toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Prabhakara, V.; Jannis, D.; Guzzinati, G.; Béché, A.; Bender, H.; Verbeeck, J. url  doi
openurl 
  Title HAADF-STEM block-scanning strategy for local measurement of strain at the nanoscale Type A1 Journal article
  Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 219 Issue Pages 113099  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Lattice strain measurement of nanoscale semiconductor devices is crucial for the semiconductor industry as strain substantially improves the electrical performance of transistors. High resolution scanning transmission electron microscopy (HR-STEM) imaging is an excellent tool that provides spatial resolution at the atomic scale and strain information by applying Geometric Phase Analysis or image fitting procedures. However, HR-STEM images regularly suffer from scanning distortions and sample drift during image acquisition. In this paper, we propose a new scanning strategy that drastically reduces artefacts due to drift and scanning distortion, along with extending the field of view. It consists of the acquisition of a series of independent small subimages containing an atomic resolution image of the local lattice. All subimages are then analysed individually for strain by fitting a nonlinear model to the lattice images. The method allows flexible tuning of spatial resolution and the field of view within the limits of the dynamic range of the scan engine while maintaining atomic resolution sampling within the subimages. The obtained experimental strain maps are quantitatively benchmarked against the Bessel diffraction technique. We demonstrate that the proposed scanning strategy approaches the performance of the diffraction technique while having the advantage that it does not require specialized diffraction cameras.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000594768500006 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited (down) 4 Open Access OpenAccess  
  Notes A.B. D.J. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. J.V acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. GG acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO). Special thanks to Dr. Thomas Nuytten, Prof. Dr. Wilfried Vandervorst, Dr. Paola Favia, Dr. Olivier Richard from IMEC, Leuven and Prof. Dr. Sara Bals from EMAT, Antwerp for their continuous support and collaboration with the project and to the IMEC processing group for the device fabrication. Approved Most recent IF: 2.2; 2020 IF: 2.843  
  Call Number EMAT @ emat @c:irua:172485 Serial 6404  
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R.S.; Bogaerts, A.; Lefferts, L. pdf  url
doi  openurl
  Title Plasma-driven catalysis: green ammonia synthesis with intermittent electricity Type A1 Journal article
  Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 22 Issue 19 Pages 6258-6287  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract Ammonia is one of the most produced chemicals, mainly synthesized from fossil fuels for fertilizer applications. Furthermore, ammonia may be one of the energy carriers of the future, when it is produced from renewable electricity. This has spurred research on alternative technologies for green ammonia production. Research on plasma-driven ammonia synthesis has recently gained traction in academic literature. In the current review, we summarize the literature on plasma-driven ammonia synthesis. We distinguish between mechanisms for ammonia synthesis in the presence of a plasma, with and without a catalyst, for different plasma conditions. Strategies for catalyst design are discussed, as well as the current understanding regarding the potential plasma-catalyst synergies as function of the plasma conditions and their implications on energy efficiency. Finally, we discuss the limitations in currently reported models and experiments, as an outlook for research opportunities for further unravelling the complexities of plasma-catalytic ammonia synthesis, in order to bridge the gap between the currently reported models and experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000575015700002 Publication Date 2020-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited (down) 4 Open Access  
  Notes ; ; Approved Most recent IF: 9.8; 2020 IF: 9.125  
  Call Number PLASMANT @ plasmant @c:irua:172671 Serial 6430  
Permanent link to this record
 

 
Author Topalovic, D.B.; Arsoski, V.V.; Tadic, M.Z.; Peeters, F.M. pdf  doi
openurl 
  Title Asymmetric versus symmetric HgTe/CdxHg1-x Te double quantum wells: Bandgap tuning without electric field Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 128 Issue 6 Pages 064301-64308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the electron states in double asymmetric HgTe / Cd x Hg 1 – x Te quantum wells grown along the [ 001 ] direction. The subbands are computed by means of the envelope function approximation applied to the eight-band Kane k . mml:mspace width=“.1em”mml:mspace p model. The asymmetry of the confining potential of the double quantum wells results in a gap opening, which is absent in the symmetric system where it can only be induced by an applied electric field. The bandgap and the subbands are affected by spin-orbit coupling, which is a consequence of the asymmetry of the confining potential. The electron-like and hole-like states are mainly confined in different quantum wells, and the enhanced hybridization between them opens a spin-dependent hybridization gap at a finite in-plane wavevector. We show that both the ratio of the widths of the two quantum wells and the mole fraction of the C d x H g 1 – x Te barrier control both the energy gap between the hole-like states and the hybridization gap. The energy subbands are shown to exhibit inverted ordering, and therefore, a nontrivial topological phase could emerge in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561339300001 Publication Date 2020-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited (down) 4 Open Access  
  Notes ; This research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:171146 Serial 6453  
Permanent link to this record
 

 
Author Bigiani, L.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Barreca, D.; Maccato, C. pdf  doi
openurl 
  Title Au-manganese oxide nanostructures by a plasma-assisted process as electrocatalysts for oxygen evolution : a chemico-physical investigation Type A1 Journal article
  Year 2020 Publication Advanced sustainable systems Abbreviated Journal  
  Volume Issue Pages 2000177-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Earth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy(MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity Mn(x)O(y)dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of Mn(x)O(y)phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn(2)O(3)system, a current density of approximate to 5 mA cm(-2)at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm(-2). Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000572376000001 Publication Date 2020-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-7486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.1 Times cited (down) 4 Open Access Not_Open_Access  
  Notes ; Padova University (DOR 2017-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), are gratefully acknowledged for financial support. The Qu-Ant-EM microscope was partially funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project “Solarpaint” from the University of Antwerp and from EU H2020 823717 ESTEEM3 project. The authors thank Dr. Daniele Valbusa, Dr. Gianluca Corr, Dr. Andrea Gallo, and Dr. Dileep Khrishnan for helpful experimental assistance. ; esteem3TA; esteem3reported Approved Most recent IF: 7.1; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:171937 Serial 6457  
Permanent link to this record
 

 
Author Fret, J.; Roef, L.; Diels, L.; Tavernier, S.; Vyverman, W.; Michiels, M. pdf  doi
openurl 
  Title Combining medium recirculation with alternating the microalga production strain : a laboratory and pilot scale cultivation test Type A1 Journal article
  Year 2020 Publication Algal Research-Biomass Biofuels And Bioproducts Abbreviated Journal Algal Res  
  Volume 46 Issue Pages 101763  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Reuse of growth medium after biomass harvesting is a cost-saving approach to improve the economic feasibility of algae mass cultivation. Algal exudates, cell debris and varying amounts of residual nutrients, impose challenges to the recycling of spent medium. In this study, the potential of combining reused medium from different algae species for growing monocultures of other algal strains was evaluated by making use of three successive cultivation setups with increasing volume; 400 mL in turbidostat mode, 2.6 L and 220 L in semi-continuous mode. Cultivation on replenished medium derived from Nannochloropsis sp. and Tisochrysis lutea, had no adverse effect on the productivity of either of the strains, regardless of whether they were grown in their own recycled medium or that of the other alga. Microfiltration of the reused medium proved to be sufficient to avoid cross-contamination. Moreover, a substantial average reduction in water footprint (77%) and nutrient cost (68% or 9 (sic).kg(-1) dry biomass) was achieved. Extension and validation of the medium recycling approach to other economically interesting algae species can contribute to improving the economic feasibility of large scale microalgae production systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512364900013 Publication Date 2020-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-9264 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.1 Times cited (down) 4 Open Access  
  Notes ; This work was financially supported by the Agency for Innovation by Science and Technology, Flanders (IWT Baekeland mandatory Jorien Fret, project no. 100678). We thank Kayawe Valentine Mubiana from the Systemic Physiological and Ecotoxicological Research group, University of Antwerp, for the assistance in the analysis of the trace elements. ; Approved Most recent IF: 5.1; 2020 IF: 3.994  
  Call Number UA @ admin @ c:irua:167742 Serial 6471  
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B. pdf  doi
openurl 
  Title Electronically tunable quantum phase slips in voltage-biased superconducting rings as a base for phase-slip flux qubits Type A1 Journal article
  Year 2020 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech  
  Volume 33 Issue 12 Pages 125002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum phase slips represent a coherent mechanism to couple flux states of a superconducting loop. Since their first direct observation, there have been substantial developments in building charge-insensitive quantum phase-slip circuits. At the heart of these devices is a weak link, often a nanowire, interrupting a superconducting loop. Owing to the very small cross-sectional area of such a nanowire, quantum phase slip rates in the gigahertz range can be achieved. Instead, here we present the use of a bias voltage across a superconducting loop to electrostatically induce a weak link, thereby amplifying the rate of quantum phase slips without physically interrupting the loop. Our simulations reveal that the bias voltage modulates the free energy barrier between subsequent flux states in a very controllable fashion, providing a route towards a phase-slip flux qubit with a broadly tunable transition frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577207000001 Publication Date 2020-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited (down) 4 Open Access  
  Notes ; ; Approved Most recent IF: 3.6; 2020 IF: 2.878  
  Call Number UA @ admin @ c:irua:172643 Serial 6503  
Permanent link to this record
 

 
Author Nord, M.; Webster, R.W.H.; Paton, K.A.; McVitie, S.; McGrouther, D.; MacLaren, I.; Paterson, G.W. url  doi
openurl 
  Title Fast pixelated detectors in scanning transmission electron microscopy. Part I: data acquisition, live processing, and storage Type A1 Journal article
  Year 2020 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal  
  Volume 26 Issue 4 Pages Pii S1431927620001713-666  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The use of fast pixelated detectors and direct electron detection technology is revolutionizing many aspects of scanning transmission electron microscopy (STEM). The widespread adoption of these new technologies is impeded by the technical challenges associated with them. These include issues related to hardware control, and the acquisition, real-time processing and visualization, and storage of data from such detectors. We discuss these problems and present software solutions for them, with a view to making the benefits of new detectors in the context of STEM more accessible. Throughout, we provide examples of the application of the technologies presented, using data from a Medipix3 direct electron detector. Most of our software are available under an open source licence, permitting transparency of the implemented algorithms, and allowing the community to freely use and further improve upon them.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000555537900004 Publication Date 2020-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited (down) 4 Open Access OpenAccess  
  Notes ; The performance of this work was mainly supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK via the project “Fast Pixel Detectors: a paradigm shift in STEM imaging” (grant no. EP/M009963/1). G.W.P. received additional support from the EPSRC under grant no. EP/M024423/1. M.N. received additional support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 838001. The studentship of R.W.H.W. was supported by the EPSRC Doctoral Training Partnership grant no. EP/N509668/1. S.McV. was supported by EPSRC grant no. EP/M024423/1. I.M. was supported by EPSRC grant no. EP/M009963/1. The studentship of K.A.P. was funded entirely by the UK Science and Technology Facilities Council (STFC) Industrial CASE studentship “Next2 TEM Detection” (no. ST/P002471/1) with Quantum Detectors Ltd. as the industrial partner. D.McG. was also supported by EPSRC grant no. EP/M009963/1. As an inventor of intellectual property related to the MERLIN detector hardware, he is a beneficiary of the license agreement between the University of Glasgow and Quantum Detectors Ltd. The development of the integration of TopSpin with the Merlin readout of the Medipix3 camera has been performed with the aid of financial assistance from the EPSRC under grant no. EP/R511705/1 and through direct collaboration between NanoMEGAS and Quantum Detectors Ltd. ; Approved Most recent IF: 2.8; 2020 IF: 1.891  
  Call Number UA @ admin @ c:irua:171185 Serial 6518  
Permanent link to this record
 

 
Author Shi, P.; Ratkowsky, D.A.; Gielis, J. url  doi
openurl 
  Title The generalized Gielis geometric equation and its application Type A1 Journal article
  Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 4 Pages 645-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many natural shapes exhibit surprising symmetry and can be described by the Gielis equation, which has several classical geometric equations (for example, the circle, ellipse and superellipse) as special cases. However, the original Gielis equation cannot reflect some diverse shapes due to limitations of its power-law hypothesis. In the present study, we propose a generalized version by introducing a link function. Thus, the original Gielis equation can be deemed to be a special case of the generalized Gielis equation (GGE) with a power-law link function. The link function can be based on the morphological features of different objects so that the GGE is more flexible in fitting the data of the shape than its original version. The GGE is shown to be valid in depicting the shapes of some starfish and plant leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000540222200156 Publication Date 2020-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited (down) 4 Open Access  
  Notes ; This research was funded by the Jiangsu Government Scholarship for Overseas Studies (grant number: JS-2018-038). ; Approved Most recent IF: 2.7; 2020 IF: 1.457  
  Call Number UA @ admin @ c:irua:168141 Serial 6526  
Permanent link to this record
 

 
Author Reijniers, J.; Partoens, B.; Steckel, J.; Peremans, H. doi  openurl
  Title HRTF measurement by means of unsupervised head movements with respect to a single fixed speaker Type A1 Journal article
  Year 2020 Publication Ieee Access Abbreviated Journal Ieee Access  
  Volume 8 Issue Pages 92287-92300  
  Keywords A1 Journal article; Mass communications; Engineering Management (ENM); Condensed Matter Theory (CMT); Co-Design of Cyber-Physical Systems (Cosys-Lab)  
  Abstract In a standard state-of-the-art measurement the head-related transfer function (HRTF) is obtained in an anechoic room with an elaborate setup involving multiple calibrated loudspeakers. In search for a simplified method that would open up the possibility for an HRTF measurement in a home environment, it has been suggested that this setup could be replaced with one with a single, fixed loudspeaker. In such a setup, the subject samples different directions by moving the head with respect to this loudspeaker, while the head movements are tracked in some way. In this paper, the feasibility of such an approach is studied. To this end, the HRTF is measured in an unmodified (non-anechoic) room by means of a single external speaker and a high resolution head tracking system. The differences between the dynamically obtained HRTF and the standard static HRTF are investigated, and are shown to be mostly due to variable torso reflections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539041600001 Publication Date 2020-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited (down) 4 Open Access  
  Notes ; This work was supported in part by the Research Foundation Flanders (FWO) under Grant G023619N, and in part by the Agency for Innovation and Entrepreneurship (VLAIO). ; Approved Most recent IF: 3.9; 2020 IF: 3.244  
  Call Number UA @ admin @ c:irua:170318 Serial 6539  
Permanent link to this record
 

 
Author Lu, Y.; Liu, Y.-X.; He, L.; Wang, L.-Y.; Liu, X.-L.; Liu, J.-W.; Li, Y.-Z.; Tian, G.; Zhao, H.; Yang, X.-H.; Liu, J.; Janiak, C.; Lenaerts, S.; Yang, X.-Y.; Su, B.-L. doi  openurl
  Title Interfacial co-existence of oxygen and titanium vacancies in nanostructured TiO₂ for enhancement of carrier transport Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 12 Issue 15 Pages 8364-8370  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The interfacial co-existence of oxygen and metal vacancies in metal oxide semiconductors and their highly efficient carrier transport have rarely been reported. This work reports on the co-existence of oxygen and titanium vacancies at the interface between TiO2 and rGO via a simple two-step calcination treatment. Experimental measurements show that the oxygen and titanium vacancies are formed under 550 degrees C/Ar and 350 degrees C/air calcination conditions, respectively. These oxygen and titanium vacancies significantly enhance the transport of interfacial carriers, and thus greatly improve the photocurrent performances, the apparent quantum yield, and photocatalysis such as photocatalytic H-2 production from water-splitting, photocatalytic CO2 reduction and photo-electrochemical anticorrosion of metals. A new “interfacial co-existence of oxygen and titanium vacancies” phenomenon, and its characteristics and mechanism are proposed at the atomic-/nanoscale to clarify the generation of oxygen and titanium vacancies as well as the interfacial carrier transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529201500029 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited (down) 4 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (51861135313, U1663225, U1662134, and 51472190), the International Science & Technology Cooperation Program of China (2015DFE52870), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), the Fundamental Research Funds for the Central Universities (19lgpy113 and 19lgzd16), the Jilin Province Science and Technology Development Plan (20180101208JC) and the Hubei Provincial Natural Science Foundation of China (2016CFA033). ; Approved Most recent IF: 6.7; 2020 IF: 7.367  
  Call Number UA @ admin @ c:irua:169578 Serial 6550  
Permanent link to this record
 

 
Author Vishwakarma, M.; Agrawal, K.; Hadermann, J.; Mehta, B.R. pdf  url
doi  openurl
  Title Investigating the effect of sulphurization on volatility of compositions in Cu-poor and Sn-rich CZTS thin films Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 507 Issue Pages 145043  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present work, the Cu-poor and Sn-rich CZTS thin films were prepared in order to study the volatility of Sn with respect to other components. Thin film compositions were kept intentionally Sn-rich to understand the behaviour of loss and segregation of Sn during sulphurization. The homogeneous composition distribution in precursor thin films turns heterogeneous with a change in morphology after sulphurization. The inability of identifying nanoscale secondary phases in CZTS thin film by conventional analytical techniques such as XRD and Raman, can be fulfilled by employing HAADF-STEM analysis. XPS and HAADF-STEM analyses provide the quantification of nanoscale secondary phases across the thin film and surface, respectively. The volatility of Sn was revealed in the form of segregation in the middle layer of CZTS cross-sectional lamella rather than loss to annealing atmosphere. It was observed that among the cations of CZTS, Sn segregates more than Cu, while Zn segregates least. The nanoscale spurious phases were observed to vary across different regions in the sulphurized CZTS sample. The reactive annealing lead to grain growth and formation of grain boundary features in the CZTS thin films, where annealing significantly modifies the potential difference and band bending at grain boundaries with respect to intra-grains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520021200053 Publication Date 2019-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited (down) 4 Open Access OpenAccess  
  Notes ; Authors acknowledges support provided by DST, India in the forms of InSOL project. We also acknowledge Dr. Indrani Mishra for XPS measurements and DST-FIST Raman facility for Raman measurements. Manoj Vishwakarma acknowledges IIT Delhi, New Delhi, India for MHRD fellowship. Prof. B.R. Mehta acknowledges the support of the Schlumberger chair professorship. ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:168603 Serial 6552  
Permanent link to this record
 

 
Author Monico, L.; Cartechini, L.; Rosi, F.; Chieli, A.; Grazia, C.; De Meyer, S.; Nuyts, G.; Vanmeert, F.; Janssens, K.; Cotte, M.; De Nolf, W.; Falkenberg, G.; Sandu, I.C.A.; Tveit, E.S.; Mass, J.; De Freitas, R.P.; Romani, A.; Miliani, C. url  doi
openurl 
  Title Probing the chemistry of CdS paints in The Scream by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques Type A1 Journal article
  Year 2020 Publication Science Advances Abbreviated Journal  
  Volume 6 Issue 20 Pages eaay3514  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The degradation of cadmium sulfide (CdS)-based oil paints is a phenomenon potentially threatening the iconic painting The Scream (ca. 1910) by Edvard Munch (Munch Museum, Oslo) that is still poorly understood. Here, we provide evidence for the presence of cadmium sulfate and sulfites as alteration products of the original CdS-based paint and explore the external circumstances and internal factors causing this transformation. Macroscale in situ noninvasive spectroscopy studies of the painting in combination with synchrotron-radiation x-ray microspectroscopy investigations of a microsample and artificially aged mock-ups show that moisture and mobile chlorine compounds are key factors for promoting the oxidation of CdS, while light (photodegradation) plays a less important role. Furthermore, under exposure to humidity, parallel/secondary reactions involving dissolution, migration through the paint, and recrystallization of water-soluble phases of the paint are associated with the formation of cadmium sulfates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000533573300009 Publication Date 2020-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited (down) 4 Open Access  
  Notes ; The research was financially supported by the European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (grant agreement no. 654028); the project AMIS, within the program Dipartimenti di Eccellenza 2018-2022 (funded by MIUR and University of Perugia); and the program “Ricerca di Base 2017” (funded by University of Perugia). S.D.M. and K.J. acknowledge the GOA Project SolarPaint from the University of Antwerp Research Council and projects G056619N and G054719N from FWO (Brussels). F.V. and K.J. acknowledge support from Interreg Project Smart*Light and thank BELSPO (Brussels) for financial support via FED-tWIN mandate PRF055. L.M. acknowledges the Erasmus+ program (Staff Mobility for training, A. Y. 2018 to 2019) of the European Commission. In situ noninvasive analyses were performed using the European MOLAB platform, which is financially supported by the European project IPERION-CH. For the beamtime grants received, the authors thank the ESRF-ID21 beamline (experiment nos. HG32, HG64, and HG95), DESY-P06 beamline, a member of the Helmholtz Association HGF (experiment nos. I-20130221 EC and I-20160126 EC), and the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. ; Approved Most recent IF: 13.6; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169519 Serial 6585  
Permanent link to this record
 

 
Author Torsello, D.; Ummarino, G.A.; Bekaert, J.; Gozzelino, L.; Gerbaldo, R.; Tanatar, M.A.; Canfield, P.C.; Prozorov, R.; Ghigo, G. url  doi
openurl 
  Title Tuning the intrinsic anisotropy with disorder in the CaKFE₄As₄ superconductor Type A1 Journal article
  Year 2020 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 13 Issue 6 Pages 064046-64049  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report on the anisotropy of the London penetration depth of CaKFe4As4, discussing how it relates to its electronic structure and how it modifies under introduction of disorder, both chemically induced (by Ni substitution) and irradiation induced (by 3.5-MeV protons). Indeed, CaKFe4As4 is particularly suitable for the study of fundamental superconducting properties due to its stoichiometric composition, exhibiting clean-limit behavior in the pristine samples and having a fairly high critical temperature, T-c approximate to 35 K. The London penetration depth lambda(L) is measured with a microwave-coplanar-resonator technique that allows us to deconvolve the anisotropic contributions lambda(L,ab) and lambda(L,c) and obtain the anisotropy parameter gamma(lambda) = lambda(L,c)/lambda(L,ab). The gamma(lambda) (T) found for the undoped pristine sample is in good agreement with previous literature and is here compared to ab initio density-functional-theory and Eliashberg calculations. The dependence of gamma(lambda) (T) on both chemical and irradiation-induced disorder is discussed to highlight which method is more suitable to decrease the direction dependence of the electromagnetic properties while maintaining a high critical temperature. Lastly, the relevance of an intrinsic anisotropy such as gamma(lambda) on application-related anisotropic parameters (critical current, pinning) is discussed in light of the recent employment of CaKFe4As4 in the production of wires.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000540915800003 Publication Date 2020-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited (down) 4 Open Access  
  Notes ; This work was partially supported by the Italian Ministry of Education, University and Research (Project PRIN “HIBiSCUS,” Grant No. 201785KWLE). J.B. acknowledges the support of a postdoctoral fellowship of the Research Foundation-Flanders (FWO). The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. Work done at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. G.A.U. acknowledges support from the MEPhI Academic Excellence Project (Contract No. 702.a03.21.0005). ; Approved Most recent IF: 4.6; 2020 IF: 4.808  
  Call Number UA @ admin @ c:irua:170178 Serial 6641  
Permanent link to this record
 

 
Author Obeid, M.M.; Bafekry, A.; Rehman, S.U.; Nguyen, C., V. pdf  doi
openurl 
  Title A type-II GaSe/HfS₂ van der Waals heterostructure as promising photocatalyst with high carrier mobility Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 534 Issue Pages 147607  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, the electronic, optical, and photocatalytic properties of GaSe/HfS2 heterostructure are studied via first-principles calculations. The stability of the vertically stacked heterobilayers is validated by the binding energy, phonon spectrum, and ab initio molecular dynamics simulation. The results reveal that the most stable GaSe/HfS2 heterobilayer retains a type-II alignment with an indirect bandgap 1.40 eV. As well, the results also show strong optical absorption intensity in the studied heterostructure (1.8 x 10(5) cm(-1)). The calculated hole mobility is 1376 cm(2) V-1 s(-1), while electron mobility reaches 911 cm(2) V-1 s(-1) along the armchair and zigzag directions. By applying an external electric field, the bandgap and band offset of the designed heterostructure can be effectively modified. Remarkably, a stronger external electric field can create nearly free electron states in the vicinity of the bottom of the conduction band, which induces indirect-to-direct bandgap transition as well as a semiconductor-to-metal transition. In contrast, the electronic properties of GaSe/HfS2 heterostructure are predicted to be insensitive to biaxial strain. The current work reveals that GaSe/HfS2 heterostructure is a promising candidate as a novel photocatalytic material for hydrogen generation in the visible range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582367700045 Publication Date 2020-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited (down) 4 Open Access  
  Notes ; ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:174301 Serial 6682  
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Van Doorslaer, S.; Meynen, V.; Gorton, L.; De Wael, K. url  doi
openurl 
  Title Amperometric flow-injection analysis of phenols induced by reactive oxygen species generated under daylight irradiation of titania impregnated with horseradish peroxidase Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 92 Issue 92 Pages 3643-3649  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Titanium dioxide (TiO2) is a unique material for biosensing applications due to its capability of hosting enzymes. For the first time, we show that TiO2 can accumulate reactive oxygen species (ROS) under daylight irradiation and can support the catalytic cycle of horseradish peroxidase (HRP) without the need of H2O2 to be present in the solution. Phenolic compounds, such as hydroquinone (HQ) and 4-aminophenol (4-AP), were detected amperometrically in flow-injection analysis (FIA) mode via the use of an electrode modified with TiO2 impregnated with HRP. In contrast to the conventional detection scheme, no H2O2 was added to the analyte solution. Basically, the inherited ability of TiO2 to generate reactive oxygen species is used as a strategy to avoid adding H2O2 in the solution during the detection of phenolic compounds. Electron paramagnetic resonance (EPR) spectroscopy indicates the presence of ROS on titania which, in interaction with HRP, initiate the electrocatalysis toward phenolic compounds. The amperometric response to 4-AP was linear in the concentration range between 0.05 and 2 μM. The sensitivity was 0.51 A M–1 cm–2, and the limit of detection (LOD) 26 nM. The proposed sensor design opens new opportunities for the detection of phenolic traces by HRP-based electrochemical biosensors, yet in a more straightforward and sensitive way following green chemistry principles of avoiding the use of reactive and harmful chemical, such as H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518234700023 Publication Date 2020-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited (down) 3 Open Access  
  Notes ; The authors thank Scientific Reseatch-Flanders (F-WO) (grant 12T4219N) for funding. ; Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number UA @ admin @ c:irua:166241 Serial 5463  
Permanent link to this record
 

 
Author Wuyts, W.; Marin, J.; Brusselaers, J.; Vrancken, K. pdf  doi
openurl 
  Title Circular economy as a COVID-19 cure? Type A1 Journal article
  Year 2020 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 162 Issue Pages 105016-2  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569614800012 Publication Date 2020-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.2 Times cited (down) 3 Open Access  
  Notes ; Part of this work was financially supported by the Research Foundation – Flanders (FWO), Belgium and the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. We want to thank Lynne Stearman Falick and the editor for proofreading and providing comments on previous drafts. ; Approved Most recent IF: 13.2; 2020 IF: 3.313  
  Call Number UA @ admin @ c:irua:171912 Serial 6469  
Permanent link to this record
 

 
Author Tian, F.; Wang, Y.; Sandhu, H.S.; Gielis, J.; Shi, P. pdf  url
doi  openurl
  Title Comparison of seed morphology of two ginkgo cultivars Type A1 Journal article
  Year 2020 Publication Journal Of Forestry Research Abbreviated Journal J Forestry Res  
  Volume 31 Issue 3 Pages 751-758  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Ginkgo biloba L. is a precious relic tree species with important economic value. Seeds, as a vital reproductive organ of plants, can be used to distinguish cultivars of the species. We chose 400 seeds from two cultivars of ginkgo (Fozhi and Maling; 200 seeds for each cultivar) as the study material and used the Gielis equation to fit the projected shape of these seeds. The coefficients of variation (CV) in root mean squared errors (RMSE) obtained from the fitted data were used to compare the level of inter-cultivar variations in seed shape. We also used the covariance analysis to compare the allometric relationships between seed weights and projected areas of these two cultivars. The Gielis equation fitted well the seed shapes of two ginkgo cultivars. The lower CV in RMSE of cultivar Fozhi than Maling indicated a less symmetrical seed shape in the latter than the former. The bootstrap percentile method showed that the seed shape differences between the two cultivars were significant. However, there was no significant difference in the exponents between the seed weights and the projected areas of these two cultivars. Overall, the significant differences in shapes between the seeds of two ginkgo cultivars were well explained by the Gielis equation; this model can be further extended to compare morphological differences in other ginkgo cultivars, and even for plant seeds or animal eggs that have similar oval shapes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529367600005 Publication Date 2018-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1007-662x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited (down) 3 Open Access  
  Notes ; ; Approved Most recent IF: 3; 2020 IF: 0.774  
  Call Number UA @ admin @ c:irua:154987 Serial 6474  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Callaert, C.; Hadermann, J.; Delville, R.; Caspi, E.'ad N.; Dahlqvist, M.; Rosen, J.; Marshal, A.; Pradeep, K.G.; Schneider, J.M.; Vleugels, J.; Lambrinou, K. pdf  doi
openurl 
  Title Compatibility of Zr₂AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutectic Type A1 Journal article
  Year 2020 Publication Corrosion Science Abbreviated Journal Corros Sci  
  Volume 171 Issue Pages 108704-108719  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work investigates the compatibility of Zr2AlC MAX phase-based ceramics with liquid LBE, and proposes a mechanism to explain the observed local Zr2AlC/LBE interaction. The ceramics were exposed to oxygen-poor (C-O <= 2.2 x 10(-10) mass%), static liquid LBE at 500 degrees C for 1000 h. A new Zr-2(Al,Bi,Pb)C MAX phase solid solution formed in-situ in the LBE-affected Zr2AlC grains. Out-of-plane ordering was favorable in the new solid solution, whereby A-layers with high and low-Bi/Pb contents alternated in the crystal structure, in agreement with first-principles calculations. Bulk Zr-2(Al,Bi,Pb)C was synthesized by reactive hot pressing to study the crystal structure of the solid solution by neutron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537624600005 Publication Date 2020-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-938x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.3 Times cited (down) 3 Open Access Not_Open_Access  
  Notes ; B.T. acknowledges the financial support of the SCK CEN Academy for Nuclear Science and Technology (Belgium). This research was partly funded by the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/ 2007-2013 under Grant Agreement No. 604862 (FP7 MatISSE), the MYRRHA project (SCK CEN, Belgium), as well as by the Euratom research and training programme 2014-2018 under Grant Agreement No. 740415 (H2020 IL TROVATORE). The performed research falls within the framework of the EERA (European Energy Research Alliance) Joint Programme on Nuclear Materials (JPNM). The authors gratefully acknowledge the Hercules Foundation for Project AKUL/1319 (CombiS(T)EM)) and the Knut and Alice Wallenberg (KAW) foundation. The calculations were carried out using supercomputer resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) and the PDC Center for High Performance Computing. E.N.C. thanks Offir Ozeri for his help in NPD data acquiring. ; Approved Most recent IF: 8.3; 2020 IF: 5.245  
  Call Number UA @ admin @ c:irua:170157 Serial 6475  
Permanent link to this record
 

 
Author Paterson, G.W.; Webster, R.W.H.; Ross, A.; Paton, K.A.; Macgregor, T.A.; McGrouther, D.; MacLaren, I.; Nord, M. url  doi
openurl 
  Title Fast pixelated detectors in scanning transmission electron microscopy. part II : post-acquisition data processing, visualization, and structural characterization Type A1 Journal article
  Year 2020 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal  
  Volume 26 Issue 5 Pages 944-963  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Fast pixelated detectors incorporating direct electron detection (DED) technology are increasingly being regarded as universal detectors for scanning transmission electron microscopy (STEM), capable of imaging under multiple modes of operation. However, several issues remain around the post-acquisition processing and visualization of the often very large multidimensional STEM datasets produced by them. We discuss these issues and present open source software libraries to enable efficient processing and visualization of such datasets. Throughout, we provide examples of the analysis methodologies presented, utilizing data from a 256 x 256 pixel Medipix3 hybrid DED detector, with a particular focus on the STEM characterization of the structural properties of materials. These include the techniques of virtual detector imaging; higher-order Laue zone analysis; nanobeam electron diffraction; and scanning precession electron diffraction. In the latter, we demonstrate a nanoscale lattice parameter mapping with a fractional precision <= 6 x 10(-4) (0.06%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000576859800011 Publication Date 2020-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited (down) 3 Open Access OpenAccess  
  Notes ; G.W.P. and M.N. were the principal authors of the fpd and pixStem libraries reported herein (details of all contributions are documented in the repositories) and have made all of these available under open source licence GPLv3 for the benefit of the community. R.W.H.W., A.R., and K.A.P. have also made contributions to the source codes in these libraries. G.W.P and M.N. have led the data acquisition and analysis, and the drafting of this manuscript. The performance of this work was mainly supported by Engineering and Physical Sciences Research Council (EPSRC) of the UK via the project “Fast Pixel Detectors: a paradigm shift in STEM imaging” (Grant No. EP/M009963/1). G.W.P. received additional support from the EPSRC under Grant No. EP/M024423/1. M.N. received additional support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 838001. R.W.H.W., A.R., K.A.P., T.A.M., D.McG., and I.M. have all contributed either through acquisition and analysis of data or through participation in the revision of the manuscript. The studentships of R.W.H.W. and T.A.M. were supported by the EPSRC Doctoral Training Partnership Grant No. EP/N509668/1. I.M. and D.McG. were supported by EPSRC Grant No. EP/M009963/1. The studentship of K.A.P. was funded entirely by the UK Science and Technology Facilities Council (STFC) Industrial CASE studentship “Next2 TEM Detection” (No. ST/ P002471/1) with Quantum Detectors Ltd. as the industrial partner. As an inventor of intellectual property related to the MERLIN detector hardware, D.McG. is a beneficiary of the license agreement between the University of Glasgow and Quantum Detectors Ltd. We thank Diamond Quantum Detectors Ltd. for Medipix3 detector support; Dr. Bruno Humbel from Okinawa Institute of Science and Technology; and Dr. Caroline Kizilyaprak from the University of Lausanne for providing the liver sample; Dr. Ingrid Hallsteinsen and Prof. Thomas Tybell from the Norwegian University of Science and Technology (NTNU) for providing the La0.7Sr0.3MnO3/LaFeO3/SrTiO3 sample shown in Figure 4; and NanoMEGAS for the loan of the DigiSTAR precession system and TopSpin acquisition software. The development of the integration of TopSpin with the Merlin readout of the Medipix3 camera has been performed with the aid of financial assistance from the EPSRC under Grant No. EP/R511705/1 and through direct collaboration between NanoMEGAS and Quantum Detectors Ltd. ; Approved Most recent IF: 2.8; 2020 IF: 1.891  
  Call Number UA @ admin @ c:irua:172695 Serial 6519  
Permanent link to this record
 

 
Author Seuntjens, D.; Carvajal Arroyo, J.M.; Van Tendeloo, M.; Chatzigiannidou, I.; Molina, J.; Nop, S.; Boon, N.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Mainstream partial nitritation/anammox with integrated fixed-film activated sludge : combined aeration and floc retention time control strategies limit nitrate production Type A1 Journal article
  Year 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 314 Issue Pages 123711-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Implementation of mainstream partial nitritation/anammox (PN/A) can lead to more sustainable and cost-effective sewage treatment. For mainstream PN/A reactor, an integrated fixed-film activated sludge (IFAS) was operated (26 °C). The effects of floccular aerobic sludge retention time (AerSRT_floc), a novel aeration strategy, and N-loading rate were tested to optimize the operational strategy. The best performance was observed with a low, but sufficient AerSRTfloc (~7d) and continuous aeration with two alternating dissolved oxygen setpoints: 10 min at 0.07–0.13 mg O2 L−1 and 5 min at 0.27–0.43 mg O2 L−1. Nitrogen removal rates were 122 ± 23 mg N L−1 d−1, and removal efficiencies 73 ± 13%. These conditions enabled flocs to act as nitrite sources while the carriers were nitrite sinks, with low abundance of nitrite oxidizing bacteria. The operational strategies in the source-sink framework can serve as a guideline for successful operation of mainstream PN/A reactors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558601200004 Publication Date 2020-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited (down) 3 Open Access  
  Notes ; D.S. was supported by a Ph.D. grant from the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWTVlaanderen, SB-131769). M.V.T. was supported by a Ph.D. SB Fellowship from the Research Foundation -Flanders (FWO-Vlaanderen, 1S03218N). ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:170054 Serial 6559  
Permanent link to this record
 

 
Author Rowenczyk, L.; Dazzi, A.; Deniset-Besseau, A.; Beltran, V.; Goudounèche, D.; Wong-Wah-Chung, P.; Boyron, O.; George, M.; Fabre, P.; Roux, C.; Mingotaud, A.F.; ter Halle, A. pdf  doi
openurl 
  Title Microstructure characterization of oceanic polyethylene debris Type A1 Journal article
  Year 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 7 Pages 4102-4109  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Plastic pollution has become a worldwide concern. It was demonstrated that plastic breaks down to nanoscale particles in the environment, forming so-called nanoplastics. It is important to understand their ecological impact, but their structure is not elucidated. In this original work, we characterize the microstructure of oceanic polyethylene debris and compare it to the nonweathered objects. Cross sections are analyzed by several emergent mapping techniques. We highlight deep modifications of the debris within a layer a few hundred micrometers thick. The most intense modifications are macromolecule oxidation and a considerable decrease in the molecular weight. The adsorption of organic pollutants and trace metals is also confined to this outer layer. Fragmentation of the oxidized layer of the plastic debris is the most likely source of nanoplastics. Consequently the nanoplastic chemical nature differs greatly from plastics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526418000041 Publication Date 2020-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited (down) 3 Open Access  
  Notes ; Foundation and The French National Reaserch Program for Environmental and Occupational Health of Anses (EST/2017/1/219). We thank the 7th Continent Expedition Association, as well as the staff and crew, for the sea sampling campaign. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:172890 Serial 6560  
Permanent link to this record
 

 
Author Wang, J.; Andelkovic, M.; Wang, G.; Peeters, F.M. url  doi
openurl 
  Title Molecular collapse in graphene: Sublattice symmetry effect Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 6 Pages 064108-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomic collapse can be observed in graphene because of its large “effective” fine structure constant, which enables this phenomenon to occur for an impurity charge as low as Z(c) similar to 1-2. Here we investigate the effect of the sublattice symmetry on molecular collapse in two spatially separated charge tunable vacancies, which are located on the same (A-A type) or different (A-B type) sublattices. We find that the broken sublattice symmetry: (1) does not affect the location of the main bonding and antibonding molecular collapse peaks, (2) but shifts the position of the satellite peaks, because they are a consequence of the breaking of the local sublattice symmetry, and (3) there are vacancy characteristic collapse peaks that only occur for A-B type vacancies, which can be employed to distinguish them experimentally from the A-A type. As the charge, energy, and separation distance increase, the additional collapse features merge with the main molecular collapse peaks. We show that the spatial distribution around the vacancy site of the collapse states allows us to differentiate the molecular from the frustrated collapse.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000562320700002 Publication Date 2020-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited (down) 3 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grants No. 61874038 and No. 61704040), National Key R&D Program Grant 2018YFE0120000, the scholarship from China Scholarship Council (CSC: 201908330548), and TRANS2DTMD FlagEra project. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:172065 Serial 6562  
Permanent link to this record
 

 
Author Clima, S.; Garbin, D.; Opsomer, K.; Avasarala, N.S.; Devulder, W.; Shlyakhov, I.; Keukelier, J.; Donadio, G.L.; Witters, T.; Kundu, S.; Govoreanu, B.; Goux, L.; Detavernier, C.; Afanas'ev, V.; Kar, G.S.; Pourtois, G. pdf  doi
openurl 
  Title Ovonic threshold-switching GexSey chalcogenide materials : stoichiometry, trap nature, and material relaxation from first principles Type A1 Journal article
  Year 2020 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R  
  Volume Issue Pages 1900672  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Density functional theory simulations are used to identify the structural factors that define the material properties of ovonic threshold switches (OTS). They show that the nature of mobility-gap trap states in amorphous Ge-rich Ge50Se50 is related to Ge-Ge bonds, whereas in Se-rich Ge30Se70 the Ge valence-alternating-pairs and Se lone-pairs dominate. To obtain a faithful description of the electronic structure and delocalization of states, it is required to combine hybrid exchange-correlation functionals with large unit-cell models. The extent of localization of electronic states depends on the applied external electric field. Hence, OTS materials undergo structural changes during electrical cycling of the device, with a decrease in the population of less exothermic Ge-Ge bonds in favor of more exothermic Ge-Se. This reduces the amount of charge traps, which translates into coordination changes, an increase in mobility-gap, and subsequently changes in the selector-device electrical parameters. The threshold voltage drift process can be explained by natural evolution of the nonpreferred Ge-Ge bonds (or “chains”/clusters thereof) in Ge-rich GexSe1-x. The effect of extrinsic doping is shown for Si and N, which introduce strong covalent bonds into the system, increase both mobility-gap and crystallization temperature, and decrease the leakage current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512431100001 Publication Date 2020-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited (down) 3 Open Access  
  Notes ; This work was carried out in the framework of the imec Core CMOS-Emerging Memory Program. Financial support from EU H2020-NMBPTO-IND-2018 project “INTERSECT” (Grant No. 814487) is acknowledged. ; Approved Most recent IF: 2.8; 2020 IF: 3.032  
  Call Number UA @ admin @ c:irua:166492 Serial 6575  
Permanent link to this record
 

 
Author Pacquets, L.; Irtem, E.; Neukermans, S.; Daems, N.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title Size-controlled electrodeposition of Cu nanoparticles on gas diffusion electrodes in methanesulfonic acid solution Type A1 Journal article
  Year 2020 Publication Journal Of Applied Electrochemistry Abbreviated Journal J Appl Electrochem  
  Volume 51 Issue 2 Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract In this paper electrodeposition is used to obtain Cu nanoparticles, as it allows good control over particle size and distribution. These Cu particles were deposited onto a gas diffusion electrode which increased the resulting surface area. Prior to deposition, the surface was pre-treated with NaOH, HNO3, MQ and TX100 to investigate the influence on the electrodeposition of Cu on the gas diffusion electrode (GDE). When using HNO3, the smallest particles with the most homogeneous distribution and high particle roughness were obtained. Once the optimal substrate was determined, we further demonstrated that by altering the electrodeposition parameters, the particle size and density could be tuned. On the one hand, increasing the nucleation potential led to a higher particle density resulting in smaller particles because of an increased competition between particles. Finally, the Cu particle size increased when applying a greater growth charge and growth potential. This fundamental study thus opens up a path towards the synthesis of supported Cu materials with increased surface areas, which is interesting from a catalytic point of view. Larger surface areas are generally correlated with a better catalyst performance and thus higher product yields. This research can contributed in obtaining new insides into the deposition of metallic nanoparticles on rough surfaces. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000568651000001 Publication Date 2020-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-891x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.9 Times cited (down) 3 Open Access OpenAccess  
  Notes ; L. Pacquets was supported through a PhD fellowship strategic basic research (1S56918N) of the Research Foundation-Flanders (FWO). N. Daems was supported through a postdoctoral fellowship (12Y3919N-ND) of the Research Foundation-Flanders (FWO). S. Neukermans was supported through an FWO project grant (G093317N). This research was financed by the research counsel of the university of Antwerp (BOF-GOA 33928). The authors recognize the contribution of Thomas Kenis for analytical validation and methodology. ; Approved Most recent IF: 2.9; 2020 IF: 2.235  
  Call Number UA @ admin @ c:irua:171588 Serial 6603  
Permanent link to this record
 

 
Author Wang, H.S.; Chen, L.; Elibol, K.; He, L.; Wang, H.; Chen, C.; Jiang, C.; Li, C.; Wu, T.; Cong, C.X.; Pennycook, T.J.; Argentero, G.; Zhang, D.; Watanabe, K.; Taniguchi, T.; Wei, W.; Yuan, Q.; Meyer, J.C.; Xie, X. pdf  doi
openurl 
  Title Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride Type A1 Journal article
  Year 2020 Publication Nature Materials Abbreviated Journal Nat Mater  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Oriented trenches are created in h-BN using different catalysts, and used as templates to grow seamlessly integrated armchair and zigzag graphene nanoribbons with chirality-dependent electrical and magnetic conductance properties. The integrated in-plane growth of graphene nanoribbons (GNRs) and hexagonal boron nitride (h-BN) could provide a promising route to achieve integrated circuitry of atomic thickness. However, fabrication of edge-specific GNRs in the lattice of h-BN still remains a significant challenge. Here we developed a two-step growth method and successfully achieved sub-5-nm-wide zigzag and armchair GNRs embedded in h-BN. Further transport measurements reveal that the sub-7-nm-wide zigzag GNRs exhibit openings of the bandgap inversely proportional to their width, while narrow armchair GNRs exhibit some fluctuation in the bandgap-width relationship. An obvious conductance peak is observed in the transfer curves of 8- to 10-nm-wide zigzag GNRs, while it is absent in most armchair GNRs. Zigzag GNRs exhibit a small magnetic conductance, while armchair GNRs have much higher magnetic conductance values. This integrated lateral growth of edge-specific GNRs in h-BN provides a promising route to achieve intricate nanoscale circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571692500001 Publication Date 2020-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122; 1476-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 41.2 Times cited (down) 3 Open Access Not_Open_Access  
  Notes ; H.W. and X.X. thank J.H. Edgar (Kansas State University, USA) for supplying the partial h-BN crystals. H. S. Wang, L. Chen and H. Wang thank M. Liu, X. Qiu and J. Pan from NCNT of China, F. Liou, H. Tsai, M. Crommie from UCB, USA, J. Xue and P. Yu from ShanghaiTech University and S. Wang from SJTU for nc-AFM measurement. H. S. Wang, L. Chen and H. Wang thank B. Sun and S. Li from Hunan University for the fusion of the STEM image and the electron energy loss spectroscopy mapping images. Funding: The work was partially supported by the National Key R&D program (Grant No. 2017YFF0206106), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), the National Science Foundation of China (Grant No. 51772317, 51302096, 61774040, 91964102), the Science and Technology Commission of Shanghai Municipality (Grant No. 16ZR1442700, 16ZR1402500 18511110700), Shanghai Rising-Star Program (A type) (Grant No.18QA1404800), the Hubei Provincial Natural Science Foundation of China (Grant No. ZRMS2017000370), China Postdoctoral Science Foundation (Grant No. 2017M621563, 2018T110415), and the Fundamental Research Funds of Wuhan City (No. 2016060101010075). C.L. acknowledges support from the European Union's Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grants No. 656378 – Interfacial Reactions. T.J.P. acknowledges funding from European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement no. 655760-DIGIPHASE. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and the CREST (JPMJCR15F3), JST. C.X.C. acknowledges financial support from the National Young 1000 Talent Plan of China and the National Key R&D Program of China (No. 2018YFA0703700). L.H. acknowledges financial support from the programme of China Scholarships Council (No. 201706160037). ; Approved Most recent IF: 41.2; 2020 IF: 39.737  
  Call Number UA @ admin @ c:irua:171944 Serial 6633  
Permanent link to this record
 

 
Author Moro, G.; Barich, H.; Driesen, K.; Montiel, N.F.; Neven, L.; Mendonca, C.D.; Thiruvottriyur Shanmugam, S.; Daems, E.; De Wael, K. pdf  doi
openurl 
  Title Unlocking the full power of electrochemical fingerprinting for on-site sensing applications Type A1 Journal article
  Year 2020 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem  
  Volume Issue Pages 1-14  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Electrochemical sensing for the semi-quantitative detection of biomarkers, drugs, environmental contaminants, food additives, etc. shows promising results in point-of-care diagnostics and on-site monitoring. More specifically, electrochemical fingerprint (EF)-based sensing strategies are considered an inviting approach for the on-site detection of low molecular weight molecules. The fast growth of electrochemical sensors requires defining the concept of direct electrochemical fingerprinting in sensing. The EF can be defined as the unique electrochemical signal or pattern, mostly recorded by voltammetric techniques, specific for a certain molecule that can be used for its quantitative or semi-quantitative identification in a given analytical context with specified circumstances. The performance of EF-based sensors can be enhanced by considering multiple features of the signal (i.e., oxidation or reduction patterns), in combination with statistical data analysis or sample pretreatments or by including electrode surface modifiers to enrich the EF. In this manuscript, some examples of EF-based sensors, strategies to improve their performances, and open challenges are discussed to unlock the full power of electrochemical fingerprinting for on-site sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523396300002 Publication Date 2020-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited (down) 3 Open Access  
  Notes ; The presented review is the result of a concerted effort and fruitful discussions among enthusiastic, young, and (for the occasion) female researchers of the AXES research group, each of them with specific expertise and background, under the guidance of the corresponding author. The authors acknowledge FWO-Flanders, BOF-UA, IOF-UA, FAPESP and EU for funding. ; Approved Most recent IF: 4.3; 2020 IF: 3.431  
  Call Number UA @ admin @ c:irua:168563 Serial 6647  
Permanent link to this record
 

 
Author Yu, W.-B.; Hu, Z.-Y.; Jin, J.; Yi, M.; Yan, M.; Li, Y.; Wang, H.-E.; Gao, H.-X.; Mai, L.-Q.; Hasan, T.; Xu, B.-X.; Peng, D.-L.; Van Tendeloo, G.; Su, B.-L. url  doi
openurl 
  Title Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO₂/rGO hybrid architecture for high-performance Li-ion batteries Type A1 Journal article
  Year 2020 Publication National Science Review Abbreviated Journal Natl Sci Rev  
  Volume 7 Issue 6 Pages 1046-1058  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g(-1) at 1 C (1 C = 335 mA g(-1)) at a voltage window of 1.0-3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g(-1), respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000544175300013 Publication Date 2020-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-5138 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.6 Times cited (down) 3 Open Access OpenAccess  
  Notes ; This work was supported by the National Key R&D Program of China (2016YFA0202602 and 2016YFA0202603), the National Natural Science Foundation of China (U1663225) and Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52). ; Approved Most recent IF: 20.6; 2020 IF: 8.843  
  Call Number UA @ admin @ c:irua:170776 Serial 6648  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Gonzalez-Hernandez, R.; Rivera-Julio, J.; Espejo, C.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Two-dimensional hydrogenated buckled gallium arsenide: an ab initio study Type A1 Journal article
  Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 32 Issue 14 Pages 145502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principles calculations have been carried out to investigate the stability, structural and electronic properties of two-dimensional (2D) hydrogenated GaAs with three possible geometries: chair, zigzag-line and boat configurations. The effect of van der Waals interactions on 2D H-GaAs systems has also been studied. These configurations were found to be energetic and dynamic stable, as well as having a semiconducting character. Although 2D GaAs adsorbed with H tends to form a zigzag-line configuration, the energy differences between chair, zigzag-line and boat are very small which implies the metastability of the system. Chair and boat configurations display a – direct bandgap nature, while pristine 2D-GaAs and zigzag-line are indirect semiconductors. The bandgap sizes of all configurations are also hydrogen dependent, and wider than that of pristine 2D-GaAs with both PBE and HSE functionals. Even though DFT-vdW interactions increase the adsorption energies and reduce the equilibrium distances of H-GaAs systems, it presents, qualitatively, the same physical results on the stability and electronic properties of our studied systems with PBE functional. According to our results, 2D buckled gallium arsenide is a good candidate to be synthesized by hydrogen surface passivation as its group III-V partners 2D buckled gallium nitride and boron nitride. The hydrogenation of 2D-GaAs tunes the bandgap of pristine 2D-GaAs, which makes it a potential candidate for optoelectronic applications in the blue and violet ranges of the visible electromagnetic spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507894400001 Publication Date 2019-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited (down) 2 Open Access  
  Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. The authors gratefully acknowledge the support from the High Performance Computing core facility CalcUA and the TOPBOF project at the University of Antwerp, Belgium; and the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de). ; Approved Most recent IF: 2.7; 2020 IF: 2.649  
  Call Number UA @ admin @ c:irua:165644 Serial 6330  
Permanent link to this record
 

 
Author Bengtson, C.; Bogaerts, A. pdf  url
doi  openurl
  Title On the Anti-Cancer Effect of Cold Atmospheric Plasma and the Possible Role of Catalase-Dependent Apoptotic Pathways Type A1 Journal article
  Year 2020 Publication Cells Abbreviated Journal Cells  
  Volume 9 Issue 10 Pages 2330  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail and consists of a very complex network of reactions that are claimed to account for the anti-cancer effect of CAP. Here, the key concept is a reactivation of two specific apoptotic cell signaling pathways through catalase inactivation caused by CAP. Thus, it is postulated that the anti-cancer effect of CAP is due to its ability to inactivate catalase, either directly or indirectly. A theoretical investigation of the proposed theory, especially the role of catalase inactivation, can contribute to the understanding of the underlying cause of the anti-cancer effect of CAP. In the present study, we develop a mathematical model to analyze the proposed catalase-dependent anti-cancer effect of CAP. Our results show that a catalase-dependent reactivation of the two apoptotic pathways of interest is unlikely to contribute to the observed anti-cancer effect of CAP. Thus, we believe that other theories of the underlying cause should be considered and evaluated to gain knowledge about the principles of CAP-induced cancer cell death.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000584186700001 Publication Date 2020-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (down) 2 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:173632 Serial 6429  
Permanent link to this record
 

 
Author Rutten, I.; Daems, D.; Lammertyn, J. url  doi
openurl 
  Title Boosting biomolecular interactions through DNA origami nano-tailored biosensing interfaces Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry B Abbreviated Journal J Mater Chem B  
  Volume 8 Issue 16 Pages 3606-3615  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The interaction between a bioreceptor and its target is key in developing sensitive, specific and robust diagnostic devices. Suboptimal interbioreceptor distances and bioreceptor orientation on the sensor surface, resulting from uncontrolled deposition, impede biomolecular interactions and lead to a decreased biosensor performance. In this work, we studied and implemented a 3D DNA origami design, for the first time comprised of assay specifically tailored anchoring points for the nanostructuring of the bioreceptor layer on the surface of disc-shaped microparticles in the continuous microfluidic environment of the innovative EvalutionTM platform. This bioreceptor immobilization strategy resulted in the formation of a less densely packed surface with reduced steric hindrance and favoured upward orientation. This increased bioreceptor accessibility led to a 4-fold enhanced binding kinetics and a 6-fold increase in binding efficiency compared to a directly immobilized non-DNA origami reference system. Moreover, the DNA origami nanotailored biosensing concept outperformed traditional aptamer coupling with respect to limit of detection (11 × improved) and signal-to-noise ratio (2.5 × improved) in an aptamer-based sandwich bioassay. In conclusion, our results highlight the potential of these DNA origami nanotailored surfaces to improve biomolecular interactions at the sensing surface, thereby increasing the overall performance of biosensing devices. The combination of the intrinsic advantages of DNA origami together with a smart design enables bottom-up nanoscale engineering of the sensor surface, leading towards the next generation of improved diagnostic sensing devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000548186500032 Publication Date 2020-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-750x; 2050-7518 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited (down) 2 Open Access  
  Notes ; We gratefully acknowledge financial support from Fund for Scientific Research (FWO, FWO-Flanders Doctoral grant Iene Rutten 1S30016N and FWO-Flanders Postdoctoral Fellow Devin Daems 12U1618N). We kindly thank MyCartis for access to their EvalutionTM platform, microparticle supplies and technical support. We would also like to thank Steven De Feyter and Joan Teyssandier (Molecular imaging and Photonics, Department of Chemistry, KU Leuven, Belgium) for providing the AFM facilities and technical support. We thank Peter Vangheluwe (Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven) for access to their gel imaging system, Typhoon FLA 9000. ; Approved Most recent IF: 7; 2020 IF: 4.543  
  Call Number UA @ admin @ c:irua:166104 Serial 6462  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: