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Spiral ground state against ferroelectricity in the frustrated magnet BiMnFe2O6
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The spiral magnetic structure and underlying spin lattice of BiMnFe2O6 are investigated by low-temperature
neutron powder diffraction and density functional theory band structure calculations. In spite of the random
distribution of the Mn3+ and Fe3+ cations, this centrosymmetric compound undergoes a transition into an
incommensurate antiferromagnetically ordered state below TN � 220 K. The magnetic structure is characterized
by the propagation vector k = [0,β,0] with β � 0.14 and the P 221211′(0β0)0s0s magnetic superspace symmetry.
It comprises antiferromagnetic helixes propagating along the b axis. The magnetic moments lie in the
ac plane and rotate about π (1 + β) � 204.8-deg angle between the adjacent magnetic atoms along b. The spiral
magnetic structure arises from the peculiar frustrated arrangement of exchange couplings in the ab plane. The
antiferromagnetic coupling along the c axis cancels the possible electric polarization and prevents ferroelectricity
in BiMnFe2O6.
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I. INTRODUCTION

The coupling between magnetism and ferroelectricity is
one of the intriguing phenomena in solid-state physics.1

Apart from the ongoing studies of the underlying microscopic
mechanisms,2,3 the effect itself is relevant for applications1

and stimulates extensive experimental work on diverse sys-
tems varying from bulk transition-metal compounds4–6 to
heterostructures.7 Magnetoelectric effects in bulk systems
typically conform to one of the two following scenarios: (i) the
magnetism arises from transition-metal cations with a partially
filled d shell and the ferroelectricity is driven by lone-pair
cations, such as Bi3+ or Se4+ (Refs. 8 and 9) or (ii) electronic
effects [a spiral (helicoidal) magnetic structure or a charge
ordering] break the symmetry and cause ferroelectricity.8,10,11

The former mechanism ensures large electric polarization,
which, however, is weakly coupled to the magnetism. The
latter scenario provides a strong coupling but a small electric
polarization. The combination of the two approaches is
clearly advantageous but difficult to achieve. The best-known
example is BiFeO3,12 which exhibits a plethora of interesting
effects related to the coupling between ferroelectricity and
magnetism.13,14

The recently discovered complex oxide BiMnFe2O6 repre-
sents another system combining the two scenarios plausible
for multiferroicity: the lone-pair Bi3+ cation and the spiral
magnetic ground state. Neither of the two, however, lead to
ferroelectricity. The polar displacements of Bi3+ are ordered
in an antiferroelectric manner,15 whereas the spiral magnetic
structure is nonpolar due to a strong antiferromagnetic cou-
pling along the crystallographic c direction.

The unique crystal structure of BiMnFe2O6 features frag-
ments of the hypothetical hcp oxygen-based MO build-
ing blocks that are related by a mirror operation into a
polysynthetically twinned structure.15 The Fe3+ (d5) and

Mn3+ (d4) cations are nearly randomly distributed over
two crystallographically distinct positions, both octahedrally
coordinated by oxygen atoms (Fig. 1). The octahedra are
interconnected into a framework through corner, edge, and face
sharing, providing complex paths for the magnetic exchange.
In spite of the random distribution of the Fe and Mn cations, a
long-range magnetic order was reported in BiMnFe2O6 below
TN � 220 K, according to 57Fe Mössbauer spectroscopy,
magnetic susceptibility, and heat capacity measurements.
The low-temperature neutron powder diffraction revealed the
incommensurate propagation vector of the magnetic structure,
yet no details of the ground-state spin arrangement have been
reported.15

Spiral magnetic structures are capable of inducing
ferroelectricity in a number of transition-metal oxides,
such as TbMnO3,16 Ni3V2O8,17,18 MnWO4,19 and
Ba0.5Sr0.5Zn2Fe12O22.20 In contrast to the aforementioned
compounds, BiMnFe2O6 remains paraelectric below TN .15

To understand the lack of ferroelectricity, we studied the
magnetic structure and explored the underlying frustrated spin
lattice. Although the strong frustration leads to the formation
of magnetic helices propagating along b, the unfrustrated
antiferromagnetic (AFM) coupling along c induces the
222-point symmetry of the magnetically ordered state and
cancels the possible electric polarization.

II. METHODS

The powder sample of BiMnFe2O6 was synthesized by
high-temperature solid-state reaction in air. Stoichiometric
amounts of raw materials (Bi2O3, Mn2O3, Fe2O3) were ground
thoroughly and heated up to 800 ◦C in 5 h. After annealing for
10 h, the powder was reground, pressed into a pellet, and heated
at 1000 ◦C for 100 h with several intermediate grindings.
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FIG. 1. (Color online) The crystal structure of BiMnFe2O6. The
Fe and Mn cations are situated in the oxygen octahedra (in the color
version, blue and violet polyhedra denote the FeMn1 and FeMn2
positions, respectively).

