toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title (up) Phonons in Ge nanowires Type A1 Journal article
  Year 2009 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 95 Issue 12 Pages 122110,1-122110,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The phonon spectra of thin freestanding, hydrogen passivated, Ge nanowires are calculated by ab initio techniques. The effect of confinement on the phonon modes as caused by the small diameters of the wires is investigated. Confinement causes a hardening of the optical modes and a softening of the longitudinal acoustic modes. The stability of the nanowires, undoped or doped with B or P atoms, is investigated using the obtained phonon spectra. All considered wires were stable, except for highly doped, very thin nanowires.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000270243800035 Publication Date 2009-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.411; 2009 IF: 3.554  
  Call Number UA @ lucian @ c:irua:79307 Serial 2606  
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S. pdf  doi
openurl 
  Title (up) Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
  Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 209 Issue Pages 494-500  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000311190500058 Publication Date 2012-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 12 Open Access  
  Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 6.216; 2012 IF: 3.473  
  Call Number UA @ lucian @ c:irua:105185 Serial 2609  
Permanent link to this record
 

 
Author Ding, Y.; Maitra, S.; Arenas Esteban, D.; Bals, S.; Vrielinck, H.; Barakat, T.; Roy, S.; Van Tendeloo, G.; Liu, J.; Li, Y.; Vlad, A.; Su, B.-L. url  doi
openurl 
  Title (up) Photochemical production of hydrogen peroxide by digging pro-superoxide radical carbon vacancies in carbon nitride Type A1 Journal article
  Year 2022 Publication Cell reports physical science Abbreviated Journal  
  Volume 3 Issue 5 Pages 100874-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Artificial photosynthesis of H2O2, an environmentally friendly oxidant and a clean fuel, holds great promise. However, improving its efficiency and stability for industrial implementation remains highly challenging. Here, we report the visible-light H2O2 artificial photosynthesis by digging pro-superoxide radical carbon vacancies in three-dimensional hierarchical porous g-C3N4 through a simple hydrolysis-freeze-drying-thermal treatment. A significant electronic structure change is revealed upon the implantation of carbon vacancies, broadening visible-light absorption and facilitating the photogenerated charge separation. The strong electron affinity of the carbon vacancies promotes superoxide radical (O-center dot(2)-) formation, significantly boosting the H2O2 photocatalytic production. The developed photocatalyst shows an H2O2 evolution rate of 6287.5 mM g(-1) h(-1) under visible-light irradiation with a long cycling stability being the best-performing photocatalyst among all reported g-C3N4-based systems. Our work provides fundamental insight into highly active and stable photocatalysts with great potential for safe industrial H2O2 production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000805830100006 Publication Date 2022-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 12 Open Access OpenAccess  
  Notes Y.D. thanks the China Scholarship Council (201808310127) for financial support. This work is financially supported by the National Natural Science Foundation of China (U1663225) , Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) of the Chinese Ministry of Education, Program of Introducing Talents of Discipline to Universities-Plan 111 (grant no. B20002) from the Ministry of Science and Technology and the Ministry of Education of China, and the National Key R&D Program of China (2016YFA0202602) . This research was also supported by the European Commission Interreg V France-Wallonie-Vlaanderen project “DepollutAir”. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189706 Serial 7090  
Permanent link to this record
 

 
Author Anisimovas, E.; Matulis, A.; Tavernier, M.B.; Peeters, F.M. url  doi
openurl 
  Title (up) Power-law dependence of the angular momentum transition fields in few-electron quantum dots Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 69 Issue Pages 075305,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000220055300064 Publication Date 2004-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69382 Serial 2687  
Permanent link to this record
 

