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1. Argon kinetics

The argon kinetics taken into account in this work is similar to [1]. The model considers

the following species: e – electrons, Ar – Argon atoms, Ar+ – Argon ions, Ar+2 – Argon

molecular ions, Ar (4s) – all 4s levels considered as a single lumped excitation level,

Ar (4p) – all 4p levels considered as a single lumped excitation level, and Ar∗2 – which

includes Ar2(
1Σ+

u ) and Ar2(
3Σ+

u ) excited molecules. The different processes considered

in both models are listed in tables 1 and 2, along with the corresponding references for

the rate coefficients and cross sections.

2. Cartesian model

The two models consider a slightly different set of equations, which is related to their

specific aim and geometry. The 2D axisymmetric model considers the particle balance

equations, the electron energy balance equation and the gas thermal balance. The

2D Cartesian model, on the other hand, considers the particle balance equations, the

electron energy balance, the gas thermal balance and the Navier-Stokes equations for

the gas flow description. In the following text we describe the equations used in the

Cartesian model, as well as the boundary condition.

2.1. Particle balance equations

We use the drift-diffusion approximation and we solve the well-known particle balance

equation:

∂ns
∂t

+∇ ·Gs + (ug · ∇)ns = Sc, (1)

where ns is the species density, Gs is the species flux, ug is the gas velocity and Sc is the

collision term representing the net number of particles produced or lost in the volume

reactions included in tables 1 and 2. The index ”s” represents all the species considered,
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Table 1. Electron collisions included in the model.

Reaction Rate coefficient Reference

(R1) e + Ar→ e + Ar BSa [2]

(R2) e + Ar→ e + Ar(4s) BS [2]

(R3) e + Ar→ e + Ar(4p) BS [2]

(R4)b e + Ar→ e + Ar(4d) BS [2]

(R5) e + Ar→ 2e + Ar+ BS [2]

(R6) e + Ar(4s)→ e + Ar(4p) BS [3]

(R7) e + Ar(4s)→ 2e + Ar+ BS [4]

(R8) e + Ar(4p)→ 2e + Ar+ BS [4]

(R9) e + Ar(4s)→ e + Ar BS, DBc [2]

(R10) e + Ar(4p)→ e + Ar BS, DB [2]

(R11) e + Ar(4p)→ e + Ar(4s) BS, DB [3]

(R12) Ar+ + 2e→ Ar + e k(m6/s) = 8.75× 10−39T−4.5
e (eV) [5]

(R13) Ar+ + e + Ar→ Ar + Ar k(m6/s) = 1.5× 10−40(Tg(K)/300)−2.5 [6]

(R14) Ar+
2 + e→ Ar+ + Ar + e k(m3/s) = 1.11× 10−12 exp

(
− 2.94−3(Tg(eV)−0.026)

T e(eV)

)
[7]

(R15) Ar+
2 + e→ Ar + Ar(4s) k(m3/s) = 1.04× 10−12 [300/Te(K)]

0.67 1−exp[−418/Tg(K)]
1−0.31 exp[−418/Tg(K)] [8, 9]

(R16) Ar∗2 + e→ Ar+
2 + 2e k(m3/s) = 9× 10−14[Te(eV)]0.7 exp[−3.66/Te(eV)] [10]

(R17) Ar∗2 + e→ 2Ar + e k(m3/s) = 1× 10−15 [10]

a Boltzmann solver: The rate coefficients are calculated from the corresponding cross sections, based

on the solution of the Boltzmann equation with BOLSIG+ [11].
b This process is included only as an energy loss channel without considering the conservation equation

for Ar(4d)
c Detailed balance: The rate coefficients for the superelastic processes are calculated using the detailed

balance principle [12] incorporated in BOLSIG+ [11].

Table 2. Heavy species collisions and radiative transitions included in the model.

