|
Abstract |
In present work, we have performed the Grand Canonical Monte Carlo (GCMC) simulations to quantify CO2 capture inside porous silica at high operating temperatures of 673.15 K and 873.15 K; and over a operating pressure range of 500 kPa – 4000 kPa that are methane steam reforming process parameters. Related chemical potential values at these thermodynamic conditions are obtained from the bulk phase simulations in the Canonical ensemble in conjunction with Widom’s insertion technique, where the CO2 has been accurately represented by TraPPE force field. Present structure of the porous silica is a single slit pore geometry of various heights (H = 20 Å, 31.6 Å, 63.2 Å and 126.5 Å), dimensions in which possible vapour-liquid equilibria for generic square well fluids has been reported in literature. Estimation of the pore-fluid interactions show a higher interaction between silica pore and adsorbed CO2 compared to the reported pore-fluid interactions between homogeneous carbon slit pore and adsorbed CO2; thus resulting in an enhancement of adsorption inside silica pores of H = 20 Å and H = 126.5 Å, which are respectively 3.5 times and 1.5 times higher than that in homogeneous carbon slit pores of same dimensions and at 673.15 K and 500 kPa. Estimated local density plots indicate the presence of structured layers due to more molecular packing, which confirms possible liquid-like and vapour-like phase coexistence of the supercritical bulk phase CO2 under confinement. |
|