 
Author Geim, A.K.; Grigorieva, I.V.; Lok, J.G.S.; Maan, J.C.; Dubonos, S.V.; Li, X.Q.; Peeters, F.M.; Nazarov, Y.V. doi  openurl
  Title (up) Precision magnetometry on a submicron scale: magnetisation of superconducting quantum dots Type A1 Journal article
  Year 1998 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst  
  Volume 23 Issue 1 Pages 151-160  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report on magnetisation of individual superconducting particles with size down to 0.1 micron. The non-invasive access to properties of such small objects has become possible using submicron Hall probes which detect a local magnetic field and work effectively as micro-fluxmeters similar to, e.g., SQUIDs but with an effective detection loop of only about a square micron. We have found that the spatial confinement of superconductivity in a small volume gives rise to dramatic changes in thermodynamic properties of mesoscopic superconductors. (C) 1998 Academic Press Limited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000072338200025 Publication Date 2002-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.123 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.123; 1998 IF: 0.831  
  Call Number UA @ lucian @ c:irua:95842 Serial 2691  
Permanent link to this record
 

 
Author Sels, D.; Sorée, B.; Groeseneken, G. doi  openurl
  Title (up) Quantum ballistic transport in the junctionless nanowire pinch-off field effect transistor Type A1 Journal article
  Year 2011 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 10 Issue 1 Pages 216-221  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract In this work we investigate quantum ballistic transport in ultrasmall junctionless and inversion mode semiconducting nanowire transistors within the framework of the self-consistent Schrödinger-Poisson problem. The quantum transmitting boundary method is used to generate open boundary conditions between the active region and the electron reservoirs. We adopt a subband decomposition approach to make the problem numerically tractable and make a comparison of four different numerical approaches to solve the self-consistent Schrödinger-Poisson problem. Finally we discuss the IV-characteristics for small (r≤5 nm) GaAs nanowire transistors. The novel junctionless pinch-off FET or junctionless nanowire transistor is extensively compared with the gate-all-around (GAA) nanowire MOSFET.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000300735800021 Publication Date 2011-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 12 Open Access  
  Notes ; ; Approved Most recent IF: 1.526; 2011 IF: 1.211  
  Call Number UA @ lucian @ c:irua:89501 Serial 2772  
Permanent link to this record
 

 
Author Iyikanat, F.; Senger, R.T.; Peeters, F.M.; Sahin, H. pdf  url
doi  openurl
  Title (up) Quantum-Transport Characteristics of a p-n Junction on Single-Layer TiS3 Type A1 Journal article
  Year 2016 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem  
  Volume 17 Issue 17 Pages 3985-3991  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using density functional theory and non-equilibrium Green's function-based methods, we investigated the electronic and transport properties of a TiS3 monolayer p-n junction. We constructed a lateral p-n junction on a TiS3 monolayer using Li and F adatoms. An applied bias voltage caused significant variability in the electronic and transport properties of the TiS3 p-n junction. In addition, the spin-dependent current-volt-age characteristics of the constructed TiS3 p-n junction were analyzed. Important device characteristics were found, such as negative differential resistance and rectifying diode behaviors for spin-polarized currents in the TiS3 p-n junction. These prominent conduction properties of the TiS3 p-n junction offer remarkable opportunities for the design of nanoelectronic devices based on a recently synthesized single-layered material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000389534800018 Publication Date 2016-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.075 Times cited 12 Open Access  
  Notes ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and the Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). FI, HS, and RTS acknowledge the support from TUBITAK Project No 114F397. H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.075  
  Call Number UA @ lucian @ c:irua:140245 Serial 4458  
Permanent link to this record
 

 
Author Worlock, J.M.; Peeters, F.M.; Cox, H.M.; Morais, P.C. openurl 
  Title (up) Quantum-wire spectroscopy and epitaxial-growth velocities in InxGa1-xAs-InP heterostructures Type A1 Journal article
  Year 1991 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 44 Issue Pages 8923-8926  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1991GN30400057 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 12 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:941 Serial 2797  
Permanent link to this record
 

