|
Record |
Links |
|
Author |
Weber, D.; Huber, M.; Gorelik, T.E.; Abakumov, A.M.; Becker, N.; Niehaus, O.; Schwickert, C.; Culver, S.P.; Boysen, H.; Senyshyn, A.; Poettgen, R.; Dronskowski, R.; Ressler, T.; Kolb, U.; Lerch, M. |
|
|
Title |
Molybdenum oxide nitrides of the Mo2(O,N,\square)5 type : on the way to Mo2O5 |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Inorganic chemistry |
Abbreviated Journal |
Inorg Chem |
|
|
Volume |
56 |
Issue |
15 |
Pages |
8782-8792 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Blue-colored molybdenum oxide nitrides of the Mo-2(O,N,square)(5) type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting (MoO6)-O-v units. The new materials are stable up to similar to 773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb9O24.9-type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo2O5. On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo2O5, backed by electronic-structure and phonon calculations from first principles, is given. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Easton, Pa |
Editor |
|
|
|
Language |
|
Wos |
000407405500026 |
Publication Date |
2017-07-17 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0020-1669 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.857 |
Times cited |
3 |
Open Access |
Not_Open_Access |
|
|
Notes |
; Financial support from the Deutsche Forschungsgemeinschaft (SPP 1415, LE 781/ 11-1, DR 342/22-2) is gratefully acknowledged. The authors are grateful to J. Barthel, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Julich, Germany, for STEM image simulations. This work was further supported by Diamond Light Source (beamtime awards EE13560) within beamtime proposal SP13560. The Hamburg Synchrotron Radiation Laboratory, HASYLAB, and the FRM II, Garching, are acknowledged for providing beamtime. ; |
Approved |
Most recent IF: 4.857 |
|
|
Call Number |
UA @ lucian @ c:irua:145727 |
Serial |
4744 |
|
Permanent link to this record |