Neutron powder diffraction (NPD) data were collected
on a �12-g sample of BiMnFe2O6 contained in a
9.5-mm-diameter vanadium can. A closed-cycle He refrigera-
tor was used for temperature control. Patterns were collected
with the BT-1 32-detector high-resolution neutron powder
diffractometer at the National Institute of Standards and
Technology Center for Neutron Research, Gaithersburg, MD.
A Cu(311) monochromator with a 90 deg takeoff angle and
15-min in-pile collimation was used. The neutron wavelength
was 1.5402(1) Å. Data from the 32 detectors were combined
to give pseudo-one-detector data over a total scan range of
3 deg � 2θ � 167.75 deg with a step size of 0.05 deg (2θ ). The
magnetic structure was analyzed with the JANA2006 program.21

Density functional theory (DFT) band structure calculations
were performed in the full-potential local-orbital (FPLO)
code.22 We used local density approximation (LDA)23 supplied
with a mean-field (DFT + U ) correction for correlation effects
in the Fe/Mn 3d shell. The k mesh comprised 192 points for
the 40-atom unit cell and 64 points for the 80-atom supercell.
The correlated shell was parameterized with an effective
on-site Coulomb repulsion Ud = 5 eV and exchange Jd =
1 eV,24,25 whereas the double counting was corrected in
the fully localized limit (atomic limit) fashion. To evaluate
individual exchange couplings, total energies for a number
of collinear spin configurations were mapped onto a classical
Heisenberg model. The validity of the computational results
was checked by calculations within generalized gradient
approximation (GGA)26 and by choosing Ud values of 4
and 6 eV. Similar to Cu2+ oxides,27 the exchange-correlation
potential (LDA vs GGA) has marginal effect on the spin model,
whereas a change in Ud only shifts the exchange couplings
in a systematic way and keeps their ratios nearly constant.
The DFT-based spin model was further studied by classical
Monte Carlo simulations with the SPINMC algorithm of the
ALPS package.28

III. RESULTS

A. Magnetic structure

At room temperature (RT), BiMnFe2O6 crystallizes
in an orthorhombic unit cell with a = 5.03590(3) Å,

θ

FIG. 2. (Color online) Neutron diffraction patterns for
BiMnFe2O6 at different temperatures. The arrows show the magnetic
reflections.

b = 7.07342(4) Å, c = 12.65425(6) Å, and Pbcm space
symmetry.29 Below TN � 220 K, extra reflections appear on
the NPD patterns (Fig. 2). These reflections are of magnetic
origin and cannot be attributed to a structural phase transition
because the x-ray diffraction experiment does not show any
change down to T = 120 K.15 The magnetic reflections on
the T = 7 K pattern are indexed with a propagation vector
k = [0,β,0] with β = 0.1379(1). The propagation vector is
inside of the Brillouin zone and has a star with two arms
k, − k. The little group of the propagation vector Gk is Pb21m.
In BiMnFe2O6, there are two symmetrically independent
magnetic species in the nuclear Pbcm structure: FeMn1 (8e:
0.4891, − 0.1597, − 0.6036) and FeMn2 (4a: 0,0, 1

2 ) (Fig. 1).
In the little group Pb21m, this corresponds to two fourfold
magnetic sites for the FeMn1 position and one fourfold
magnetic site for the FeMn2 position (origin at 0,0, 1

4 ). There
are four one-dimensional irreducible representations (irreps)
for the propagation vector k = [0,β,0] in the space group
Pbcm; their characters are given in Table I. The magnetic
structure is transformed according to one of the irreps or their
combination. Alternatively, we can describe the symmetry
of the incommensurately modulated magnetic structure by
embedding it into a higher dimensional space and applying
magnetic superspace groups defined in (3 + 1)-dimensional

TABLE I. Characters of the irreducible representations of the
little group of the propagation vector k = [0,β,0] for the space
group Pbcm (a = eiπβ ) and the corresponding magnetic superspace
groups. The decomposition of the magnetic representation �mag for
all fourfold magnetic sites is �mag = 3�1 + 3�2 + 3�3 + 3�4.

(E | 0 0 0) (mx | 0 1
2 0) (2y | 0 1

2 0) (mz | 0 0 0) Superspace group

�1 1 a a 1 Pbcm1′(0β0)000s

�2 1 −a a −1 Pbcm1′(0β0)s0ss

�3 1 −a −a 1 Pbcm1′(0β0)s00s

�4 1 a −a −1 Pbcm1′(0β0)00ss
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superspace.30–33 The magnetic moment on atom i is expressed
as a vector function:

Mi(x4) = Mi0 +
N∑

n=1

[Mins sin(2πnx4) + Minc cos(2πnx4)],

where n denotes terms of the Fourier series, x4 = k(T + ri)
is an internal coordinate, T is the lattice translation of the
nuclear structure, and ri is the position of the atom i in the
unit cell of the nuclear structure. Monitoring of the intensity of
the magnetic and nuclear reflections upon varying temperature
revealed that there is no magnetic impact into the intensity of
the nuclear reflections, and therefore Mi0 = 0 for all magnetic
sites. Since only the first-order satellites were observed, the
Fourier series are reduced to the n = 1 terms. A magnetic
(Shubnikov) superspace group describing the transformations
of the magnetic modulation waves can be set in correspondence
with each irrep. The magnetic superspace groups are based on
generators of the little group Gk , but the symmetry elements
transforming the propagation vector k to −k also should
be taken into account. This yields four possible magnetic
superspace groups listed in Table I. The explanation of the
magnetic superspace group symbols is provided in Ref. 33.

All four magnetic superspace groups were tested in the
refinement. Acceptable solutions were found in magnetic
superspace groups Pbcm1′(0β0)s00s and Pbcm1′(0β0)00ss,
both with the same reliability factor for magnetic reflections
R

mag
I = 0.057. In spite of the relatively low reliability factor,

the correspondence between the experimental and calculated
NPD profile was far from ideal for both models. This indicates
that the actual solution requires a combination of the irreps
�3 and �4 and can be realized in a common subgroup
of Pbcm1′(0β0)s00s and Pbcm1′(0β0)00ss. This subgroup
depends on a relative shift δ along the internal space of
the conventional origins of two superspace groups. The list
of operators of Pbcm1′(0β0)s00s and their intersections
with the operators of Pbcm1′(0β0)00ss for δ = 0, 1

4 are
provided in Table II. The resulting common subgroups are
P 121/c11′(0β0)s0s and P 221211′(0β0)0s0s. For any δ values

inequivalent to the cases mentioned above, the common
subgroup is P 12111′(0β0)ss.

The solutions in the P 121/c11′(0β0)s0s and
P 221211′(0β0)0s0s groups provide the same quality of
the Rietveld fit and cannot be distinguished on this basis. The
P 121/c11′(0β0)s0s magnetic superspace symmetry results
in a collinear magnetic structure with an antiferromagnetic
transverse-amplitude modulated wave with the magnetic
moments confined to the ac plane. The amplitude of the
magnetic moment modulation varies from almost zero to
5.6 μB , which is unrealistically high for the Mn3+ and Fe3+
cations. Thus, the P 121/c11′(0β0)s0s solution was ruled out.
In the P 221211′(0β0)0s0s model, there are three magnetic
symmetrically unequivalent atoms: FeMn1a, FeMn1b, and
FeMn2 (see Table III), all at the general fourfold sites of
the P 22121 space group. The (1′ | 0 0 0 1

2 ) operator of the
magnetic superspace group requires the Mi0 term to be zero
and constrains the magnetic moment modulation functions
to odd harmonics only, thereby resulting in the absence of
the magnetic impact into intensity of the nuclear reflections
and the absence of even-order magnetic satellites.33 The
components of the magnetic moment modulation function for
the general fourfold site are related by symmetry elements of
the P 221211′(0β0)0s0s magnetic superspace group, as shown
in Table IV.

Since in the nuclear structure the atoms FeMn1a and
FeMn1b are crystallographically equivalent, it is reasonable
to assume that the modulation of the magnetic moment at
these positions follows the same type of modulation waves.
The solution was found with the following restrictions (not
imposed by the magnetic superspace group) on the coefficients
of the magnetic moment modulation functions:

Ms,z(FeMn1a) = Mc,x(FeMn1a) = Ms,z(FeMn1b)

= Mc,x(FeMn1b) = M1,

Ms,x(FeMn1a) = −Mc,z(FeMn1a) = −Ms,x(FeMn1b)

= Mc,z(FeMn1b) = M2,

Ms,z(FeMn2) = Mc,x(FeMn2) = M3,

Mc,z(FeMn2) = Ms,x(FeMn2) = 0.

TABLE II. Symmetry operators for the Pbcm1′(0β0)s00s and Pbcm1′(0β0)00ss magnetic superspace groups for origin shift δ = 0, 1
4

along x4. The operators resulting from combination with the (1′ | 0 0 0 1
2 ) generator, always present, are not shown (−m means a “time inversion”

operation, while m is an operation without time inversion). The operators forming the common subgroups are printed in boldface.

Pbcm1′(0β0)s00s, Pbcm1′(0β0)00ss, Pbcm1′(0β0)00ss,
origin at 0,0,0,0 origin at 0,0,0,0 origin at 0,0,0, 1

4

E x1,x2,x3,x4,m x1,x2,x3,x4,m x1,x2,x3,x4,m
21,z −x1, − x2,x3 + 1

2 , − x4,m −x1, − x2,x3 + 1
2 , − x4 + 1

2 ,m −x1, − x2,x3 + 1
2 , − x4,m

21,y −x1,x2 + 1
2 , − x3 + 1

2 ,x4 + 1
2 ,m −x1,x2 + 1

2 , − x3 + 1
2 ,x4 + 1

2 ,m −x1,x2 + 1
2 , − x3 + 1

2 ,x4 + 1
2 ,m

2x x1, − x2 + 1
2 , − x3, − x4 + 1

2 ,m x1, − x2 + 1
2 , − x3, − x4,m x1, − x2 + 1

2 , − x3, − x4 + 1
2 ,m

1̄ −x1, − x2, − x3, − x4,m −x1, − x2, − x3, − x4,m −x1, − x2, − x3, − x4 + 1
2 ,m

m x1,x2, − x3 + 1
2 ,x4,m x1,x2, − x3 + 1

2 ,x4 + 1
2 ,m x1,x2, − x3 + 1

2 ,x4 + 1
2 ,m

c x1, − x2 + 1
2 ,x3 + 1

2 , − x4 + 1
2 ,m x1, − x2 + 1

2 ,x3 + 1
2 , − x4 + 1

2 ,m x1, − x2 + 1
2 ,x3 + 1

2 , − x4,m

b −x1,x2 + 1
2 ,x3,x4 + 1

2 ,m −x1,x2 + 1
2 ,x3,x4,m −x1,x2 + 1

2 ,x3,x4,m

Subgroup P 121/c11′(0β0)s0s, P 221211′(0β0)0s0s,
origin at 0,0,0,0 origin at 0, 1

4 ,0,0
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TABLE III. Crystallographic parameters and atomic coordinates in BiMnFe2O6 at T = 7 K and room temperature (RT). Atomic
displacement parameters Uiso are given in 10−2 Å2. The symmetry operators of the P 22121 space group are listed in Table II.