 
Author Malladi, S.K.; Xu, Q.; van Huis, M.A.; Tichelaar, F.D.; Batenburg, K.J.; Yucelen, E.; Dubiel, B.; Czyrska-Filemonowicz, A.; Zandbergen, H.W. pdf  doi
openurl 
  Title (up) Real-time atomic scale imaging of nanostructural evolution in aluminum alloys Type A1 Journal article
  Year 2014 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 1 Pages 384-389  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract We present a new approach to study the three-dimensional compositional and structural evolution of metal alloys during heat treatments such as commonly used for improving overall material properties. It relies on in situ heating in a high-resolution scanning transmission electron microscope (STEM). The approach is demonstrated using a commercial Al alloy AA2024 at 100-240 degrees C, showing in unparalleled detail where and how precipitates nucleate, grow,or dissolve. The observed size evolution of individual precipitates enables a separation between nucleation and growth phenomena, necessary for the development of refined growth models. We conclude that the in situ heating STEM approach opens a route to a much faster determination of the interplay between local compositions, heat treatments, microstructure, and mechanical properties of new alloys.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000329586700061 Publication Date 2013-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access  
  Notes Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:114789 Serial 2833  
Permanent link to this record
 

 
Author Gaouyat, L.; He, Z.; Colomer, J.-F.; Lambin, P.; Mirabella, F.; Schryvers, D.; Deparis, O. pdf  doi
openurl 
  Title (up) Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets Type A1 Journal article
  Year 2014 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 122 Issue Pages 303-308  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conversion of solar energy into thermal energy helps reducing consumption of non-renewable energies. Cermets (ceramicmetal composites) are versatile materials suitable, amongst other applications, for solar selective absorbers. Although the presence of metallic Ni particles in the dielectric matrix is a prerequisite for efficient solar selective absorption in NiCrOx cermets, no clear evidence of such particles is reported so far. By combining comprehensive chemical and structural analyses, we reveal the presumed nanostructure which is at the origin of the remarkable optical properties of this cermet material. Using sputtered NiCrOx layers in a solar absorber multilayer stack on aluminium substrate allows us to achieve solar absorptance as high as α=96.1% while keeping thermal emissivity as low as ε=2.2%, both values being comparable to best values recorded so far. With the nanostructure of sputtered NiCrOx cermets eventually revealed, further optimization of solar absorbers can be anticipated and technological exploitation of cermet materials in other applications can be foreseen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000331494200040 Publication Date 2013-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.784; 2014 IF: 5.337  
  Call Number UA @ lucian @ c:irua:113086 Serial 2902  
Permanent link to this record
 