Reaction Rate coefficient/collision frequency Reference

(R18) Ar(4s) + Ar(4s)→ Ar+
2 + e k(m3/s) = 1

26.3× 10−16(Tg(K)/300)−1/2 [13]

(R19) Ar(4s) + Ar(4s)→ Ar+ + Ar + e k(m3/s) = 1.62× 10−16(Tg(K))1/2 [14]

(R20) Ar(4s) + Ar(4p)→ Ar+ + Ar + e k(m3/s) = 1.62× 10−16(Tg(K))1/2 [14]

(R21) Ar(4p) + Ar(4p)→ Ar+ + Ar + e k(m3/s) = 1.62× 10−16(Tg(K))1/2 [14]

(R22) Ar(4p) + Ar→ Ar(4s) + Ar k(m3/s) = 5× 10−18 [15]

(R23) Ar+ + 2Ar→ Ar+
2 + Ar k(m6/s) = 2.5× 10−43(Tg(K)/300)−3/2 [15]

(R24) Ar+
2 + Ar→ Ar+ + 2Ar k(m3/s) = 6.06×10−12

Tg(K) exp
(
− 1.51×104

Tg(K)

)
[7]

(R25) Ar(4s) + 2Ar→ Ar∗2 + Ar k(m6/s) = 3.3× 10−44 [10]

(R26) Ar(4p) + 2Ar→ Ar∗2 + Ar k(m6/s) = 2.5× 10−44 [15]

(R27) Ar∗2 + Ar∗2 → Ar+
2 + 2Ar + e k(m3/s) = 5× 10−16(Tg(K)/300)1/2 [15]

(R28) Ar∗2 + Ar(4s)→ Ar+
2 + Ar + e k(m3/s) = 6× 10−16(Tg(K)/300)1/2 [15]

(R29) Ar(4s)→ Ar + hν νc(s−1) = ga
eff × 3.145× 108 [14]

(R30) Ar(4p)→ Ar(4s) + hν νc(s−1) = 4.4× 107 [14]

(R31) Ar∗2 → 2Ar + hν νc(s−1) = 6× 107 [10]

a geff = (1.15/π)
√

(λ4s/(6H)), where λ4s = 105.7 nm and H is a characteristic dimension of the

reactor, i.e., taken as H = 3 mm in our case.
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except for the argon atoms, i.e. e, Ar+, Ar+2 , Ar (4s), Ar (4p), Ar∗2. The argon gas atom

density is considered to be constant.

The flux of the different species is expressed in the following way: the electron flux

is

Ge = −De∇ (ne) +
qe
|qe|

µeneE, (2)

the ion flux is

Gs = −Ds∇ (ns) +
qs
|qs|

µsnsE (3)

and for the neutral species (Ar (4s),Ar (4p) and Ar∗2) the flux is only determined by

diffusion: Gs = −Ds∇ (ns). In the above expressions, D is the diffusion coefficient and,

µ is the mobility of the corresponding species, E is the electric field vector and qs is the

charge of the given species type.

The transport coefficients used in the models are as follows: µe is derived from

BOLSIG+ and the Ar+ mobility is defined as in [16]:

µAr+ =
1.01× 105

pg(Pa)

Tg(K)

273.16
1.52× 10−4

(
m2V−1s−1

)
, (4)

where pg is the gas pressure and Tg is the gas temperature. The latter expression

is also used for the molecular ion mobility with a certain correction factor [16], i.e.

µAr+2
= 1.2×µAr+ . The electron and ion diffusion coefficients are derived from their

corresponding mobilities based on the Einstein relation. The Ar (4s) diffusion coefficient

is defined according to [17] as

D Ar(4s)= (1/nAr)1.16× 1020(T Ar(4s)(K)/300)1/2 (m2/s), (5)

For the diffusion coefficients of Ar (4p) and Ar∗2, due to the lack of literature

data, we assume the same expression as for Ar (4s). This might look as a very

rough approximation especially for Ar∗2, but it does not significantly affect the final

results because the diffusion terms in the balance equations for Ar (4p) and Ar∗2 remain

negligible compared to the reaction terms. We also assume that the temperature of all

heavy species is equal to the gas temperature (Tg).

2.2. Averaged electron energy balance

The averaged electron energy is found by solving

∂neεe
∂t

+∇.Gε,e + (ug · ∇)neεe = qeE.Ge + ne4εe +Qbg, (6)

where the electron energy flux is expressed as Gε,e = −Dε,e∇ (neεe)− µε,eneεeE. Here

we use the following notations: εe is the electron averaged energy (averaged over the

energy distribution function), Dε,e is the electron energy diffusion coefficient, µε,e is

the electron energy mobility and 4εe represents the averaged electron energy losses

in the different collision events. Dε,e and µε,e are derived from the electron mobility:

µε,e = (5/3)µe and Dε,e = (2/3)µε,eεe. In order to make the numerical calculations more
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stable, we add a constant background power density Qbg everywhere in the simulated

domain (i.e. the plasma and the neutral gas). In this way, in the whole domain we

artificially sustain a low density plasma (ne < 1× 1016 m−3) with a certain temperature

derived self-consistently (around 1.8 eV in the bulk). This power density is low enough

so that it does not affect the arc behaviour, which is verified by several simulations

with different background power Qbg. The presence of background plasma allows us to

significantly reduce the gradients in the variables between the arc and the background

and thus to reduce the requirements to the discretization grid. The electron density due

to this artificial heating is at least 4 orders of magnitude lower than the arc electron

density.

2.3. Poisson equation

The electric field in the discharge is calculated with the Poisson equation:

4Φ = −ρq/ε0, (7)

where Φ is the electric potential, ρq is the charge density and ε0 is the vacuum dielectric

permittivity.

2.4. Gas flow equations

For a proper description of the gliding arc we need to describe the gas flow which is

responsible for the arc displacement. In the experiment considered here [18] the gas is

supplied with a small nozzle positioned close to the shortest electrode distance position.

With the 2D Cartesian model we are not able to accurately describe the gas flow from the

nozzle. Therefore we solve here only a simplified version of the Navier-Stokes equations

by adjusting the inlet boundary velocity in order to obtain a gas velocity similar to what

is observed in the experiments. A rough estimation of the experimental gas velocity

is obtained by examination of the arc displacement shown on successive high-speed

photographs [18]. Note that this is, however, not a very accurate method since it is well

possible that the arc does not have exactly the same velocity as the gas but slightly lower

values [19, 20]. Note that measurements in [20] show that the gas-to-arc velocity ratio

is in the order of 1.2-1.3. The equations solved are the incompressible Navier-Stokes

equations for a Newtonian fluid excluding the inertial term, i.e. in the regime of Stokes

flow:

ρg
∂ug

∂t
=∇.(−pgI + µg(∇ug+(∇ug)

T)), (8)

ρg∇.ug = 0, (9)

where ρg is the gas density, pg is the gas pressure, µg is the gas viscosity, I is the unit

matrix and the superscript T stands for the tensor transpose operation. In the model,

the Navier-Stokes equations are not solved together with the other equations, because

this would yield excessive calculations times, but instead they are solved first separately

and then the obtained velocity distribution is used as input data.
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2.5. Gas thermal balance

Here we calculate the gas temperature by solving the gas thermal balance

ρgCp
∂Tg
∂t

+ ρgCpug.∇Tg −∇. (kg∇Tg) = Qg, (10)

where Cp is the gas heat capacity of Ar, kg is the Ar thermal conductivity and Qg is a

heat source, which in our case results from the plasma heating. This includes all the

energy lost by the electrons in elastic and inelastic collisions, which is assumed to be

finally transferred to the gas, as well as the energy transferred from the ions to the gas.

The ions gain energy from the electric field. The total gas heat source is thus expressed

as:

Qg =
3memAr

(me+mAr)
2nenArk1e (Te−Tg) +

∑
i

4εikineni−t + jion ·E, (11)

where the first term represents the electron energy losses due to elastic collisions with

rate coefficient k1, the second term represents the sum of all electron energy losses due

to inelastic collisions with energy loss 4εi, rate coefficient ki and collision target density

ni−t for the i-th process, and the third term is the ion heating being the scalar product

of the total ion current density j ion and the electric field E . In the above expression

the electron and gas temperatures are expressed in ”eV”. Here we neglect the energy

loss due to radiation from excited atoms which is estimated to be relatively small (see

also the comments in [5], page 277). The major term in equation (7) is usually the

elastic energy transfer and only in the cathode layer the second and third terms in the

right-hand side become considerable. The reason for the latter is the higher electron

temperature in this region, enhancing the excitation processes, as well as the strong

electric field which increases the ion velocity and the (j ion ·E) term.

In summary, the 2D Cartesian model includes equations (1), (6)-(10).

2.6. Boundary conditions

The boundary conditions (BC) are summarized in table 3 and some further explanation

is given below.

The boundary condition for the electron balance equation (1) and the electron

energy balance equation (6) at the cathode should include the electron emission processes

in addition to the thermal flux. This yields the following BC for the normal electron

flux at the cathode [21,22]:

n ·Ge =
1

2
ve,thne −

[∑
s

γs (Gs · n) + GTF · n

]
(12)

and for the normal electron energy flux [22]

n ·Gε,e =
5

6
ve,thneεe −

[∑
s

γsεs,sec (Gs · n) + εTFGTF · n

]
(13)
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Figure 1. Geometries considered in the models:

(a) 2D axisymmetric model geometry with the following boundaries: ac - cathode-

plasma interface, aa - anode, aaxis - axial symmetry axis, ac,ins - insulation boundary,

ap,ins - insulation boundary for the plasma (zero fluxes).

(b) 2D Cartesian model geometry with the following boundaries: cc - cathode,

ca - anode, clow - upstream boundary used as a gas inlet, cup - upper (downstream)

boundary providing gas outflow.

In the above expressions ve,th =
√

8kBTe
πme

is the electron thermal velocity, γs is

the secondary electron emission coefficient due to ion impact for the two types of ions

(Ar+ and Ar+2 ) having a normal flux Gs towards the cathode. Hence, the sum is taken

over these two types of ions. kB is the Boltzmann constant, me is the electron mass,

εs,sec is the averaged energy of the secondary electrons and εTF is the averaged energy

of the emitted electrons due to thermo-field emission. The value of γs is not known

and it is very dependent on the cathode material and surface properties. GTF is the

electron flux due to thermo-field emission. It is known [23] that the combined effect of

the thermal and field electron emissions (also denoted as thermo-field (TF) emission)

is much stronger compared to the sum of both independent processes. Therefore, we

use here the expression for the electron emission current density, which accounts for

their combined effect [23]. It is also important to note that in the calculation of the field

emission usually not the real normal electric field (En) is considered but an effective field

which is calculated as En,eff = FEF ∗En. The factor FEF is called ”Field enhancement

factor” and accounts for the effective enhancement of the field due to surface roughness

and sharp protrusions [23]. Similarly to γs, this factor will be very dependent on a

particular experiment and it may even change during the experiments because of surface

modification as a results of the arc impact.

For the non-emitting walls (anode and cup) the BC includes only the thermal
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electron flux:

n ·Ge,n =
1

2
ve,thne (14)

The electron energy flux in this case is then:

n ·Gε,e =
5

6
ve,thneεe. (15)

The ion flux at the walls, for both the Ar+ and Ar+2 ions, is found by accounting

for their thermal velocity and their drift velocity due to the electric field:

n ·Gs =
1

4
vs,thns + max

(
qs
|qs|

µsnsE · n, 0
)

(16)

where the function ”max” returns the maximum of both arguments. In this case it sets

the drift flux qs
|qs|µsnsE ·n to 0 if it becomes negative, i.e. if the flux is directed towards

the plasma domain. The neutral species, i.e. Ar(4s), Ar(4p) and Ar∗2, are supposed to

reach the wall due to thermal motion only and thus their BC on the wall is:

n ·Gs =
1

4
vs,thns (17)

where s = Ar(4s),Ar(4p),Ar∗2.

All these boundary conditions, as well as the other (more simple) boundary

conditions, are summarised in tables 3 and 4.

Table 3. Boundary conditions used in the 2D Cartesian model, at the various

boundaries (see figure 1); see text for the equation numbers. Vc is the cathode potential

with respect to the grounded anode.

eq. (1) (1) (1) (6) (7) (8),(9) (10)

variable ne nAr+

nAr+2

nAr(4s)

nAr(4p)

nAr+2

εe Φ ug

pg

Tg

cc (12) (16) (17) (13) Φ = Vc ug = 0 Tg = 293 K

ca (14) (16) (17) (15) Φ = 0 ug = 0 Tg = 293 K

clow n · α = 0; α = Gs, Gε,e, ∇Φ n ·ug = 3 m/s Tg = 293 K

cup (14) n · ∇ns = 0 (15) Φ = 0 p = 101 kPa n ·∇Tg = 0

Finally, we specify certain conditions for the external circuit and the power supply.

In both models (Cartesian and Axisymmetric), the external circuit is represented by a

fixed voltage source Vsource = 3700 V and serially connected resistor Rb.
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3. Axisymmetric model

The axisymmetric plasma model used here is based on equations (1), (6), (7) and (10),

i.e. the same set of equations as the Cartesian model, the gas flow which is excluded

(ug = 0). As explained in the manuscript, the gas flow effect is replaced here by the

addition of an effective loss terms in all balance equations (i.e. all except in the Poisson

equation). The aim of the additional loss terms is to effectively account for the stretching

of the gliding discharge as a result of the gas flow and thus to account for the convective

processes. The loss terms is introduced on the right hand side of equations 1, 6 and 10.

These terms are introduced as effective loss processes with a constant frequency νelong,

equal for all equations. Thus the loss terms will be proportional to −ανelong, where α

represents the conserved variable i.e. α = ne, nAr+ , nAr+2
, nAr(4s), nAr(4p), nAr∗2

, neεe,

ρgCpTg. νelong has a unit of frequency [1/s] but it is related to the elongation speed of

the plasma channel. Below we give more details about the definition of νelong and its

relation to the real convection process.

Let us consider an elementary domain with volume Ω and length l in the direction

of elongation. As a result of the elongation with speed velong for time dt, the plasma

channel length will increase with dl = velongdt and the domain volume will increase

with dΩ = dlStr, where Str is the transverse cross section of the plasma channel. If we

take into account that for some variables there is a minimum (background) value (αbg)

different from zero (like for example the gas temperature Tg = 293 K) we can express

the variation (reduction) of the conserved variable α as the difference between the initial

(α) and the value after elongation αelong:

dα = αelong − α =
αΩ + αbgdΩ

Ω + dΩ
− α = −(α− αbg)dΩ

Ω + dΩ
≈

−(α− αbg)dΩ

Ω
= −(α− αbg)

dl

l
= −(α− αbg)velong

dt

l
(18)

Which is based on the fact that the variables are conserved i.e. αΩ + αbgdΩ =

αelong(Ω + dΩ) and the fact that dΩ � Ω. Thus for the effective loss term due to

convection we obtain:

dα

dt
= −(α− αbg)velong/l = −(α− αbg)νelong (19)

The above approach allows us approximately to take into account the convection

processes in the gliding discharge while representing the plasma channel by using a 2D

axisymmetric model. In the model, we take αbg to be zero for all variables except for

the gas temperature: Tg,bg = 293 K.

The geometry considered in this model is presented in figure 1(a). It is a simple

rectangle with 6 mm distance between the electrodes.
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