T = 7 K RT

Space group P 22121 Pbcm

a (Å) 5.023 05(7) 5.035 89(3)
b (Å) 7.062 32(9) 7.073 41(4)
c (Å) 12.642 4(2) 12.654 25(6)

Atom x y z Uiso x y z Uiso

Bi 0.9711(3) −0.1301(2) 0.751(1) 0.27(4) 0.9705(1) −0.1305(1) 3
4 0.68(2)

FeMn1aa 0.486(3) −0.160(2) −0.607(1) 0.32(8) 0.4891(3) −0.1597(2) −0.603 55(7) 0.80(3)
FeMn1ba −0.488(3) 0.160(3) 0.607(1) 0.32(8)
FeMn2a 0.000(6) 0.000(6) 0.500(2) 0.32(8) 0 0 1

2 0.37(4)
O1a 0.157(3) 0.439(3) −0.6349(9) 0.47(2) 0.1629(4) 0.4372(3) −0.6366(2) 0.65(5)
O1b −0.162(3) −0.441(3) 0.6386(9) 0.47(2)
O2a 0.672(2) −0.408(2) −0.5783(9) 0.47(2) 0.6641(4) −0.4077(4) −0.5765(2) 0.96(5)
O2b −0.660(2) −0.593(2) 0.5746(9) 0.47(2)
O3a 0.787(3) 1

4
1
2 0.47(2) 0.7913(6) 1

4
1
2 0.86(7)

O3b −0.799(3) 3
4

1
2 0.47(2)

O4 0.3444(6) −0.3044(4) 0.753(1) 0.47(2) 0.3457(7) −0.3022(4) 3
4 0.69(7)

aFeMn1a and FeMn1b: 0.7Fe + 0.3Mn; FeMn2: 0.6Fe + 0.4Mn

The refined magnetic moment components along the b

axis were smaller than their standard deviations and were
fixed to zero. The refined magnetic parameters at different
temperatures are provided in Table V. The experimental,
calculated, and difference NPD profiles at T = 7 K are
shown in Fig. 3. The temperature dependencies of the ordered
magnetic moment for the FeMn1 and FeMn2 positions are
given in Fig. 4. Extrapolations of these dependencies with the
M = M0[(1 − T/TN )α]β function give coinciding TN values
of 221(2) K and 219(4) K for the FeMn1 and FeMn2 positions,
respectively, and the magnetic moments of M0(FeMn1) =
3.76(4) μB and M0(FeMn2) = 4.0(1) μB .

The spin arrangement in the BiMnFe2O6 magnetic structure
is shown in Fig. 5. BiMnFe2O6 adopts a spiral magnetic
structure consisting of antiferromagnetic helixes propagating
along the b axis with a period of � 3.5b. The helixes are
associated with the FeMn1 and FeMn2 atomic chains running
along the b axis, where the magnetic atoms are separated by
b/2. The magnetic moments rotate for π (1 + β) � 204.8 deg
about the b axis when going between the adjacent magnetic
atoms in the chains. The refined parameters M1, M2, and
M3 represent the magnetic moment of the FeMn1 atom
[M(FeMn1) = √

M2
1 + M2

2 ], the magnetic moment of the

TABLE IV. Symmetry-imposed relations between the compo-
nents of the magnetic moment modulation functions for the general
fourfold site of the P 221211′(0β0)0s0s magnetic superspace group
with the origin at 0, 1

4 ,0,0.

Operator Components of Mi(x4)

(E | 0 0 0,0) Mx(x4) My(x4) Mz(x4)

(2x | 0 1
2 0, 1

2 ) Mx(−x4 + 1
2 ) My(−x4) Mz(−x4)

(2y | 0 1
2

1
2 , 1

2 ) Mx(x4) My(x4 + 1
2 ) Mz(x4)

(2z | 0 0 1
2 ,0) Mx(−x4 + 1

2 ) My(−x4 + 1
2 ) Mz(−x4)

FeMn2 atom [M(FeMn2) = |M3|], and the phase shift ϕ

between the FeMn1 and FeMn2 helixes (tan ϕ = −M2
M1

).
The refined structural parameters and interatomic distances

at T = 7 K (space group P 22121) and RT (space group
Pbcm) are listed in Tables III and VI, respectively. The crystal
structure at T = 7 K was refined with fixed parameters of
the magnetic structure. The crystal structures at both tem-
peratures are virtually identical, indicating that the magnetic
ordering does not influence the nuclear structure. With the
P 221211′(0β0)0s0s magnetic symmetry, the space group of
the average nuclear structure should be P 22121 (point group
222). Although the spiral magnetic ordering eliminates the
inversion center, it does not create a polar direction. Indeed,
no indication of ferroelectricity below TN was found in
BiMnFe2O6 by dielectric permittivity measurements.15
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FIG. 3. (Color online) Experimental, calculated, and difference
NPD patterns for BiMnFe2O6 at T = 7 K. The black (dark) and
green (light) bars mark the reflection positions for the nuclear and
magnetic structures, respectively.
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μ

FIG. 4. (Color online) Temperature dependence of the magnetic
moment for the FeMn1 and FeMn2 positions.

