|
Record |
Links |
|
Author |
Wang, J.; Andelkovic, M.; Wang, G.; Peeters, F.M. |
|
|
Title |
Molecular collapse in graphene: Sublattice symmetry effect |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Physical Review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
102 |
Issue |
6 |
Pages |
064108-8 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Atomic collapse can be observed in graphene because of its large “effective” fine structure constant, which enables this phenomenon to occur for an impurity charge as low as Z(c) similar to 1-2. Here we investigate the effect of the sublattice symmetry on molecular collapse in two spatially separated charge tunable vacancies, which are located on the same (A-A type) or different (A-B type) sublattices. We find that the broken sublattice symmetry: (1) does not affect the location of the main bonding and antibonding molecular collapse peaks, (2) but shifts the position of the satellite peaks, because they are a consequence of the breaking of the local sublattice symmetry, and (3) there are vacancy characteristic collapse peaks that only occur for A-B type vacancies, which can be employed to distinguish them experimentally from the A-A type. As the charge, energy, and separation distance increase, the additional collapse features merge with the main molecular collapse peaks. We show that the spatial distribution around the vacancy site of the collapse states allows us to differentiate the molecular from the frustrated collapse. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000562320700002 |
Publication Date |
2020-08-25 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9969; 2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.7 |
Times cited |
3 |
Open Access |
|
|
|
Notes |
; This work was supported by the National Natural Science Foundation of China (Grants No. 61874038 and No. 61704040), National Key R&D Program Grant 2018YFE0120000, the scholarship from China Scholarship Council (CSC: 201908330548), and TRANS2DTMD FlagEra project. ; |
Approved |
Most recent IF: 3.7; 2020 IF: 3.836 |
|
|
Call Number |
UA @ admin @ c:irua:172065 |
Serial |
6562 |
|
Permanent link to this record |