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Power-law dependence of the angular momentum transition fields in few-electron quantum dots
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We show that the critical magnetic fields at which a few-electron quantum dot undergoes transitions between
successive values of its angular momentum (M ) for largeM values follow a very simple power-law depen-
dence on the effective interelectron interaction strength. We obtain this power law analytically from a quasi-
classical treatment and demonstrate its nearly universal validity by comparison with the results of exact
diagonalization.
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I. INTRODUCTION

The field of quantum dots has been evolving under
busy attention of theorists and experimentalists alike for
most 20 years already.1–4 This amount of interest and th
enthusiasm is due to the unique blend of technological
vances and fundamental interest. A special role is assigne
the magnetic field as a versatile tool with which one can tu
the electronic properties of the quantum dots. In particu
the application of a perpendicular magnetic field aids Wig
crystallization5,6 and the formation of strongly correlate
many-body states7,8 and induces ground state multiplicit
transitions.9

From the theoretical side, the ‘‘exact’’ numerical diag
nalization method5,10–16 is of profound importance as a re
erence for approximate treatments. With the presently av
able computing power this approach has been success
applied to computing the electronic structure of few-elect
quantum dots. However, this method also has sharp lim
tions since the numerical effort grows exponentially with t
number of electrons. Therefore, the construction, refinem
and application of less demanding approximate approac
based on some enlightening or visualizing idea are of crit
importance.

Among such ideas is the successful introduction of qu
particles that came to be known ascomposite fermions.17,18

This transformation reduces the initial problem to a mu
more tractable problem of noninteracting or, at least, wea
interacting particles. Another fruitful idea is to gain insig
from the classical picture. The electrons in a quantum
can be viewed as classical particles vibrating around t
equilibrium positions19–21 not unlike atoms in a molecule o
a solid, while the molecule can rotate as a whole.22 These
developments culminated in the formulation of the rotat
electron molecule approach23,24 based on a classical visua
ization and successfully competing with the composite f
mion model.

In the present work, we call attention to yet another ma
festation of the classical nature of quantum dots in stro
magnetic fields; namely, we concentrate on the critical m
netic fields, i.e., the field strengths at which the ground s
angular momentum of the dot switches between its two s
cessive values. Here, we found that these critical field va
show a strikingly simple dependence on the effective C
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lomb coupling strength. We compare estimates extrac
from an unsophisticated quasiclassical model with the ex
diagonalization results, thereby demonstrating the viabi
of such essentially classical paradigms and presenting
more argument in their favor.

The paper is organized as follows. In Sec. II we pres
the exact-diagonalization results indicating that the criti
magnetic fields obey a simple power law. In Secs. III and
we introduce and solve a simple quasiclassical model,
compare its predictions to the exact results in Sec. V. T
paper ends with a concluding Sec. VI.

II. EXACT DIAGONALIZATION

In Fig. 1 the well-known energy spectrum of two ele
trons in a parabolic dot9 ~the Zeeman energy is not included!
is plotted as a function of the perpendicular magnetic fi
strengthB. We work with dimensionless variables so that t
system energy is measured in units of\v0 with v0 being the
characteristic frequency of the confinement potential, wh
the magnetic field strength is expressed as the ratiog
5vc /v0 of the cyclotron frequencyvc5eB/mc to the

FIG. 1. The spectrum of a strongly interacting (l55) two-
electron parabolic dot as a function of perpendicular magnetic fi
The lowest term of each angular momentumM50, . . . ,5 isshown.
The Zeeman energy is not included. At the critical fieldsgM the
angular momentum switches fromM to M11.
©2004 The American Physical Society05-1
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above-introduced confinement frequency. The relative
portance of the electron-electron Coulomb interaction
characterized by the dimensionless coupling constanl
5a0 /aB . Herea05A\/mv0 is the characteristic dimensio
of the parabolic quantum dot, andaB5e\2/me2 is the Bohr
radius. Figure 1 corresponds to a relatively large~i.e.,
strongly interacting! dot of l55, and we include the mag
netic fields up tog54 and angular momenta up touM u
55. We observe that for positive magnetic fields the p
ferred values of the angular momentum are negat
however, for the sake of convenience we will henceforth
the symbolM for its absolute values and dispense with th
2 sign.

The most conspicuous feature of this spectrum is the p
ence of certain critical valuesgM at which the ground state
of the quantum dot changes the absolute value of its t
angular momentum fromM to M11. This feature is brough
about by the electron-electron interaction and persists for
number of electrons in the dot.

We performed exact numerical diagonalization for qua
tum dots containing two, three, and four electrons~see Ref.
13 for the description of the procedure! and calculated the
critical magnetic field values for various effective Coulom
interaction strengths. For the two-electron quantum dot
includedl values up to 20, and for the case of three el
trons in the dot the upper limit was set atl510. The case of
four electrons is numerically more demanding and we
stricted the calculation to values up tol52. We note that
the effective electron-electron interaction strength can
easily tuned by varying the strength of the confinement
tential, and consequently, the quantum dot size. In Figs.
these critical magnetic field values are shown in a doub
logarithmic plot as a function of the dimensionless coupl
constantl. We display the magnetic field range betwe
ln g50 ~that is,vc5v0) and lng53 (vc'20 v0).

Notice that then plotted in a logarithmic scale these fu

FIG. 2. Critical magnetic field strength values for two electro
The full lines delimit regions characterized by different ground st
angular momenta starting withM50 at the lower left corner and
increasing in steps ofDM51 at each consecutive boundary. No
the monotonic decrease of interline distances with increasingl and
g.
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tions are nearly linear; in addition the linearity is more pr
nounced for large momentumM and large magnetic field
values. This linearity of the above curves

ln gM5aM1bM ln l ~1!

implies the simple power-law dependence

gM}lbM. ~2!

We expect that such a plain dependence is a consequen
the classical nature of the electron system in the quantum
in the limit of a strong perpendicular magnetic field~see,
e.g., Ref. 25! as we will show in the next section where
simple quasiclassical description is developed.

We observe that the phase diagram corresponding to
two-electron quantum dot~Fig. 2! is more regular than the

.
e

FIG. 3. The same as in Fig. 2 but now for three electrons.
additional phase boundary separating regions of angular momen
M50 andM51 that shows a different behavior is not shown. No
that widths of some regions corresponding to more stable state
considerably larger.

FIG. 4. The same as in Fig. 2 but now for four electrons.
additional phase boundary separating regions of angular momen
M50 andM52 that shows a different behavior is not include
The regions corresponding to more stable states are wider.
5-2
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POWER-LAW DEPENDENCE OF THE ANGULAR . . . PHYSICAL REVIEW B 69, 075305 ~2004!
two others, namely, the nearly-straight-line boundaries
pear to be parallel and the widths of the consecutive reg
are decreasing monotonically. In contrast, the plots pert
ing to the cases of three~Fig. 3! and four~Fig. 4! electrons
include some regions of considerably larger width which
dicate an enhanced stability of the corresponding gro
states. In particular, such regions correspond to the m
mum density droplet states of angular momentumM53 for
three electrons andM56 for four electrons.

Moreover, we see that at the lower right corner of Figs
and 4~three and four electrons, respectively! corresponding
to low magnetic fields and strong Coulomb coupling there
a slight deviation from collinearity between neighborin
lines. In the case of the four-electron dot the phase bou
ariesg2 andg3 even merge together indicating that for lnl
.20.3 there is a direct transition from the state withM
52 into the state withM54. Similar transitions where the
angular momentum changes byDM52 were also found for
higher values of angular momentum, namely, there are t
sitions 10→12 and 12→14. These properties of the fou
electron quantum dot were already pointed out and discu
in Ref. 13. As we will see shortly, the quasiclassical mo
will overlook the presence of such irregularities.

We note that in each of Figs. 3 and 4 an extra ph
boundary is present at low magnetic fields which was om
ted. These disregarded boundaries—see Fig. 2~a! of Ref. 11
and Fig. 3 of Ref. 13 for phase diagrams of three- and fo
electron systems, respectively—display a different tre
They are of a purely quantum-mechanical nature and re
from a specific distribution of particles among the low
energy levels of a quantum dot, i.e., they are effects
cannot be reproduced in a classical model.

III. QUASICLASSICAL DESCRIPTION

The two-dimensional~2D! N-electron system confined b
a parabolic quantum dot and placed in a perpendicular m
netic field B is described by the following dimensionles
Schrödinger equation:

$H2E%C50, ~3!

where

H5
1

2 (
n51

N H S 2 i¹n1
g

2
@ez3rn# D 2

1r n
2J 1 (

n,m51
n,m

N
l

urn2rmu
.

~4!

We consider the ground state energy of the state of fi
angular momentumM as a function of Coulomb coupling
constantl and the magnetic fieldg,

E5E~l,g,M !. ~5!

Solving the equation

E~l,g,M !5E~l,g,M11! ~6!

for g will define the above-introduced critical magnetic fie
valuesgM corresponding to the angular momentum tran
tions fromM to M11.
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It is well known that in the strong magnetic field regime22

the electrons form a Wigner crystal which for a system up
five electrons is just a ring of equidistantly place
electrons.19

Due to the rotational symmetry around thez axis the
Hamiltonian~4! commutes with the total angular momentu
operator

M̂52 i (
n51

N
]

]wn
. ~7!

Therefore, the simplest way to calculate the ground energ
the system is to exclude the magnetic field from the Sch¨-
dinger equation~3! by means of the transformation

C→expS i (
n51

N

wn /NDC, ~8!

with the ensuing scaling of coordinates

rn→rn~11g2/4!21/4, ~9!

which enables one to transform the initial problem into t
equivalent problem

$H̃2E0~l0 ,M !%C50 ~10!

with the Hamiltonian

H̃5
1

2 (
n51

N

$2¹n
21r n

2%1 (
n,m51
n,m

N
l0

urn2rmu
~11!

without a magnetic field.
The coupling constants and the eigenvalues of both pr

lems are related as

l5l0$11~g/2!2%1/4, ~12a!

E~l,g,M !5E0~l0 ,M !A11~g/2!22gM /2. ~12b!

Here, we again used our earlier convention where the sym
M stands for the absolute value of the angular moment
Note that the eigenvalueE0(l0 ,M ) indeed depends only on
the absolute value of the angular momentum, and Eq.~12b!
is written in accordance with our previous convention forM.
Combining Eqs.~12! and~6! we arrive at the following equa
tion:

gM

2A11~gM/2!2
5E0~l0 ,M11!2E0~l0 ,M !, ~13!

which expresses the critical magnetic field values in terms
the reduced problem~10!.

IV. DERIVATION OF THE POWER-LAW DEPENDENCE

Now we turn to the solution of the eigenvalue proble
defined by Eq.~10!, which involves two peculiar features
One is that we need to solve for a highly excited state wit
large angular momentumM that corresponds to the groun
state of the original problem~3!, and this fact complicates
5-3
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the solution. Also, according to Eq.~12a!, in the strong mag-
netic field limit Eq.~10! has to be solved for small values o
the coupling constantl0. Therefore, the solution must b
attainable by means of some perturbative technique.

Neglecting the electron-electron interaction term in t
Hamiltonian~11!, we obtain the zero-order equation. Due
the rotational symmetry the following radial equation for t
zero-order one-electron function can be written:

H 2
1

2r

d

dr
r

d

dr
1

m2

2r 2
1

1

2
r 22«0~m!J c0~mur !50.

~14!

Here, the symbolm stands for the single-electron angul
momentum. As this angular momentum is large the eig
value can be estimated by approximating the effective po
tial

Veff~r !5
m2

2r 2
1

1

2
r 2 ~15!

by a parabolic potential in the vicinity of its minimum at

r 05umu1/2. ~16!

Here we disregard the first-derivative term in Eq.~14! as its
inclusion gives only negligible corrections in them→`
limit. This leads to the following estimate for the on
electron energy:

«0~m!'Veff~r 0!5umu, ~17!

and the total zero-order energy of all electrons in the
becomes

E05Numu5M . ~18!

Let us now estimate the characteristic energies of the
possible types of motion of the electrons: the radial vib
tions and the motion of electrons along the ring.

The energy of the radial vibrations can be obtained
expanding the effective potential at the equilibrium pointr 0.
The second derivative of the potential

Veff9 ~r 0!54 ~19!

is of order unity and does not depend on the orbital mom
tum m. This fact enables us to disregard these vibrations
their energy is small in comparison to the zero-order ene
«0(m). Moreover, these vibrations are the same for any
bital momentumM ~they are not affected by the electro
electron interaction which is even smaller, i.e.,l/r 0!1),
and thus they can be neglected when solving Eq.~13!.

The energy of the longitudinal electron excitations alo
the ring is even smaller. Actually, in zero-order approxim
tion the electron state under consideration is degenerate
respect to these excitations since the same total energy o
electronic ring~18! can be constructed from various angu
momentum distributions among individual electrons. Th
this angular motion is highly affected by the weak electro
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electron interaction. The result of this effect is well known:
leads to the Wigner crystallization of the electrons along
ring.

The first-order correction to the eigenvalueE0(l0 ,M ) is
obtained by including the electron-electron interaction ter
but calculated classically for the electrons positioned eq
distantly on a ring of radiusr 0. This energy correction read

DE~l0 ,M !5
l0

r 0
f N5l0AN

M
f N , ~20!

wheref N is the Coulomb energy of the equidistantly locat
electrons on the unit radius ring, in particular,

f 251/2, f 35A3, f 45112A2. ~21!

Then, combining Eqs.~18! and ~20! we obtain the final
expression for the energy to first order in powers ofl0:

E~l0 ,M !5M1l0AN

M
f N . ~22!

Inserting this expression into Eq.~13!, solving it to the low-
est accuracy ing21 powers, and taking the average of th
difference of two inverse square roots we obtain the resu

g5
2

~N fN
2 !1/3S M1

1

2Dl22/3. ~23!

Finally, taking the logarithm of Eq.~23! and comparing to
Eq. ~1! we extract the expressions for the coefficients

aM5 ln~2M11!2
1

3
ln N2

2

3
ln f N ,

bM52
2

3
. ~24!

V. COMPARISON WITH THE EXACT NUMERICAL
RESULTS

The quasiclassical solution predicts a universal value
the power-law indexbM522/3 independent of the numbe
of electrons. The comparison with the exact diagonalizat
results is displayed in Fig. 5. As discussed above, in
four-electron dot we encountered two cases when a sin
DM52 transition occurs in place of the expected twoDM
51 transitions in the whole considered range ofl and g
values. In these cases~namely, the transitions 10→12 and
12→14) we used theM value corresponding to the averag
of the two expectedDM51 transitions.

In general, the discrepancy with our analytical model
small, as all results fall into a range between20.64 and
20.72. As expected, the deviation of the exact result fr
the quasiclassical limit rapidly decreases with increasing
gular momentumM, and already atM58 the difference is
less than 2%.

The exact results corresponding to the two-electron
show a monotonic behavior as indicated by the dotted line
Fig. 5. The reason is that the two-electron system in a p
5-4
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bolic dot possesses only one nontrivial degree of freedom
the center-of-mass motion can be separated from the rela
motion and is not excited in the ground state. In contrast,
internal motion of three- and four-electron dots involv
more degrees of freedom and is more intricate. This res
in a more complicated dependence ofbM on the angular
momentumM. In particular, enhanced nonmonotonicities a
discernible in the vicinity of more stable maximum-densi
droplet or ‘‘magic’’ states atM53 and 6 for three electron
andM56 for four electrons.

Figure 6 shows the comparison for the coefficientaM .
The quasiclassical model~24! predicts a logarithmic depen
dence ofaM on the angular momentumM. We see that for
the two-electron system the correspondence is nearly per

The behavior concerning three and four electrons is m
complex. At low values of the angular momentum~and thus
low magnetic fields! there are notable discrepancies betwe
the sets of results in Fig. 6. In particular, we observe w
‘‘gaps,’’ i.e., abrupt jumps in theaM values obtained from the
exact diagonalization at angular momentaM53 (M56)
corresponding to maximum-density-droplet states in thr
~four-!electron systems. Nevertheless, the overall trend
these dependences still follows the quasiclassical predic
rather closely, and the discrepancy between the classica
fully quantum-mechanical results vanishes very quickly w
increasingM.

FIG. 5. The power-law coefficientsbM as a function of the
angular momentumM. The quasiclassical~QC! treatment predicts a
universal valuebM522/3 for any number of electrons shown b
the solid line. Different symbols indicate the exact values of
coefficients for quantum dots containing 2 – 4 electrons. The t
electron result displays a monotonic behavior and is spli
approximated by the dotted line to guide the eye.
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VI. CONCLUSIONS

In conclusion, we presented a quasiclassical theory of
magnetic properties of few-electron quantum dots wh
main result is a simple power-law dependence of the crit
magnetic fields on the Coulomb coupling constant. While
main virtue of this theory lies in its relative simplicity an
ability to provide results without resorting to heavy comp
tation, the comparison of its predictions to the exact res
also proves its robustness even in the realm of quantum
chanics.
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FIG. 6. The coefficientaM as a function of the angular momen
tum for the case ofN52, 3, and 4 electrons in the dot. The fu
lines denote the quasiclassical~QC! result, and the symbols corre
spond to the results from exact diagonalization.
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