B. Electronic structure

Owing to the complex crystal structure, an empirical as-
signment of individual exchange couplings in BiMnFe2O6 is a
formidable challenge. The problem can be solved by electronic
structure calculations that evaluate individual couplings and,
therefore, establish a reliable microscopic magnetic model.
Recent studies prove the remarkable accuracy of DFT for
diverse correlated systems, including frustrated magnets with
highly intricate spin lattices.34–36 Prior to computing exchange
integrals, we discuss the electronic structure of BiMnFe2O6,
which is a key to understanding the magnetic behavior.

Computational analysis of BiMnFe2O6 is complicated by
the intrinsic disorder of Fe and Mn atoms. Unfortunately,
state-of-the-art computational tools, such as virtual crystal
approximation (VCA) or coherent potential approximation
(CPA), cannot be applied to this case, since they provide
an averaged description of a disordered system while we are
targeting magnetic properties that depend on local interactions.
The insulating nature of BiMnFe2O6

15 suggests localized
3d electrons of transition metals; therefore the distinct spin- 5

2
Fe3+ (d5) and spin-2 Mn3+ (d4) sites are randomly distributed
on the spin lattice. Further, orbital ordering for Mn3+ results
in dramatic differences among the Fe–O–Fe, Mn–O–Mn, and
Fe–O–Mn superexchanges (see below). An averaged VCA
or CPA picture would not reproduce any of these features. To
capture effects arising from the localized moments of Fe3+ and

a
b

c

FeMn2

FeMn1

FIG. 5. (Color online) The arrangement of magnetic moments in
BiMnFe2O6. The unit cell for the nuclear structure is outlined.

Mn3+, we calculated exchange integrals for several systems
with ordered Fe and Mn atoms and accessed all possible
scenarios of the superexchange. In these calculations, we
kept the experimental atomic positions but imposed different
arrangements of Fe and Mn, spanning purely Fe (BiFe3O6)
and purely Mn (BiMn3O6) cases as well as intermediate
(BiMnFe2O6 and BiMn2FeO6) configurations.

The LDA band structure depends only marginally on the
Fe/Mn ordering. The density of states (DOS) features Bi 6s

bands below −10 eV, O 2p states between −7 eV and −2 eV,
transition-metal 3d states at the Fermi level, and Bi 6p states
above 3 eV (Fig. 6). The effect of substituting Mn for Fe is a
change in the electron count and the ensuing shift of the Fermi
level within the 3d bands. Irrespective of the Fe/Mn ratio, LDA
band structures are metallic due to the heavy underestimation
of strong electronic correlations. The insulating spectrum is
correctly reproduced by DFT +U (see upper panel of Fig. 7).
In particular, the band gaps of about 1.5 eV for BiFe3O6 and
1.1 eV for BiMn3O6 at Ud = 5 eV are consistent with the
black color of the compound.

Superexchange couplings in insulating compounds inti-
mately depend on the orbital state of the transition metal.
Five unpaired electrons of Fe3+ fill five d orbitals and leave
no orbital degrees of freedom. By contrast, Mn3+ has four
unpaired electrons only, and hence one of the d orbitals is
unoccupied in the Mott-insulating state. Since there is a sizable
crystal-field splitting (about 1.5 eV) driven by the octahedral
coordination of the FeMn1 and FeMn2 sites, the three t2g

states are half-occupied, while the two eg states have to share

TABLE V. Refined magnetic parameters for BiMnFe2O6 at different temperatures (see text for notations). Reliability factors are listed in
the order of RI (overall), RI (nuclear reflections), RI (magnetic satellites), and RP .

T M1 M2 M3 = M(FeMn2) M(FeMn1)
(K) (μB ) (μB ) (μB ) (μB ) β R factors

7 3.25(2) 1.94(2) 3.98(3) 3.80(3) 0.138 01(8) 0.017, 0.014, 0.028, 0.036
57 3.13(2) 1.87(2) 3.71(2) 3.65(3) 0.137 40(4) 0.016, 0.013, 0.025, 0.030
100 3.09(4) 1.75(3) 3.50(4) 3.55(5) 0.1316(1) 0.025, 0.022, 0.040, 0.048
150 2.74(6) 1.40(5) 2.57(6) 3.08(8) 0.1232(2) 0.030, 0.029, 0.036, 0.067
200 1.69(6) 0.88(5) 1.56(6) 1.91(8) 0.1175(3) 0.029, 0.027, 0.044, 0.051
215 0.95(9) 0.54(9) 0.68(9) 1.1(1) 0.1155(9) 0.028, 0.028, 0.036, 0.049
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FIG. 6. (Color online) LDA density of states for BiFe3O6. The
Fermi level is at zero energy. The gapless energy spectrum is caused
by underestimation of the electronic correlations in LDA.

the remaining electron. The half-filled orbital is picked out
by a weak distortion of the octahedral local environment. In
the following, we analyze such distortions in more detail to
determine which of the two eg orbitals is half-filled in the
insulating state.