 
Author Niu, H.; Pitcher, M.J.; Corkett, A.J.; Ling, S.; Mandal, P.; Zanella, M.; Dawson, K.; Stamenov, P.; Batuk, D.; Abakumov, A.M.; Bull, C.L.; Smith, R.I.; Murray, C.A.; Day, S.J.; Slater, B.; Cora, F.; Claridge, J.B.; Rosseinsky, M.J. url  doi
openurl 
  Title (up) Room Temperature Magnetically Ordered Polar Corundum GaFeO3 Displaying Magnetoelectric Coupling Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 4 Pages 1520-1531  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The polar corundum structure type offers a route to new room temperature multiferroic materials, as the partial LiNbO3-type cation ordering that breaks inversion symmetry may be combined with long-range magnetic ordering of high spin d(5) cations above room temperature in the AFeO(3) system. We report the synthesis of a polar corundum GaFeO3 by a high-pressure, high-temperature route and demonstrate that its polarity arises from partial LiNbO3 -type cation ordering by complementary use of neutron, X-ray, and electron diffraction methods. In situ neutron diffraction shows that the polar corundum forms directly from AlFeO3-type GaFeO3 under the synthesis conditions. The A(3+)/Fe3+ cations are shown to be more ordered in polar corundum GaFeO3 than in isostructural ScFeO3. This is explained by DFT calculations which indicate that the extent of ordering is dependent on the configurational entropy available to each system at the very different synthesis temperatures required to form their corundum structures. Polar corundum GaFeO3 exhibits weak ferromagnetism at room temperature that arises from its Fe2O3-like magnetic ordering, which persists to a temperature of 408 K. We demonstrate that the polarity and magnetization are coupled in this system with a measured linear magnetoelectric coupling coefficient of 0.057 ps/m. Such coupling is a prerequisite for potential applications of polar corundum materials in multiferroic/magnetoelectric devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393355600034 Publication Date 2016-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 12 Open Access OpenAccess  
  Notes This work was funded by the EPSRC under EP/N004884. We thank the STFC for provision of beam time at ISIS and Diamond Light Source. We thank the Materials Chemistry Consortium (EPSRC, EP/L000202) for access to computer time on the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). A.M.A. is grateful to the Russian Science Foundation (Grant 14-13-00680) for financial support. MJ.R is a Royal Society Research Professor. We wish to thank Dr. Ming Li (University of Nottingham, UK) for helpful discussion and advice. Original data is available at the University of Liverpool's DataCat repository at DOI: 10.17638/datacat.liverpool.ac.uk/235. The supporting crystallographic information file may also be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (e-mail: crysdata@fiz-karlsruhe.de), on quoting the deposition number CSD-432419. Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:147507 Serial 4777  
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Aashuri, H. pdf  doi
openurl 
  Title (up) Semisolid structure for M2 high speed steel prepared by cooling slope Type A1 Journal article
  Year 2010 Publication Journal of materials processing technology Abbreviated Journal J Mater Process Tech  
  Volume 210 Issue 12 Pages 1632-1635  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Effects of cooling slope angle and the temperature of molten metal on the globular structure of M2 high speed steel after holding at the semisolid state have been investigated. The globular structure was achieved by pouring the molten metal at 1595 °C on the ceramic cooling slope with the length of 200 mm and the angle of 25°. The globular structure of M2 high speed steel in the form of rolledannealed and as cast condition after holding at semisolid state has been achieved. The size of globular grains of cooling slope sample was smaller than that of the rolledannealed and as cast samples. Solid particles of rolledannealed sample after holding at semisolid state had better roundness compared with cooling slope sample. Dissolution of carbides in the austenite phase at grain boundaries leads to formation of globular particles in the semisolid state. MC-type and M6C-type eutectic carbides reprecipitate during cooling cycle along grain boundaries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000280498200011 Publication Date 2010-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-0136; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.147 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.147; 2010 IF: 1.570  
  Call Number UA @ lucian @ c:irua:122042 Serial 2983  
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title (up) Similarities and differences between gliding glow and gliding arc discharges Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 24 Issue 24 Pages 065023  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368117100028 Publication Date 2015-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 12 Open Access  
  Notes This work is financially supported by the Methusalem financing and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen Approved Most recent IF: 3.302; 2015 IF: 3.591  
  Call Number c:irua:129214 Serial 3952  
Permanent link to this record
 

 
Author Turner, S.; Egoavil, R.; Batuk, M.; Abakumov, A.A.; Hadermann, J.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Site-specific mapping of transition metal oxygen coordination in complex oxides Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 101 Issue 24 Pages 241910  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate site-specific mapping of the oxygen coordination number for transition metals in complex oxides using atomically resolved electron energy-loss spectroscopy in an aberration-corrected scanning transmission electron microscope. Pb2Sr2Bi2Fe6O16 contains iron with a constant Fe3+ valency in both octahedral and tetragonal pyramidal coordination and is selected to demonstrate the principle of site-specific coordination mapping. Analysis of the site-specific Fe-L2,3 data reveals distinct variations in the fine structure that are attributed to Fe in a six-fold (octahedron) or five-fold (distorted tetragonal pyramid) oxygen coordination. Using these variations, atomic resolution coordination maps are generated that are in excellent agreement with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000312490000035 Publication Date 2012-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Fwo; Countatoms; Vortex; Esteem 312483; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:105302UA @ admin @ c:irua:105302 Serial 3030  
Permanent link to this record
 

