|
Record |
Links |
|
Author |
Gou, F.; Neyts, E.; Eckert, M.; Tinck, S.; Bogaerts, A. |
|
|
Title |
Molecular dynamics simulations of Cl+ etching on a Si(100) surface |
Type |
A1 Journal article |
|
Year |
2010 |
Publication |
Journal of applied physics |
Abbreviated Journal |
J Appl Phys |
|
|
Volume |
107 |
Issue |
11 |
Pages |
113305,1-113305,6 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Molecular dynamics simulations using improved TersoffBrenner potential parameters were performed to investigate Cl+ etching of a {2×1} reconstructed Si(100) surface. Steady-state Si etching accompanying the Cl coverage of the surface is observed. Furthermore, a steady-state chlorinated reaction layer is formed. The thickness of this reaction layer is found to increase with increasing energy. The stoichiometry of SiClx species in the reaction layer is found to be SiCl:SiCl2:SiCl3 = 1.0:0.14:0.008 at 50 eV. These results are in excellent agreement with available experimental data. While elemental Si products are created by physical sputtering, most SiClx (0<x<4) etch products are produced by chemical-enhanced physical sputtering. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Institute of Physics |
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000278907100018 |
Publication Date |
2010-06-04 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-8979; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.068 |
Times cited |
15 |
Open Access |
|
|
|
Notes |
|
Approved |
Most recent IF: 2.068; 2010 IF: 2.079 |
|
|
Call Number |
UA @ lucian @ c:irua:82663 |
Serial |
2175 |
|
Permanent link to this record |