The FeMn1 position reveals one long bond of about 2.5 Å
(FeMn1–O2, Table VI) that we choose as the local z axis.
According to simple electrostatic arguments of crystal-field
theory, the long bond along z shifts the d3z2−r2 orbital down
in energy with respect to the dx2−y2 orbital. The opposite
scenario is found for FeMn2, where the local environment
is a squeezed octahedron. The short FeMn2–O1 bond (about
1.96 Å, Table VI), which we take as the local z axis, shifts the
d3z2−r2 orbital up in energy. Therefore, the unpaired electron
of Mn3+ should occupy the d3z2−r2 orbital for FeMn1 and
the dx2−y2 orbital for FeMn2. This conclusion is verified by
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FIG. 7. (Color online) Top: LSDA + U DOS for one spin channel
in the ground-state AFM configuration of BiMn3O6 (Ud = 5 eV).
Middle and bottom: orbital-resolved DOS for 3d states of Mn3+.
Four out of five d orbitals show filled spin-up and empty spin-down
states, whereas the states of the remaining d orbital (dx2−y2 for Mn1
and d3z2−r2 for Mn2) are mostly above the Fermi level for both spin
directions. The Fermi level is at zero energy.

DFT + U calculations that place unpaired electrons on the
respective orbitals, while shifting both spin-up and spin-down
states for the remaining eg orbital (dx2−y2 and d3z2−r2 for

TABLE VI. Selected interatomic distances (in Å) in BiMnFe2O6 at T = 7 K and room temperature (RT).

Bond Length Bond Length Bond Length

T = 7 K
Bi–O1a 2.20(2), 2.69(2) FeMn1a–O1b 1.95(2) FeMn2–O1a 1.93(3)
Bi–O1b 2.16(2), 2.70(2) FeMn1a–O2a 2.02(2), 2.56(2) FeMn2–O1b 1.98(3)
Bi–O4 2.243(3) FeMn1a-O2b 1.97(2) FeMn2–O2a 2.03(3)

FeMn1a–O3b 2.07(2) FeMn2–O2b 2.06(3)
FeMn1a–O4 2.00(2) FeMn2–O3a 2.07(4)
FeMn1b–O1a 1.95(2) FeMn2–O3b 2.03(4)
FeMn1b–O2a 1.99(2)
FeMn1b–O2b 1.99(2), 2.51(2)
FeMn1b–O3a 2.03(2)

FeMn1b–O4 1.92(2)

RT
Bi–O1 (×2) 2.207(2) FeMn1–O1 1.928(3) FeMn2–O1 (×2) 1.964(2)
Bi–O1 (×2) 2.686(2) FeMn1–O2 1.973(3) FeMn2–O2 (×2) 2.056(2)
Bi–O4 2.246(3) FeMn1–O2 1.992(3) FeMn2-O3 (×2) 2.057(2)
Bi–O2 (×2) 2.696(2) FeMn1–O4 2.007(2)
Bi–O4 2.816(3) FeMn1–O3 2.029(3)

FeMn1–O2 2.489(2)
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FeMn1 and FeMn2, respectively) above the Fermi level (see
Fig. 7).37

The orbital order in BiMn3O6 is formally of the ferro-
type within the FeMn1 and FeMn2 sublattices, yet of the
antiferro- type between the two sublattices. However, this
notation is deceptive because of the different local axes on
neighboring atoms. The magnetic model largely deviates from
the conventional scenario38 of AFM superexchange for ferro-
type orbital order and ferromagnetic (FM) superexchange for
antiferro-type orbital order. In the following, we show that the
peculiar arrangement of empty d orbitals in BiMn3O6 induces
sizable FM superexchange for nearly all couplings and alters
the spiral ground state that arises from the purely AFM spin
lattice of BiFe3O6.

C. Microscopic magnetic model

Exchange couplings calculated for different superexchange
scenarios (Fe–O–Fe, Mn–O–Mn, Fe–O–Mn, and Mn–O–Fe)
are listed in Table VII. The Fe–O–Fe, Mn–O–Mn, and
Fe–O–Mn superexchanges show sharp differences for most
of the couplings, while the Fe–O–Mn and Mn–O–Fe cases
are only different for interactions between the FeMn1 and
FeMn2 sublattices (i.e., when the two metal sites are not
related by symmetry). In Table VII, we restrict ourselves to
short-range couplings matching direct connections between
the FeMn octahedra. Long-range interactions are expected to
be weak, as confirmed by the following qualitative argument.
Long-range superexchange requires suitable overlap of atomic
orbitals along a M–O–O–M (or even more complex) pathway
and can be achieved for one orbital channel only. By con-
trast, short-range superexchange is possible for most of the
orbital channels and should therefore dominate in systems
with several magnetic orbitals. To verify this conclusion for
BiMnFe2O6, we calculated the exchange couplings within the
crystallographic unit cell and within a supercell doubled along
a. The resulting values of Ji agreed within 10 % and indicated
weak long-range couplings in BiMnFe2O6. Below, we demon-
strate that our minimum microscopic model, restricted to short-
range couplings, is sufficient to explain the spiral magnetic

TABLE VII. Interatomic distances (in Å) and leading exchange
couplings (in K) in BiMnFe2O6 calculated with the supercell
procedure (LSDA + U , Ud = 5 eV) for different scenarios of
superexchange. Negative Ji denotes FM coupling. The intralayer
couplings J1 − J7 and J9 are depicted in Fig. 8, whereas J8 connects
the layers along c.

Exchange couplings Ji

Distance Fe–O–Fe Mn–O–Mn Fe–O–Mn/Mn–O–Fe

J1 2.916 1 −1 −50
J2 3.010 19 −9 29/10
J3 3.101 25 −38 2/−23
J4 3.462 26 7 −38
J5 3.537 (FeMn2) 30 13 43
J6 3.538 (FeMn1) 61 −8 48
J7 3.685 37 −1 23/30
J8 3.706 74 79 127
J9 3.759 66 −12 20/70

a

FeMn1

J2

J3

J9

J1

J7 FeMn2

b

J4

J5

J6

FIG. 8. (Color online) Spin lattice (left) and the respective part of
the crystal structure (right) showing frustrated exchange couplings in
the ab plane. Open and filled circles denote the FeMn1 and FeMn2
positions, respectively.

structure of BiMnFe2O6 and the lack of ferroelectricity in this
compound.

The spin lattice of BiMnFe2O6 incorporates nine inequiva-
lent exchanges (Fig. 8 and Table VII). Eight of these couplings
are found in the ab plane, whereas J8 connects the layers
along c. The interlayer coupling is weakly influenced by the
Fe/Mn substitution and remains one of the leading AFM
interactions for all superexchange scenarios (Table VII).
The robustness of J8 should be traced back to the orbital
order for Mn3+. The local z axis of the FeMn1 octahedra
roughly matches the crystallographic c direction. Therefore,
the replacement of Fe by Mn results in an empty dx2−y2 orbital
(Fig. 7) that contributes weakly to the superexchange along
c. By contrast, most of the intralayer couplings are heavily
affected by changing Mn for Fe.

In BiFe3O6, eight intralayer couplings are AFM. Excluding
the apparently weak J1, we arrive at seven AFM couplings
ranging from 19 K to 74 K (Table VII). Triangular loops
abound (Fig. 8) and lead to the strong frustration of the spin
lattice. This frustration is largely released by Mn3+ that renders
most of the intralayer couplings FM and reduces the remaining
AFM couplings below 13 K (Table VII). The Fe–O–Mn and
Mn–O–Fe cases are intermediate, with partially reduced AFM
couplings. Large FM contributions to the superexchange can
be traced back to empty eg orbitals of Mn3+. These orbitals
provide the strong σ overlap with oxygen orbitals and a leading
contribution to the superexchange.

To evaluate the ground state of the proposed model, we
performed classical Monte Carlo simulations for a 16 ×
16 × 16 finite lattice with periodic boundary conditions.
The unit cell of the spin lattice incorporated six magnetic
atoms within one layer (half of the crystallographic unit
cell). The temperature was set to 10 K, well below the
ordering temperature TN (see further in this section). Spin-spin
correlation functions for purely Fe3+ (S = 5

2 ) and purely
Mn3+ (S = 2) lattices are given in Table VIII. The correlation
functions normalized for S2 are −1 for antiparallel spins and
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TABLE VIII. Normalized spin-spin correlations 〈SiSj 〉/S2 for
BiFe3O6 (Fe3+, S = 5

2 ) and BiMn3O6 (Mn3+, S = 2).

BiFe3O6 BiMn3O6

J1 0.288 0.957
J2 0.240 0.954
J3 0.234 0.974
J4 −0.835 0.945
J5 −0.693 0.940
J6 −0.706 0.951
J7 −0.827 0.945
J8 −0.992 −0.993
J9 −0.835 0.956

+1 for parallel spins. Intermediate values indicate noncollinear
configurations.

We consider the Fe3+ case first. The normalized spin-spin
correlation for J8 is close to −1; therefore the interlayer
ordering is collinear and AFM. Similar correlations on the
J5 and J6 bonds indicate the same propagation vector along
b for the FeMn1 and FeMn2 sublattices. Further on, similar
correlations on the J2 and J3 as well as on J7 and J9 bonds
signify the same magnetic order along the respective bonds
and, consequently, a twice shorter periodicity along b for the
magnetic unit cell compared to the crystallographic unit cell.
To find out the ordering pattern along a, we note that the
respective FeMn2 atoms are connected via J2 and J3 or J7

and J9 bonds. The correlations along these paths are different;
therefore the spins on the FeMn2 atoms should be parallel
(i.e., the magnetic moment rotates for a certain angle ϕ1

on the J2 bond and for the opposite angle −ϕ1 on the J3

bond). Thus, the propagation vector of the magnetic structure
is [0,β,0], in agreement with the experiment. The principal
spin arrangement is described by three parameters, which are
the angles between the spins on the J5 (J6), J2, and J7 bonds.
According to our simulations, these angles are ϕ = 226 deg,
ϕ1 = 76 deg, and ϕ2 = 146 deg, respectively, in remarkable
agreement with the experimental values of ϕ = 206 deg,
ϕ1 = 39 deg, and ϕ2 = 167 deg. Our microscopic model for
BiFe3O6 reproduces the experimental magnetic structure of
BiMnFe2O6 quite well. The remaining discrepancies are likely
related to the partial replacement of Fe by Mn.

The complete substitution of Mn for Fe changes the
magnetic ground state. According to Table VIII, most of the
normalized spin-spin correlations in BiMn3O6 are close to
+1. The only negative correlation refers to the J8 bond and
indicates AFM interlayer coupling. The intralayer ordering
is now collinear FM due to predominantly FM exchange
couplings (J1, J2, J3, J6, J7, and J9; see Table VII). The spin
lattice is still frustrated by AFM couplings J4 and J5, which,
however, are not strong enough to induce the spiral order.
While BiFe3O6 and BiMn3O6 present two opposite scenarios
of strong and weak frustration, respectively, BiMnFe2O6 lies
between these distinct regimes. The spiral ground state of this
compound is driven by the frustration of intralayer exchange
couplings that remain predominantly AFM for mixed Fe–O–
Mn superexchange pathways (see Table VII).

For an additional test of our microscopic model, we
calculated magnetic susceptibility (χ ) and estimated the Néel
temperature TN as the position of the kink in the temperature
dependence of χ . Transition temperatures for BiFe3O6 (420 K)
and BiMn3O6 (150 K) reasonably agree with the experimental
TN of 220 K that lies between the two calculated values.

IV. DISCUSSION AND SUMMARY

Our experimental and computational study provides micro-
scopic insight into the physics of BiMnFe2O6. This compound
features a strongly frustrated spin lattice with predominantly
AFM exchange couplings that induce the spiral magnetic order.
The comparison between BiFe3O6 and BiMn3O6 suggests
that AFM exchange couplings are an essential prerequisite
for the spiral magnetic order. The crystal structure itself
may still allow for different ground states, and therefore
it is the transition-metal cation that determines the type of
the long-range order. In this respect, first reports on cation
substitution15 look promising because the change in the Fe/Mn
ratio or an incorporation of other magnetic cations could alter
the magnetic structure and other physical properties.

BiMnFe2O6 is a magnetic compound that conforms to
two mechanisms of ferroelectricity. First, lone pairs of Bi3+
induce polar displacements. Second, the noncollinear mag-
netic structure breaks the inversion symmetry and allows for
magnetic-field-induced electric polarization. However, neither
of the two mechanisms succeed in rendering the compound
ferroelectric. Bi3+-related polar displacements form an an-
tiferroelectric pattern that leads to zero net polarization.
The electronic mechanism meets a similar obstacle of the
AFM interlayer coupling and the ensuing nonpolar (albeit
noncentrosymmetric) magnetic structure. The lack of polarity
in both atomic and magnetic structures naturally explains the
absence of the ferroelectric response in BiMnFe2O6 below
TN .15

Our results demonstrate that the simple criteria of fer-
roelectricity and multiferroicity are not universal, since the
polarization induced by any kind of polar distortion (atomic
displacement or spin spiral) can be wiped out by an overall
antiferroelectric/antiferromagnetic order. The combination of
lone-pair and transition-metal cations does not necessarily lead
to a magnetic ferroelectric, whereas an arbitrary incommen-
surate magnetic structure may not allow for the electronic
mechanism of ferroelectricity. These simple observations
make the search for multiferroics a challenge and put forward
the charge-ordering mechanism as a more robust approach to
the design of magnetoelectric materials.

The cancellation of polarity in an incommensurate mag-
netic structure has been proposed for the spin-chain cuprate
NaCu2O2

39 and for a number of layered compounds, such as
α-CaCr2O4

40,41 and α-SrCr2O4,42 that were considered as
potential multiferroics. The nonfrustrated AFM interlayer
coupling seems to be a general obstacle for ferroelec-
tricity in layered systems, like α-CaCr2O4,43 or in three-
dimensional systems with two-dimensional frustrated units,
as in BiMnFe2O6. To overcome this problem, one has to
design materials with FM or frustrated interlayer couplings.
In the case of BiMnFe2O6, cation substitutions preserve the
long-range magnetic order15 and can be promising for tuning
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this compound toward ferroelectric and possibly multiferroic
behavior.

In summary, we have solved the spiral magnetic structure
of BiMnFe2O6 and proposed a microscopic magnetic model
for this compound. The ground state features spins lying in the
ac plane and propagating along b by a � 204.8-deg rotation
about the b axis. The two inequivalent FeMn positions reveal
the same propagation vector. The spiral magnetic structure
is driven by the strong frustration of antiferromagnetic ex-
change couplings on a complex spin lattice in the ab plane.
However, the coupling along the c direction is nonfrustrated,
leading to antiparallel spin arrangement in neighboring layers.
The resulting magnetic structure is nonpolar and, like the

centrosymmetric (antiferroelectric) atomic structure, pre-
cludes the ferroelectric behavior of BiMnFe2O6.
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