 
Author Fleurov, V.; Ivanov, V.A.; Peeters, F.M.; Vagner, I.D. pdf  doi
openurl 
  Title (up) Spin-engineered quantum dots Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 14 Issue 4 Pages 361-365  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to create and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nuclear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of binding electrons with energy up to several meV and the localization radius > 100 Angstrom. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000177511900003 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:104150 Serial 3088  
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Perez-Mato, J.M.; Petřiček, V.; Rosner, H.; Yang, T.; Greenblatt, M. url  doi
openurl 
  Title (up) Spiral ground state against ferroelectricity in the frustrated magnet BiMnFe2O6 Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 21 Pages 214402-214402,10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The spiral magnetic structure and underlying spin lattice of BiMnFe2O6 are investigated by low-temperature neutron powder diffraction and density functional theory band structure calculations. In spite of the random distribution of the Mn3+ and Fe3+ cations, this centrosymmetric compound undergoes a transition into an incommensurate antiferromagnetically ordered state below TN≃220 K. The magnetic structure is characterized by the propagation vector k=[0,β,0] with β≃0.14 and the P221211′(0β0)0s0s magnetic superspace symmetry. It comprises antiferromagnetic helixes propagating along the b axis. The magnetic moments lie in the ac plane and rotate about π(1+β)≃204.8-deg angle between the adjacent magnetic atoms along b. The spiral magnetic structure arises from the peculiar frustrated arrangement of exchange couplings in the ab plane. The antiferromagnetic coupling along the c axis cancels the possible electric polarization and prevents ferroelectricity in BiMnFe2O6.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291197400001 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90080 Serial 3107  
Permanent link to this record
 

 
Author Curran, P.J.; Desoky, W.M.; Milošević, M.V.; Chaves, A.; Laloe, J.-B.; Moodera, J.S.; Bending, S.J. url  doi
openurl 
  Title (up) Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue 5 Pages 15569  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above T-c. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000363306000002 Publication Date 2015-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 12 Open Access  
  Notes ; P.J.C. and S.J.B. acknowledge support from EPSRC in the UK under grant number EP/J010626/1 and the NanoSC COST Action MP-1201. M.V.M. thanks the Research Foundation-Flanders (FWO) and CAPES Brazil. A.C. acknowledges the financial support of CNPq, under the PRONEX/FUNCAP and PQ programs. J.-B.L. and J.S.M. acknowledge ONR Grant N00014-06-01-0235. ; Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number UA @ lucian @ c:irua:129450 Serial 4248  
Permanent link to this record
 

 
Author Leenaerts, O.; Schoeters, B.; Partoens, B. url  doi
openurl 
  Title (up) Stable kagome lattices from group IV elements Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 115202  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A thorough investigation of three-dimensional kagome lattices of group IV elements is performed with first-principles calculations. The investigated kagome lattices of silicon and germanium are found to be of similar stability as the recently proposed carbon kagome lattice. Carbon and silicon kagome lattices are both direct-gap semiconductors but they have qualitatively different electronic band structures. While direct optical transitions between the valence and conduction bands are allowed in the carbon case, no such transitions can be observed for silicon. The kagome lattice of germanium exhibits semimetallic behavior but can be transformed into a semiconductor after compression.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351900700003 Publication Date 2015-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government – department EWI. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125516 Serial 3144  
Permanent link to this record
 

 
Author Reichhardt, C.; Reichhardt, C.J.O.; Milošević, M.V. url  doi
openurl 
  Title (up) Statics and dynamics of skyrmions interacting with disorder and nanostructures Type A1 Journal article
  Year 2022 Publication Reviews of modern physics Abbreviated Journal Rev Mod Phys  
  Volume 94 Issue 3 Pages 035005-35061  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetic skyrmions are topologically stable nanoscale particlelike objects that were discovered in 2009. Since that time, intense research interest in the field has led to the identification of numerous compounds that support skyrmions over a range of conditions spanning from cryogenic to room temperatures. Skyrmions can be set into motion under various types of driving, and the combination of their size, stability, and dynamics makes them ideal candidates for numerous applications. At the same time, skyrmions represent a new class of system in which the energy scales of the skyrmion-skyrmion interactions, sample disorder, temperature, and drive can compete. A growing body of work indicates that the static and dynamic states of skyrmions can be influenced strongly by pinning or disorder in the sample; thus, an understanding of such effects is essential for the eventual use of skyrmions in applications. The current state of knowledge regarding individual skyrmions and skyrmion assemblies interacting with quenched disorder or pinning is reviewed. The microscopic mechanisms for skyrmion pinning, including the repulsive and attractive interactions that can arise from impurities, grain boundaries, or nanostructures, are outlined. This is followed by descriptions of depinning phenomena, sliding states over disorder, the effect of pinning on the skyrmion Hall angle, the competition between thermal and pinning effects, the control of skyrmion motion using ordered potential landscapes such as one-or two-dimensional periodic asymmetric substrates, the creation of skyrmion diodes, and skyrmion ratchet effects. Highlighted are the distinctions arising from internal modes and the strong gyrotropic or Magnus forces that cause the dynamical states of skyrmions to differ from those of other systems with pinning, such as vortices in type-II superconductors, charge density waves, or colloidal particles. Throughout this review future directions and open questions related to the and in are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861559900001 Publication Date 2022-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6861; 1539-0756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 44.1 Times cited 12 Open Access OpenAccess  
  Notes Approved Most recent IF: 44.1  
  Call Number UA @ admin @ c:irua:191507 Serial 7339  
Permanent link to this record
 

 
Author Li, L.L.; Peeters, F.M. url  doi
openurl 
  Title (up) Strain engineered linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 24 Pages 243102  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically the linear dichroism and the Faraday rotation of strained few-layer phosphorene, where strain is applied uniaxially along the armchair or zigzag direction of the phosphorene lattice. We calculate the optical conductivity tensor of uniaxially strained few-layer phosphorene by means of the Kubo formula within the tight-binding approach. We show that the linear dichroism and the Faraday rotation of few-layer phosphorene can be significantly modulated by the applied strain. The modulation depends strongly on both the magnitude and direction of strain and becomes more pronounced with increasing number of phosphorene layers. Our results are relevant for mechano-optoelectronic applications based on optical absorption and Hall effects in strained few-layer phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472599100029 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.411  
  Call Number UA @ admin @ c:irua:161327 Serial 5428  
Permanent link to this record
 

 
Author Milovanovic, S.P.; Peeters, F.M. doi  openurl
  Title (up) Strained graphene Hall bar Type A1 Journal article
  Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 29 Issue 29 Pages 075601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effects of strain, induced by a Gaussian bump, on the magnetic field dependent transport properties of a graphene Hall bar are investigated. The numerical simulations are performed using both classical and quantum mechanical transport theory and we found that both approaches exhibit similar characteristic features. The effects of the Gaussian bump are manifested by a decrease of the bend resistance, RB, around zero-magnetic field and the occurrence of side-peaks in RB. These features are explained as a consequence of bump-assisted scattering of electrons towards different terminals of the Hall bar. Using these features we are able to give an estimate of the size of the bump. Additional oscillations in RB are found in the quantum description that are due to the population/depopulation of Landau levels. The bump has a minor influence on the Hall resistance even for very high values of the pseudo-magnetic field. When the bump is placed outside the center of the Hall bar valley polarized electrons can be collected in the leads.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000391584900001 Publication Date 2016-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 12 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:140381 Serial 4464  
Permanent link to this record
 

 
Author Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title (up) Structural and electronic properties of defects at grain boundaries in CuInSe2 Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 19 Pages 14770-14780  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We report on a first-principles study of the structural and electronic properties of a Sigma3 (112) grain boundary model in CuInSe2. The study focuses on a coherent, stoichiometry preserving, cation–Se terminated grain boundary, addressing the properties of the grain boundary as such, as well as the effect

of well known defects in CuInSe2. We show that in spite of its apparent simplicity, such a grain boundary exhibits a very rich phenomenology, providing an explanation for several of the experimentally observed properties of grain boundaries in CuInSe2 thin films. In particular, we show that the combined effect of Cu vacancies and cation antisites can result in the observed Cu depletion with no In enrichment at the grain boundaries. Furthermore, Cu vacancies are unlikely to produce a hole barrier at the grain boundaries, but Na may indeed have such an effect. We find that Na-on-Cu defects will tend to form abundantly at

the grain boundaries, and can provide a mechanism for the carrier depletion and/or type inversion experimentally reported.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403327200059 Publication Date 2017-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 12 Open Access OpenAccess  
  Notes We thank B. Schoeters for his assistance running the GBstudio software. We acknowledge the financial support of FWO-Vlaanderen through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @ c:irua:143869 Serial 4577  
Permanent link to this record
 

 
Author Krsmanovic, R.; Bals, S.; Bertoni, G.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Structural characterization of Er-doped Li2O-Al2O3-SiO2 glass ceramics Type A1 Journal article
  Year 2008 Publication Optical materials Abbreviated Journal Opt Mater  
  Volume 30 Issue 7 Pages 1183-1188  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Particularly favourable properties of glass ceramics are developed on the basis of two key advantages of these materials: the variation of chemical composition and of microstructure. Therefore, detailed structural and chemical information are necessary to get insight in novel glass ceramic materials. We present here two examples of Er-doped Li2O-Al2O3-SiO2, with different quantities of ZrO2, both obtained with sol-gel synthesis. Different transmission electron microscopy techniques: conventional TEM, HRTEM, and EELS are used and the results are compared with those previously obtained with XRD and Rietveld analysis. We also demonstrate the 3D reconstruction, obtained from HAADF-STEM imaging, to determine the morphology of nanosize precipitates in these composites. (c) 2007 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000254419100035 Publication Date 2007-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-3467; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.238 Times cited 12 Open Access  
  Notes Iap-V1; Esteem Approved Most recent IF: 2.238; 2008 IF: 1.714  
  Call Number UA @ lucian @ c:irua:70004 Serial 3219  
Permanent link to this record
 

 
Author Tang, Y.; Hunter, E.C.; Battle, P.D.; Sena, R.P.; Hadermann, J.; Avdeev, M.; Cadogan, J.M. pdf  url
doi  openurl
  Title (up) Structural chemistry and magnetic properties of the perovskite Sr3Fe2TeO9 Type A1 Journal article
  Year 2016 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 242 Issue 242 Pages 86-95  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of perovskite-like Sr3Fe2TeO9 has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mossbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. The majority of the reaction product is shown to be a trigonal phase with a 2:1 ordered arrangement of Fe3+ and Te6+ cations. However, the sample is prone to nano twinning and tetragonal domains with a different pattern of cation ordering exist within many crystallites. Antiferromagnetic ordering exists in the trigonal phase at 300 K and Sr3Fe2TeO9 is thus the first example of a perovskite with 2:1 trigonal cation ordering to show long-range magnetic order. At 300 K the antiferromagnetic phase coexists with two paramagnetic phases which show spin -glass behaviour below similar to 80 K. (C) 2016 The Authors. Published by Elsevier Inc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000382429600012 Publication Date 2016-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:135682 Serial 4310  
Permanent link to this record
 

 
Author Schuddinck, W.; Van Tendeloo, G.; Barnabé, A.; Hervieu, M.; Raveau, B. pdf  doi
openurl 
  Title (up) Structural determination of the charge ordering process in Nd0.5Ca0.5Mn1-xCrxO3 manganites Type A1 Journal article
  Year 1999 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 148 Issue Pages 333-341  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000084324100021 Publication Date 2002-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.299; 1999 IF: 1.547  
  Call Number UA @ lucian @ c:irua:29723 Serial 3231  
Permanent link to this record
 

 
Author Lei, C.H.; Van Tendeloo, G.; Siegert, M.; Schubert, J.; Buchal, C. pdf  doi
openurl 
  Title (up) Structural investigation of the epitaxial yittria-stabilized zirconia films deposited on (001) silicon by laser ablation Type A1 Journal article
  Year 2001 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth  
  Volume 222 Issue 3 Pages 558-564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Yittria-stabilized zirconia (YSZ) films doped with 3 and 9 vol%. Y(2)O(3), respectively, are epitaxially deposited on (0 0 1) silicon substrates by means of pulsed laser deposition (PLD) technique. Transmission electron microscopy (TEM) and X-ray diffraction are mainly combined to study the film microstructure. It is: found that the film structure strongly depends on the amount of Y(2)O(3) dopant. 99/0 Y(2)O(3)-doped films display a near cubic structure; 45 degrees 1/2(1 1 0) dislocations are the main defects in the film and thermal cracks are formed during cooling. The 3% Y(2)O(3)-doped films are dominated by {1 1 0} twin-related tetragonal domains in which monoclinic phase is found. The films are free of thermal cracks even for films thicker than 2 mum. (C) 2001 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000166701500020 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 12 Open Access  
  Notes Approved Most recent IF: 1.751; 2001 IF: 1.283  
  Call Number UA @ lucian @ c:irua:104211 Serial 3240  
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Verbeeck, J.; Gehrke, K.; Moshnyaga, V.; Van Tendeloo, G. url  doi
openurl 
  Title (up) Structural phase transition and spontaneous interface reconstruction in La2/3Ca1/3MnO3/BaTiO3 superlattices Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 3 Pages 035418-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (La2/3Ca1/3MnO3)n/(BaTiO3)m (LCMOn/BTOm) superlattices on MgO and SrTiO3 substrates with different layer thicknesses (n = 10, 38, 40 and m = 5, 18, 20) have been grown by metal organic aerosol deposition (MAD) and have been fully characterized down to the atomic scale to study the interface characteristics. Scanning transmission electron microscopy combined with spatially resolved electron energy-loss spectroscopy provides clear evidence for the existence of atomically sharp interfaces in MAD grown films, which exhibit epitaxial growth conditions, a uniform normal strain, and a fully oxidized state. Below a critical layer thickness the LCMO structure is found to change from the bulk Pnma symmetry to a pseudocubic R3̅ c symmetry. An atomically flat interface reconstruction consisting of a single Ca-rich atomic layer is observed on the compressively strained BTO on LCMO interface, which is thought to partially neutralize the total charge from the alternating polar atomic layers in LCMO as well as relieving strain at the interface. No interface reconstruction is observed at the tensile strained LCMO on BTO interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313940400008 Publication Date 2013-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes FWO; Hercules; Countatoms Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:106180 Serial 3245  
Permanent link to this record
 

 
Author Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Amelinckx, S.; Ravazi, F.S.; Habermeier, H.-U. pdf  doi
openurl 
  Title (up) Structure and microstructure of La1-xSrxMnO3 (x=0.16) films grown on a SrTiO3(110) substrate Type A1 Journal article
  Year 2001 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal Philos Mag A  
  Volume 81 Issue 12 Pages 2865-2884  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000172348000008 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.136 Times cited 12 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:57132 Serial 3290  
Permanent link to this record
 

 
Author Partoens, B.; Deo, P.S. doi  openurl
  Title (up) Structure and spectrum of classical two-dimensional clusters with a logarithmic interaction potential Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 69 Issue Pages 245415,1-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000222531800087 Publication Date 2004-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:62433 Serial 3296  
Permanent link to this record
 

 
Author Chen, Y.; Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Superconducting nanowires: quantum confinement and spatially dependent Hartree-Fock potential Type A1 Journal article
  Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 21 Issue 43 Pages 435701,1-435701,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract It is well known that, in bulk, the solution of the Bogoliubovde Gennes equations is the same whether or not the HartreeFock term is included. Here the HartreeFock potential is position independent and so gives the same contribution to both the single-electron energies and the Fermi level (the chemical potential). Thus, the single-electron energies measured from the Fermi level (they control the solution) stay the same. This is not the case for nanostructured superconductors, where quantum confinement breaks the translational symmetry and results in a position-dependent HartreeFock potential. In this case its contribution to the single-electron energies depends on the relevant quantum numbers. We numerically solved the Bogoliubovde Gennes equations with the HartreeFock term for a clean superconducting nanocylinder and found a shift of the curve representing the thickness-dependent oscillations of the critical superconducting temperature to larger diameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000270642700012 Publication Date 2009-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.649; 2009 IF: 1.964  
  Call Number UA @ lucian @ c:irua:79162 Serial 3360  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: