor associated with moderate pressure annealing, we show that it is possible to obtain fully oxidized rare earth nickelate with metalinsulator transition. Using thermogravimetric analysis, X-ray diffraction and transmission electronic microscopy we compare different samples synthesized at different oxygen pressures and demonstrate their structural similarity. Thermo-optical properties were measured, in the infrared range, using reflectance measurements and confirmed the metalinsulator transition at 60 °C in both samples.TEM observations lead to the conclusion that the structure commonly obtained at 175 bar is perfectly observed in the 20 bar sample without major structural defects. The two samples exhibit a thermochromic behavior and thermo-optical properties of the two samples are equivalent.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000279711200028 Publication Date 2010-05-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 3 Open Access
  Notes Approved Most recent IF: 2.299; 2010 IF: 2.261
  Call Number UA @ lucian @ c:irua:83679 Serial 2156
Permanent link to this record
 

 
Author Madani, M.; Bogaerts, A.; Gijbels, R.; Vangeneugden, D.
  Title (down) Modelling of a dielectric barrier glow discharge at atmospheric pressure in nitrogen Type P3 Proceeding
  Year 2002 Publication Abbreviated Journal
  Volume Issue Pages 130-133
  Keywords P3 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication S.l. Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:82299 Serial 2150
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
  Title (down) Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 20 Issue 13 Pages 8456-8459
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000428779700007 Publication Date 2018-03-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 8 Open Access OpenAccess
  Notes K. M. B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation – Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government – department EWI. Approved Most recent IF: 4.123
  Call Number PLASMANT @ plasmant @c:irua:150357 Serial 4916
Permanent link to this record
 

 
Author Moretti, M.; Van Passel, S.; Camposeo, S.; Pedrero, F.; Dogot, T.; Lebailly, P.; Vivaldi, G.A.
  Title (down) Modelling environmental impacts of treated municipal wastewater reuse for tree crops irrigation in the Mediterranean coastal region Type A1 Journal article
  Year 2019 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ
  Volume 660 Issue 660 Pages 1513-1521
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
  Abstract Wastewater reuse provides valuable solutions to solve the societal challenges of decreasing availability and limiting access to secure water resources. The present study quantifies the environmental performance of nectarine orchards irrigation using treated municipal wastewater (TMW) and surface water using a unique dataset based on field experimental data. Climate change, toxicity (for human and freshwater), eutrophication (marine and freshwater) and acidification impacts were analysed using the impact assessment method suggested by the International Reference Life Cycle Data System (ILCD). The water footprint associated to the life cycles of each system has been estimated using the Available WAter REmaining (AWARE) method. Monte Carlo simulation was used to assess data uncertainty. The irrigation of nectarine orchards using TMW performs better than the irrigation using surface water for eutrophication impact categories. Compared with surface water resources, the potential impacts of TMW reuse in agriculture on climate change and toxicity are affected by the wastewater treatment phase (WWT). Only eutrophication and acidification burdens are generated by in-field substitution of surface water with TMW. Considering human and ecosystem water demand, the irrigation with TMW increases water consumption of 19.12 m3 per kg of nectarine produced. Whereas, it shows a positive contribution to water stress (−0.19 m3) if only human water demand is considered. This study provides important results that allow for a better understanding of the potential environmental consequences of TMW reuse in agriculture. It suggests that embracing the type of WWTs, the replacement of fertilizers, the effects on water scarcity and ecosystem quality might be useful to redefine water reuse regulations and increase public acceptance for the reuse of TMW in agriculture. Moreover, this study reveals the need for developing consensus and standardized guidance for life cycle analysis of water reuse applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000457725700145 Publication Date 2019-01-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
  Impact Factor 4.9 Times cited 4 Open Access
  Notes ; The authors would like to thank the EU, MIUR and FNRS for funding, in the frame of the collaborative international Consortium DESERT financed under the ERA-NET WaterWorks2014 Cofunded Call. This ERA-NET is an integral part of the 2015 Joint Activities developed by the “Water Challenges for a Changing World Joint Programme Initiative (Water JPI)”. G.A. Vivaldi would like to thank also the Regione Puglia for the support from the “Fondo di Sviluppo e Coesione” 2007-2013 – APQ Ricerca Regione Puglia “Programma regionale a sostegno della specializzazione intelligente e della sostenibilita sociale ed ambientale – FutureInResearch”. ; Approved Most recent IF: 4.9
  Call Number UA @ admin @ c:irua:156931 Serial 6227
Permanent link to this record
 

 
Author Peng, L.; Kassotaki, E.; Liu, Y.; Sun, J.; Dai, X.; Pijuan, M.; Rodriguez-Roda, I.; Buttiglieri, G.; Ni, B.-J.
  Title (down) Modelling cometabolic biotransformation of sulfamethoxazole by an enriched ammonia oxidizing bacteria culture Type A1 Journal article
  Year 2017 Publication Chemical engineering science Abbreviated Journal
  Volume 173 Issue Pages 465-473
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Antibiotics such as sulfamethoxazole (SFX) are environmentally hazardous after being released into the aquatic environment and challenges remain in the development of engineered prevention strategies. In this work, a mathematical model was developed to describe and evaluate cometabolic biotransformation of SFX and its transformation products (TPs) in an enriched ammonia oxidizing bacteria (AOB) culture. The growth-linked cometabolic biodegradation by AOB, non-growth transformation by AOB and nongrowth transformation by heterotrophs were considered in the model framework. The production of major TPs comprising 4-Nitro-SFX, Desamino-SFX and N-4-Acetyl-SFX was also specifically modelled. The validity of the model was demonstrated through testing against literature reported data from extensive batch tests, as well as from long-term experiments in a partial nitritation sequencing batch reactor (SBR) and in a combined SBR + membrane aerated biofilm reactor performing nitrification/denitrification. Modelling results revealed that the removal efficiency of SFX increased with the increase of influent ammonium concentration, whereas the influent organic matter, hydraulic retention time and solid retention time exerted a limited effect on SFX biodegradation with the removal efficiencies varying in a narrow range. The variation of influent SFX concentration had no impact on SFX removal efficiency. The established model framework enables interpretation of a range of experimental observations on SFX biodegradation and helps to identify the optimal conditions for efficient removal. (C) 2017 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000411764200039 Publication Date 2017-08-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:146629 Serial 8267
Permanent link to this record
 

 
Author Kovács, A.; Billen, P.; Cornet, I.; Wijnants, M.; Neyts, E.C.
  Title (down) Modeling the physicochemical properties of natural deep eutectic solvents : a review Type A1 Journal article
  Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem
  Volume 13 Issue 15 Pages 3789-3804
  Keywords A1 Journal article; Engineering sciences. Technology; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE)
  Abstract Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with a significantly decreased melting point due to the specific interactions among the constituents. NADES have benign properties (low volatility, flammability, toxicity, cost) and tailorable physicochemical properties (by altering the type and molar ratio of constituents), hence they are often considered as a green alternative to common organic solvents. Modeling the relation between their composition and properties is crucial though, both for understanding and predicting their behavior. Several efforts were done to this end, yet this review aims at structuring the present knowledge as an outline for future research. First, we reviewed the key properties of NADES and relate them to their structure based on the available experimental data. Second, we reviewed available modeling methods applicable to NADES. At the molecular level, density functional theory and molecular dynamics allow interpreting density differences and vibrational spectra, and computation of interaction energies. Additionally, properties at the level of the bulk media can be explained and predicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation of state models (PC-SAFT). Finally, methods based on large datasets are discussed; models based on group contribution methods and machine learning. A combination of bulk media and dataset modeling allows qualitative prediction and interpretation of phase equilibria properties on the one hand, and quantitative prediction of melting point, density, viscosity, surface tension and refractive indices on the other hand. In our view, multiscale modeling, combining the molecular and macroscale methods, will strongly enhance the predictability of NADES properties and their interaction with solutes, yielding truly tailorable solvents to accommodate (bio)chemical reactions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000541499100001 Publication Date 2020-05-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.4 Times cited Open Access
  Notes Approved Most recent IF: 8.4; 2020 IF: 7.226
  Call Number UA @ admin @ c:irua:168851 Serial 6770
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: